Development and Application of Solid-Liquid Two-Phase Similar Material for Reservoir Rock Slope Model Test
-
摘要: 相似材料是水库型岩质边坡模型试验的关键.通过正交试验和大量室内试验研制出一种能同时模拟边坡岩体物理力学性能和渗流作用相似的固-液两相相似材料,该材料以石英砂、铁精粉和重晶石粉为骨料、水泥和石膏为胶结剂、硅油为调节剂.系统研究不同配比对材料力学性质的影响规律,确定各性能的主控组分,并利用多元回归分析建立各参数与材料配比之间的经验方程.最后结合工程案例配制相似模型材料,评价该材料的相似效果,并应用于水库型边坡模型试验过程中破坏模式和渗流场分析.试验结果表明:(1)相似材料各物理力学和水理参数分布范围较广,能满足岩质边坡模型试验对材料物理力学性能和渗流作用相似的需求,是一种理想的固-液两相材料;(2)相似材料各参数主控参量明显,便于通过调节配比模拟不同类型边坡岩体;(3)通过多元回归分析能够高效地配制边坡模型所需的相似材料,相似效果较好,边坡模型发生压剪变形破坏,分析了库水作用下模型试验过程中孔隙水压力变化规律.研究成果为进一步开展水库型岩质边坡模型试验多场演化特征研究提供参考.Abstract: Similar material is the key to the model test of reservoir rock slope. A kind of solid-liquid two-phase similar material which can simulate physical and mechanical properties similar and seepage action similar of slope rock mass at the same time is developed through orthogonal test and a large number of laboratory tests. The material uses quartz sand, iron powder and barite powder as aggregate, cement and gypsum as cementing agent and silicone oil as regulator. The influence of material different ratios on its mechanical properties is systematically studied, and the main control components of each property are determined, and the empirical equation between each parameter and the ratio of materials is established by multiple regression analysis. Finally, the similar materials of model test are prepared in combination with an engineering case, and the similar effect of those materials is evaluated, and the materials are applied to the failure mode and seepage field analysis in the model test of reservoir slope. The test results show follows: (1) Physical, mechanical parameters, and hydro-physical properties of similar materials are widely distributed, which can meet the requirements of physical and mechanical properties similar and seepage action similar of rock slope model test, and it is an ideal solid-liquid two-phase similar material. (2) The main control components of similar materials are obvious, which is convenient to simulate different types of slope rock mass by adjusting the ratio. (3) Multiple regression analysis can efficiently concoct similar materials for slope model test, and the similarity effect is good. The slope model undergoes compression shear deformation and failure, and the variation law of pore water pressure during model testing under the action of reservoir water is analyzed. The research results can provide reference for further research on multi-field evolution characteristics of reservoir rock slope model test.
-
表 1 相似材料配比正交设计
Table 1. Orthogonal design of similar material
水平 因素A(%) 因素B(%) 因素C(%) 因素D(%) 1 2 60 25 15 2 4 70 35 20 3 6 80 45 25 4 8 90 55 30 5 10 100 65 35 注:每组试验设定固体材料、水和硅油质量恒定,分别取600 g、90 g、3.6 g;早强剂和减泡剂质量取胶结材料质量的0.1%. 表 2 相似材料物理力学参数测试结果
Table 2. Physical and mechanical parameters test results of similar material
试验号 设计配比 ρ(g·cm-3) 抗压强度(MPa) 剪切强度 软化效应系数 k(cm·s-1) σc σcω c(MPa) cω(MPa) φ(°) φω(°) krσ krc krφ No.1 A1B1C1D1 2.54 0.19 0.13 0.15 0.11 36.63 19.94 0.69 0.73 0.54 5.05×10-6 No.2 A1B2C2D2 2.52 0.20 0.10 0.19 0.13 38.06 21.71 0.51 0.68 0.57 6.67×10-6 No.3 A1B3C3D3 2.45 0.32 / 0.56 / 45.00 / / / / No.4 A1B4C4D4 2.40 0.55 / 0.68 / 50.42 / / / / No.5 A1B5C5D5 2.28 1.18 0.38 1.10 0.59 58.51 33.37 0.32 0.54 0.57 9.63×10-5 No.6 A2B1C2D3 2.53 0.44 0.29 0.28 0.18 34.76 21.42 0.65 0.64 0.62 1.38×10-5 No.7 A2B2C3D4 2.49 0.39 0.20 0.34 0.23 39.41 26.81 0.51 0.68 0.68 2.87×10-5 No.8 A2B3C4D5 2.41 0.68 0.27 0.55 0.33 41.08 28.25 0.39 0.60 0.69 6.21×10-5 No.9 A2B4C5D1 2.20 0.81 0.34 0.97 0.45 46.36 30.78 0.42 0.46 0.66 8.73×10-5 No.10 A2B5C1D2 2.56 1.23 / 0.73 / 32.27 / / / / / No.11 A3B1C3D5 2.54 0.76 0.47 0.54 0.28 35.39 26.82 0.62 0.52 0.76 2.65×10-5 No.12 A3B2C4D1 2.46 0.69 0.40 0.55 0.32 40.32 29.75 0.58 0.58 0.74 3.75×10-5 No.13 A3B3C5D2 2.41 0.94 0.43 0.82 0.35 43.10 31.16 0.46 0.43 0.72 5.12×10-5 No.14 A3B4C1D3 2.63 1.29 0.50 0.92 0.68 33.19 20.89 0.39 0.74 0.63 2.12×10-6 No.15 A3B5C2D4 2.65 2.22 0.82 1.23 0.89 31.17 19.10 0.37 0.72 0.61 1.36×10-5 No.16 A4B1C4D2 2.44 1.07 0.63 0.56 0.37 37.12 27.54 0.59 0.66 0.74 2.41×10-5 No.17 A4B2C5D3 2.34 1.06 0.57 0.65 0.36 37.37 26.34 0.54 0.55 0.70 4.61×10-5 No.18 A4B3C1D4 2.66 1.80 0.81 0.98 0.57 21.44 17.90 0.45 0.58 0.83 2.64×10-6 No.19 A4B4C2D5 2.55 1.83 0.99 0.72 0.40 27.26 21.69 0.54 0.56 0.80 1.45×10-5 No.20 A4B5C3D1 2.51 2.69 0.94 1.06 0.61 25.72 20.81 0.35 0.58 0.81 2.61×10-5 No.21 A5B1C5D4 2.37 1.45 1.19 0.81 0.42 40.43 33.10 0.82 0.52 0.82 4.59×10-5 No.22 A5B2C1D5 2.71 2.48 1.07 0.71 0.58 18.77 15.37 0.43 0.82 0.82 3.15×10-6 No.23 A5B3C2D1 2.60 2.33 1.47 1.08 0.59 25.39 19.57 0.63 0.55 0.77 1.26×10-5 No.24 A5B4C3D2 2.52 2.21 1.28 1.24 0.70 25.41 20.46 0.58 0.56 0.81 3.95×10-5 No.25 A5B5C4D3 2.44 3.10 1.30 1.70 0.74 33.56 28.37 0.42 0.44 0.85 5.12×10-5 表 3 原岩物理力学参数和水理性参数
Table 3. Physical and mechanical parameters and hydro⁃physical properties of original rock
介质 ρ(g·cm-3) 抗压强度(MPa) 剪切强度 软化效应系数 k(cm·s-1) σc σcω c(MPa) cω(MPa) φ(°) φω(°) krσ krc krφ 灰岩基岩区(原岩①) 2.70 102.30 65.00 1.00 0.66 45.00 33.30 0.64 0.66 0.74 2.49×10-4 灰岩卸荷区(原岩②) 2.60 81.30 49.50 0.60 0.30 38.66 26.57 0.61 0.50 0.69 2.49×10-4 泥灰岩基岩区(原岩③) 2.70 70.31 40.00 0.60 0.35 38.66 27.06 0.57 0.58 0.70 2.65×10-4 泥灰岩卸荷区(原岩④) 2.60 54.05 30.00 0.48 0.24 30.96 21.80 0.56 0.50 0.70 2.65×10-4 表 4 模型试验相似材料配比
Table 4. Proportion of similar materials in model test
介质 A(%) B(%) C(%) D(%) 模型材料① 7.26 65.27 48.99 27.75 模型材料② 6.33 66.62 50.63 13.36 模型材料③ 5.42 68.34 47.52 26.99 模型材料④ 4.38 71.18 46.54 23.75 表 5 相似材料力学参数相似效果对比
Table 5. Comparison of similar effects of similar materials
介质 ρ
(g·cm-3)抗压强度(MPa) 剪切强度 软化效应系数 k(cm·s-1) σc σcω c(MPa) cω(MPa) φ(°) φω(°) krσ krc krφ 相似比Cx 计算
结果1.07 107 107 107 107 1 1 1 1 1 9.35 模型材料① 换算
结果2.52 0.96 0.61 0.009 3 0.006 2 45.00 33.30 0.64 0.66 0.74 2.66×10-5 拟合
结果2.50 1.00 0.61 0.56 0.34 34.18 26.06 0.61 0.61 0.76 2.66×10-5 验证
试验2.50 1.02 0.60 0.57 0.40 36.70 26.41 0.59 0.70 0.72 1.79×10-5 模型材料② 换算
结果2.43 0.76 0.46 0.005 6 0.002 8 38.66 26.57 0.61 0.50 0.69 2.66×10-5 拟合
结果2.45 0.71 0.46 0.51 0.28 35.83 25.94 0.65 0.55 0.72 2.66×10-5 验证
试验2.49 0.69 0.43 0.50 0.30 37.68 26.06 0.62 0.60 0.69 2.87×10-5 模型材料③ 换算
结果2.52 0.66 0.37 0.005 6 0.003 3 38.66 27.06 0.57 0.58 0.70 2.84×10-5 拟合
结果2.49 0.64 0.37 0.47 0.30 37.44 26.13 0.58 0.64 0.70 2.84×10-5 验证
试验2.49 0.62 0.36 0.45 0.29 37.14 27.53 0.58 0.64 0.74 3.01×10-5 模型材料④ 换算
结果2.43 0.51 0.28 0.004 5 0.002 2 30.96 21.80 0.56 0.50 0.70 2.84×10-5 拟合
结果2.47 0.51 0.28 0.45 0.28 38.98 25.89 0.56 0.62 0.66 2.84×10-5 验证
试验2.46 0.50 0.26 0.39 0.25 38.83 26.82 0.52 0.64 0.69 3.18×10-5 -
Han, T., Yang, W. H., Yang, Z. J., et al., 2011. Development of Similar Material for Porous Medium Solid⁃Liquid Coupling. Rock and Soil Mechanics, 32(5): 1411-1417(in Chinese with English abstract). He, C. C., Hu, X. L., Liu, D. Z., et al., 2020. Model Tests of the Evolutionary Process and Failure Mechanism of a Pile⁃Reinforced Landslide under Two Different Reservoir Conditions. Engineering Geology, 277: 105811. https://doi.org/10.1016/j.enggeo.2020.105811 He, C. C., Hu, X. L., Tannant, D. D., et al., 2018. Response of a Landslide to Reservoir Impoundment in Model Tests. Engineering Geology, 247: 84-93. https://doi.org/10.1016/j.enggeo.2018.10.021 Hu, X. L., Tang, H. M., Li, C. D., et al., 2012. Stability of Huangtupo Riverside Slumping Mass II# under Water Level Fluctuation of Three Gorges Reservoir. Journal of Earth Science, 23(3): 326-334. https://doi.org/10.1007/s12583⁃012⁃0259⁃0 Hu, Y. Q., Zhao, Y. S., Yang, D., 2007. Simulation Theory & Method of 3D Solid⁃Liquid Coupling. Journal of Liaoning Technical University, 26(2): 204-206(in Chinese with English abstract). Huang, Q. X., Zhang, W. Z., Hou, Z. C., 2010. Study of Simulation Materials of Aquifuge for Solid⁃Liquid Coupling. Chinese Journal of Rock Mechanics and Engineering, 29(Suppl. 1): 2813-2818(in Chinese with English abstract). Jia, G. W., Zhan, L. T., Chen, Y. M., 2009. Model Test Study of Slope Instability Induced by Rapid Drawdown of Water Level. Chinese Journal of Rock Mechanics and Engineering, 28(9): 1798-1803(in Chinese with English abstract). Li, L. J., Qian, M. G., Yin, Y. Q., 1997. Research on the Tests of Water Inrush from Floor Simulated by Similar Materials. Coal Geology & Exploration, 25(1): 33-36(in Chinese with English abstract). Li, S. C., Feng, X. D., Li, S. C., et al., 2010. Research and Development of a New Similar Material for Solid⁃Fluid Coupling and Its Application. Chinese Journal of Rock Mechanics and Engineering, 29(2): 281-288(in Chinese with English abstract). Li, S. C., Zhou, Y., Li, L. P., et al., 2012. Development and Application of a New Similar Material for Underground Engineering Fluid⁃Solid Coupling Model Test. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1128-1137(in Chinese with English abstract). Li, S. L., Xu, Q., Tang, M. G., et al., 2020. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1): 341-354(in Chinese with English abstract). Ma, H., Huang, D., Shi, L., 2020. Numerical Simulation of S⁃Shaped Failure Evolution of Anti⁃Dip Slope Based on Statistics of Broken Length and Layer Thickness. Journal of Engineering Geology, 28(6): 1160-1171(in Chinese with English abstract). Shi, X. M., Liu, B. G., Qi, Y., 2015. Applicability of Similar Materials Bonded by Cement and Plaster in Solid⁃Liquid Coupling Tests. Rock and Soil Mechanics, 36(9): 2624-2630, 2638(in Chinese with English abstract). Sun, Y. J., Zhang, D., Shi, B., et al., 2014. Distributed Acquisition, Characterization and Process Analysis of Multi⁃Field Information in Slopes. Engineering Geology, 182: 49-62. https://doi.org/10.1016/j.enggeo.2014.08.025 Tian, J. L., Wang, L. Q., An, C. L., et al., 2022. Development of a Model Material for Dynamic Geotechnical Model Tests. Applied Sciences, 12(11): 5344. https://doi.org/10.3390/app12115344 Wang, K., Li, S. C., Zhang, Q. S., et al., 2016. Development and Application of New Similar Materials of Surrounding Rock for a Fluid⁃Solid Coupling Model Test. Rock and Soil Mechanics, 37(9): 2521-2533(in Chinese with English abstract). Xu, C., Hu, X. L., He, C. C., et al., 2018. Development and Application of Similar Material for Reservoir Landslide Model Test. Rock and Soil Mechanics, 39(11): 4287-4293(in Chinese with English abstract). Xu, W. Y., Xie, S. Y., Liu, S. J., et al., 2002. Study on Characteristics and Numerical Simulation for Slope Unloading Zonein Shuibuya Hydropower Project Dam Site Area. Journal of University of Hydraulic and Electric Engineering/Yichang, 24(2): 101-106(in Chinese with English abstract). Yuan, X. F., Hu, S., Yang, W., et al., 2017. Stability and Deformation Characteristics of a Certain Reservoir Slope Based on Space⁃Time Evolution Laws. Journal of Chongqing Jiaotong University (Natural Science), 36(3): 71-78(in Chinese with English abstract). Zhang, B. C., Ning, Y. B., Tang, H. M., et al., 2023. Study on the Evolutionary Process of Interbedded Anti⁃Inclined Slope Block⁃Flexure Toppling in the Upper Yalong River. Bulletin of Engineering Geology and the Environment, 82: 240. https://doi.org/10.1007/s10064⁃023⁃03223⁃2 Zhang, J., Hou, Z. J., 2004. Experimental Study on Simulation Materials for Solid⁃Liquid Coupling. Chinese Journal of Rock Mechanics and Engineering, 23(18): 3157-3161(in Chinese with English abstract). Zhang, J., Cai, W. S., Chen, C., et al., 2020. Study on Solid⁃Liquid Coupled Similar Materials Based on Orthogonal Experiment. Water Resources and Hydropower Engineering, 51(5): 174-182(in Chinese with English abstract). Zhang, Y. J., Nian, T. K., Wang, L., et al., 2019. Research on Similar Materials for Physical Model Tests of Rock Slopes. Journal of Southwest Jiaotong University, 54(1): 55-60, 72(in Chinese with English abstract). Zheng, Y., Chen, C. X., Liu, T. T., et al., 2018. Slope Failure Mechanisms in Dipping Interbedded Sandstone and Mudstone Revealed by Model Testing and Distinct⁃Element Analysis. Bulletin of Engineering Geology and the Environment, 77(1): 49-68. https://doi.org/10.1007/s10064⁃017⁃1007⁃6 Zhou, Y., Li, S. C., Li, L. P., et al., 2015. New Technology for Fluid⁃Solid Coupling Tests of Underground Engineering and Its Application in Experimental Simulation of Water Inrush in Filled⁃Type Karst Conduit. Chinese Journal of Geotechnical Engineering, 37(7): 1232-1240(in Chinese with English abstract). Zuo, B. C., Chen, C. X., Liu, C. H., et al., 2004. Research on Similar Material of Slope Simulation Experiment. Rock and Soil Mechanics, 25(11): 1805-1808(in Chinese with English abstract). 韩涛, 杨维好, 杨志江, 等, 2011. 多孔介质固液耦合相似材料的研制. 岩土力学, 32(5): 1411-1417. 胡耀青, 赵阳升, 杨栋, 2007. 三维固流耦合相似模拟理论与方法. 辽宁工程技术大学学报, 26(2): 204-206. 黄庆享, 张文忠, 侯志成, 2010. 固液耦合试验隔水层相似材料的研究. 岩石力学与工程学报, 29(增刊1): 2813-2818. 贾官伟, 詹良通, 陈云敏, 2009. 水位骤降对边坡稳定性影响的模型试验研究. 岩石力学与工程学报, 28(9): 1798-1803. 黎良杰, 钱鸣高, 殷有泉, 1997. 采场底板突水相似材料模拟研究. 煤田地质与勘探, 25(1): 33-36. 李松林, 许强, 汤明高, 等, 2020. 三峡库区滑坡空间发育规律及其关键影响因子. 地球科学, 45(1): 341-354. 李树忱, 冯现大, 李术才, 等, 2010. 新型固流耦合相似材料的研制及其应用. 岩石力学与工程学报, 29(2): 281-288. 李术才, 周毅, 李利平, 等, 2012. 地下工程流-固耦合模型试验新型相似材料的研制及应用. 岩石力学与工程学报, 31(6): 1128-1137. 马昊, 黄达, 石林, 2020. 基于断距-层厚特征统计的反倾边坡S型破坏演化数值模拟. 工程地质学报, 28(6): 1160-1171. 史小萌, 刘保国, 亓轶, 2015. 水泥石膏胶结相似材料在固-流耦合试验中的适用性. 岩土力学, 36(9): 2624-2630, 2638. 徐楚, 胡新丽, 何春灿, 等, 2018. 水库型滑坡模型试验相似材料的研制及应用. 岩土力学, 39(11): 4287-4293. 徐卫亚, 谢守益, 刘世君, 等, 2002. 水布垭坝区岸坡卸荷带特性及数值仿真研究. 三峡大学学报(自然科学版), 24(2): 101-106. 王凯, 李术才, 张庆松, 等, 2016. 流-固耦合模型试验用的新型相似材料研制及应用. 岩土力学, 37(9): 2521-2533. 原先凡, 胡帅, 杨威, 等, 2017. 基于时空演化规律的某水库边坡稳定性及其变形特征分析. 重庆交通大学学报(自然科学版), 36(3): 71-78. 张杰, 蔡维山, 陈诚, 等, 2020. 基于正交试验的固液耦合相似材料研究. 水利水电技术, 51(5): 174-182. 张杰, 侯忠杰, 2004. 固-液耦合试验材料的研究. 岩石力学与工程学报, 23(18): 3157-3161. 张彦君, 年廷凯, 王亮, 等, 2019. 岩质边坡物理模型试验相似材料研究. 西南交通大学学报, 54(1): 55-60, 72. 周毅, 李术才, 李利平, 等, 2015. 地下工程流-固耦合试验新技术及其在充填型岩溶管道突水模型试验中的应用. 岩土工程学报, 37(7): 1232-1240. 左保成, 陈从新, 刘才华, 等, 2004. 相似材料试验研究. 岩土力学, 25(11): 1805-1808. -