• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    流量变化对浅水三角洲沉积特征影响

    李洪辉 李伟 岳大力 徐振华 谭玲 吴光圳 王武荣

    李洪辉, 李伟, 岳大力, 徐振华, 谭玲, 吴光圳, 王武荣, 2025. 流量变化对浅水三角洲沉积特征影响. 地球科学, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014
    引用本文: 李洪辉, 李伟, 岳大力, 徐振华, 谭玲, 吴光圳, 王武荣, 2025. 流量变化对浅水三角洲沉积特征影响. 地球科学, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014
    Li Honghui, Li Wei, Yue Dali, Xu Zhenhua, Tan Ling, Wu Guangzhen, Wang Wurong, 2025. Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas. Earth Science, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014
    Citation: Li Honghui, Li Wei, Yue Dali, Xu Zhenhua, Tan Ling, Wu Guangzhen, Wang Wurong, 2025. Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas. Earth Science, 50(6): 2428-2443. doi: 10.3799/dqkx.2025.014

    流量变化对浅水三角洲沉积特征影响

    doi: 10.3799/dqkx.2025.014
    基金项目: 

    国家自然科学基金项目 42202109

    国家自然科学基金项目 42272186

    国家自然科学基金项目 42472179

    国家自然科学基金项目 42302128

    北京市科协青年托举工程 BYESR2023460

    国家科技重大专项 2024ZD1406601

    详细信息
      作者简介:

      李洪辉(1999-),男,博士研究生,主要从事油气田开发地质等科研工作. ORCID:0009-0001-5817-4033. E-mail:li_honghui_geo@qq.com

      通讯作者:

      岳大力,教授,博士生导师,主要从事油气田开发地质相关科研与教学工作. ORCID:0000-0001-8918-9513. E-mail:yuedali@cup.edu.cn

    • 中图分类号: P512.2

    Impact of Discharge Variability on Sedimentary Characteristics in Shallow-Water Deltas

    • 摘要: 流量变化对河控浅水三角洲沉积特征和生长过程影响显著,为揭示不同流量变化条件下三角洲的宏观形态与内部构型特征,基于现代沉积及水文资料,采用动力学模拟软件开展了不同流量变化下的三角洲沉积数值模拟研究.研究表明:流量变化控制河道迁移速率和改道频率,影响三角洲地貌特征与内部构型特征;高流量变化条件下,三角洲呈扇状,分流河道频繁决口、分叉及废弃,河网结构复杂,河道数量显著增加,沉积物横向扩展明显,三角洲面积增大,岸线趋于光滑;低流量变化条件下,三角洲多呈鸟足状,分流河道较少且稳定,沉积物集中于河口,岸线糙度较高.研究成果可为相似三角洲沉积模式解析及油气储层预测提供科学依据.

       

    • 图  1  Delft3D模拟区域初始水深分布(a)和6轮模型的月流量变化特征(b)

      Fig.  1.  Initial water depth distribution in the Delft3D simulation area (a) and monthly discharge variability characteristics of the six model rounds (b)

      图  2  R0河控浅水三角洲沉积演化过程

      a~f.R0模拟在4年、8年、12年、16年、20年、24年时水深特征;g. $ Y $=2 km剖面三角洲沉积构型;h~j. 主河道侧向迁移过程;k~m. 废弃河道废弃过程

      Fig.  2.  Sedimentary evolution process of the R0 river-dominated shallow-water delta

      图  3  R4河控浅水三角洲沉积演化过程

      a~f.R4模拟在4年、8年、12年、16年、20年、24年时水深特征;g.$ Y $=2 km剖面三角洲沉积构型;h~j.西侧主河道形成及废弃过程;k~m.东侧主河道形成及废弃过程

      Fig.  3.  Sedimentary evolution process of the R4 river-dominated shallow-water delta

      图  4  模拟后期三角洲地貌特征及现代相似三角洲卫星照片

      a~f.R0~R5模拟后期(第20年)三角洲沉积展布特征(水深);g.低流量变化河控浅水三角洲卫星照片,位于俄罗斯贝加尔湖东北侧(55°49'32"N,109°56'40"E)(来源Google Earth);h.高流量变化河控浅水三角洲卫星照片,位于蒙古国哈尔乌苏湖西北侧(48°11'35"N,92°06'27"E)(来源Google Earth)

      Fig.  4.  Geomorphic characteristics of the deltas in numerical simulation at the later stage and satelite maps of similar deltas

      图  5  R0~R5模拟到第20年时分流河道分布特征

      Fig.  5.  Distributary channel distribution characteristics in R0-R5 deltas to the 20th year

      图  6  R0~R5模拟三角洲规模差异特征

      a.三角洲长度随时间变化特征;b.三角洲宽度随时间变化特征;b.三角洲面积随时间变化特征;d.流量季节指数与三角洲长度关系;e.流量季节指数与三角洲宽度关系;f.流量季节指数与三角洲面积关系

      Fig.  6.  Scale variability of the R0-R5 deltas

      图  7  不同流量季节指数下三角洲糙度特征

      a.R0~R5模拟三角洲糙度随模拟时长变化特征;b.第20年时流量季节指数与三角洲糙度关系

      Fig.  7.  Delta roughness characteristics under different discharge seasonal indices

      图  8  不同流量季节指数分流河道数量差异

      a.第10年时分流河道数量顺源变化特征;b.第10年时平均分流河道数量与流量季节指数关系;c.R0~R5模拟分流河道数量随模拟时长变化特征

      Fig.  8.  Differences in distributary channel numbers under various discharge seasonal indices

      图  9  阿姆河卫星照片(来源:Google Earth) (a)、萨雷卡梅什湖卫星照片(来源:Google Earth) (b)和阿姆河1964—1973年流量变化特征(数据来源:Center for Sustainability and the Slobal Environment) (c)

      Fig.  9.  Satelite map of Amudaryo River (Soure: Google Earth) (a), and satelite map of Sarygamysh Lake (soure: Google Earth) (b), and discharge variations of the Amudarya River from 1964 to 1973 (data source: Center for Sustainability and the Global Environment) (c)

      图  10  萨雷卡梅什湖浅水三角洲历史卫星照片及沉积相分布

      a~f.萨雷卡梅什湖浅水三角洲1996年12月、2001年12月、2006年12月、2011年12月、2016年12月、2021年12月卫星照片(照片来源:Google Earth);g~l.萨雷卡梅什湖浅水三角洲1996年12月、2001年12月、2006年12月、2011年12月、2016年12月、2021年12月沉积相分布

      Fig.  10.  Historical satellite maps and sedimentary facies distribution of the Sarygamysh Lake shallow-water delta

      表  1  沉积数值模拟模型主要参数设置

      Table  1.   Key parameters for the sedimentary numerical simulation model

      基础参数 数值
      网格大小 40×40
      网格数量 250×200
      湖盆坡降(m/km) 6/8
      模拟时间步长(min) 0.5
      模拟时长(year) 3
      平均总流量(m3/s) 600
      初始水位(m) 0
      沉积物浓度(kg/m3) 0.1
      砂泥比 4:6
      底床糙度—谢才系数(m0.5/s) 45
      水平涡流系数/扩散系数 0.001/0.001
      顺源/垂源河床梯度变化 10/30
      地貌演化系数 100
      临近干网格侵蚀因子 0.25
      沉积物组分粒度中值(μm) 300/150/80/32/13/7.2
      初始沉积物厚度(m) 10
      泥岩黏度(N/m2) 0.5
      下载: 导出CSV

      表  2  各轮沉积数值实验中流量参数设置(R0~R5)

      Table  2.   Discharge parameter settings for each simulation round (R0-R5)

      方案 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
      R0 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00
      R1 286.36 251.26 279.34 708.80 878.26 939.14 1 004.18 870.10 811.94 496.07 367.29 307.27
      R2 201.89 177.14 196.94 499.71 1 023.16 1 419.56 1 530.05 753.81 572.43 349.74 258.95 216.63
      R3 155.90 136.80 152.08 385.90 1 104.19 1 564.18 1 727.49 894.08 442.05 270.08 199.97 167.29
      R4 126.98 111.41 123.86 314.29 1 153.39 1 720.49 1 851.72 918.75 360.03 219.97 162.86 136.25
      R5 107.10 93.98 104.48 265.11 1 197.92 1 831.65 1 958.42 899.81 303.69 185.54 137.38 114.93
      下载: 导出CSV
    • Burpee, A. P., Slingerland, R. L., Edmonds, D. A., et al., 2015. Grain⁃Size Controls on the Morphology and Internal Geometry of River⁃Dominated Deltas. Journal of Sedimentary Research, 85(6): 699-714. https://doi.org/10.2110/jsr.2015.39
      Caldwell, R. L., Edmonds, D. A., 2014. The Effects of Sediment Properties on Deltaic Processes and Morphologies: A Numerical Modeling Study. Journal of Geophysical Research: Earth Surface, 119(5): 961-982. https://doi.org/10.1002/2013JF002965
      Cheng, C., Fu, W. X., Hu, Z. L., et al., 2015. Changes of Major Lakes in Central Asia over the Past 30 Years Revealed by Remote Sensing Technology. Remote Sensing for Land & Resources, 27(1): 146-152 (in Chinese with English abstract).
      Deltares, 2014. Delft3D⁃Flow: Simulation of Multi⁃Dimensional Hydrodynaminc Flows and Transport Phenomena, Including Sediments⁃User Manual. Delft, Netherlands.
      Donaldson, A. C., 1974. Pennsylvanian Sedimentation of Central Appalachians. In: Briggs, G., ed., Carboniferous of the Southeastern United States. Geological Society of America, U. S. A., 47-78. https://doi.org/10.1130/spe148⁃p47
      Donselaar, M. E., Cuevas Gozalo, M. C., Moyano, S., 2013. Avulsion Processes at the Terminus of Low⁃Gradient Semi⁃Arid Fluvial Systems: Lessons from the Río Colorado, Altiplano Endorheic Basin, Bolivia. Sedimentary Geology, 283: 1-14. https://doi.org/10.1016/j.sedgeo.2012.10.007
      Du, W., Qiu, C. G., Jia, S., et al., 2022. Quantitative Characterization of River⁃Dominated Deltaic Morphology Based on Analysis of Dominant Controlling Factors. Petroleum Geology and Recovery Efficiency, 29(5): 1-14 (in Chinese with English abstract).
      Edmonds, D., Slingerland, R., Best, J., et al., 2010. Response of River⁃Dominated Delta Channel Networks to Permanent Changes in River Discharge. Geophysical Research Letters, 37(12): 107. https://doi.org/10.1029/2010gl043269
      Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., et al., 2020. Coastal Flooding will Disproportionately Impact People on River Deltas. Nature Communications, 11: 4741. https://doi.org/10.1038/s41467⁃020⁃18531⁃4
      Feng, W. J., Wu, S. H., Zhang, K., et al., 2017. Depositional Process and Sedimentary Model of Meandering⁃River Shallow Delta: Insights from Numerical Simulation and Modern Deposition. Acta Geologica Sinica, 91(9): 2047-2064(in Chinese with English abstract).
      Galloway, W. E., 1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems. Deltas: Models for Exploration. Houston Geological Society, Houston, Texas, US, 87-98.
      Hansford, M. R., Björklund, P. P., 2020. River Discharge Variability as the Link between Climate and Fluvial Fan Formation. Geology, 48(10): 952-956. https://doi.org/10.1130/g47471.1
      Heitmuller, F. T., Hudson, P. F., Kesel, R. H., 2017. Overbank Sedimentation from the Historic A. D. 2011 Flood along the Lower Mississippi River, USA. Geology, 45(2): 107-110. https://doi.org/10.1130/g38546.1
      Hu, G. M., Deng, R. F., Tang, Y. J., et al., 2023. Influence of Palaeogeomorphology and Paleoclimate on Coarse Clastic Deposition in Fan Delta: Comparison Experiment of Deposition Physical Simulation Based on Upper Wuerhe Formation in Zhongguai Area of Junggar Basin. Journal of Yangtze University (Natural Science Edition), 20(3): 12-22(in Chinese with English abstract).
      Huang, J., She, J. W., 2020. Vulnerability Assessment and Influencing Factors Analysis of Urban Flood Disaster in Yangtze River Delta City Cluster. Journal of Hohai University (Philosophy and Social Sciences), 22(6): 39-45 (in Chinese with English abstract).
      Li, C. S., Zhang, W. X., Lei, Y., et al., 2021. Characteristics and Controlling Factors of Oil Accumulation in Chang 9 Member in Longdong Area, Ordos Basin. Earth Science, 46(10): 3560-3574(in Chinese with English abstract).
      Li, W., Colombera, L., Yue, D. L., et al., 2023. Controls on the Morphology of Braided Rivers and Braid Bars: An Empirical Characterization of Numerical Models. Sedimentology, 70(1): 259-279. https://doi.org/10.1111/sed.13040
      Li, W., Yue, D. L., Wang, W. R., et al., 2023. Depositional Models of Braided Rivers: Characteristics of Sedimentary Evolution and Architecture. Journal of Palaeogeography, 25(5): 1032-1048(in Chinese with English abstract).
      Li, X. B., Liu, H. Q., Deng, X. Q., et al., 2021. The Concept of Fluvial Fans in an Arid Environment: A New Explanation of the Origin of" Sand⁃Filled Basins" in the Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 39(5): 1208-1221(in Chinese with English abstract).
      Nardin, W., Edmonds, D. A., Fagherazzi, S., 2016. Influence of Vegetation on Spatial Patterns of Sediment Deposition in Deltaic Islands during Flood. Advances in Water Resources, 93: 236-248. https://doi.org/10.1016/j.advwatres.2016.01.001
      Olariu, C., Bhattacharya, J. P., Leybourne, M. I., et al., 2012. Interplay between River Discharge and Topography of the Basin Floor in a Hyperpycnal Lacustrine Delta. Sedimentology, 59(2): 704-728. https://doi.org/10.1111/j.1365⁃3091.2011.01272.x
      Postma, G., 1990. An Analysis of the Variation in Delta Architecture. Terra Nova, 2(2): 124-130. https://doi.org/10.1111/j.1365⁃3121.1990.tb00052.x
      Simpson, G., Castelltort, S., 2012. Model Shows That Rivers Transmit High⁃Frequency Climate Cycles to the Sedimentary Record. Geology, 40(12): 1131-1134. https://doi.org/10.1130/G33451.1
      Sun, H. Y., Wang, C. Y., Niu, Z., et al., 1998. Analysis of the Vegetation Cover Change and the Relationship between NDVI and Environmental Factors by Using NOAA Time Series Data. Journal of Remote Sensing, 2(3): 204-210(in Chinese with English abstract).
      Sun, J., Xue, J. J., Hou, G. F., et al., 2020. Shallow⁃Water Delta Reservoir Characterization and Exploration Prospect in the Sangonghe Formation of Mobei Block. Special Oil & Gas Reservoirs, 27(3): 34-39(in Chinese with English abstract).
      Tan, C. P., Yu, X. H., Liu, B. B., et al., 2018. Sedimentary Structures Formed under Upper⁃Flow⁃Regime in Seasonal River System: A Case Study of Bantanzi River, Daihai Lake, Inner Mongolia. Journal of Palaeogeography, 20(6): 929-940(in Chinese with English abstract).
      Visconti, F., Camporeale, C., Ridolfi, L., 2010. Role of Discharge Variability on Pseudomeandering Channel Morphodynamics: Results from Laboratory Experiments. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/10.1029/2010jf001742
      Wang, B., Ding, Q. H., 2008. Global Monsoon: Dominant Mode of Annual Variation in the Tropics. Dynamics of Atmospheres and Oceans, 44(3-4): 165-183. https://doi.org/10.1016/j.dynatmoce.2007.05.002
      Wu, S. H., Xu, Z. H., Liu, Z., 2019. Depositional Architecture of Fluvial⁃Dominated Shoal Water Delta. Journal of Palaeogeography, 21(2): 202-215 (in Chinese with English abstract).
      Xu, Z. F., Wang, X. W., 2021. Flood Risk Analysis of Local Heavy Storms in the Embanked Tidal River Plain: A Case Study behind the Zhongshan⁃Shunde Joint Levee in the Lower Pearl River Delta. Water Resources and Hydropower Engineering, 52(8): 51-65(in Chinese with English abstract).
      Xu, Z. H., Wu, S. H., Liu, M. C., et al., 2021. Effects of Water Discharge on River⁃Dominated Delta Growth. Petroleum Science, 18(6): 1630-1649. https://doi.org/10.1016/j.petsci.2021.09.027
      Yang, Y. M., Wang, X. J., Chen, S. L., et al., 2022. Sedimentary System Evolution and Sandbody Development Characteristics of Jurassic Shaximiao Formation in the Central Sichuan Basin. Natural Gas Industry, 42(1): 12-24(in Chinese with English abstract).
      Zeng, C., Yin, T. J., Song, Y. K., 2017. Experimental on Numerical Simulation of the Impact of Lake Level Plane Fluctuation on Shallow Water Delta. Earth Science, 42(11): 2095-2104 (in Chinese with English abstract).
      Zhang, L., Bao, Z. D., Dou, L. X., et al., 2018. Sedimentary Characteristics and Pattern of Distributary Channels in Shallow Water Deltaic Red Bed Succession: A Case from the Late Cretaceous Yaojia Formation, Southern Songliao Basin, NE China. Journal of Petroleum Science and Engineering, 171: 1171-1190. doi: 10.1016/j.petrol.2018.08.006
      Zhu, X. M., Liu, Y., Fang, Q., et al., 2012. Formation and Sedimentary Model of Shallow Delta in Large⁃Scale Lake. Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 19(1): 89-99(in Chinese with English abstract).
      Zhu, X. M., Zeng, H. L., Li, S. L., et al., 2017. Sedimentary Characteristics and Seismic Geomorphologic Responses of a Shallow⁃Water Delta in the Qingshankou Formation from the Songliao Basin, China. Marine and Petroleum Geology, 79: 131-148. https://doi.org/10.1016/j.marpetgeo.2016.09.01
      成晨, 傅文学, 胡召玲, 等, 2015. 基于遥感技术的近30年中亚地区主要湖泊变化. 国土资源遥感, 27(1): 146-152.
      杜威, 邱春光, 贾屾, 等, 2022. 基于主控因素分析的河控三角洲形态定量表征. 油气地质与采收率, 29(5): 1-14.
      冯文杰, 吴胜和, 张可, 等, 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047-2064.
      胡光明, 邓儒风, 唐友军, 等, 2023. 古地貌与古气候对扇三角洲中粗碎屑沉积的影响研究: 基于准噶尔盆地中拐地区上乌尔禾组的沉积物理模拟对比实验. 长江大学学报(自然科学版), 20(3): 12-22.
      黄晶, 佘靖雯, 2020. 长江三角洲城市群洪涝灾害脆弱性评估及影响因素分析. 河海大学学报(哲学社会科学版), 22(6): 39-45.
      李程善, 张文选, 雷宇, 等, 2021. 鄂尔多斯盆地陇东地区长9油层组砂体成因与油气差异分布. 地球科学, 46(10): 3560-3574. doi: 10.3799/dqkx.2021.007
      李伟, 岳大力, 王武荣, 等, 2023. 辫状河沉积构型研究进展: 沉积演化与构型特征. 古地理学报, 25(5): 1032-1048.
      李相博, 刘化清, 邓秀芹, 等, 2021. 干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂" 成因新解. 沉积学报, 39(5): 1208-1221.
      孙红雨, 王长耀, 牛铮, 等, 1998. 中国地表植被覆盖变化及其与气候因子关系: 基于NOAA时间序列数据分析. 遥感学报, 2(3): 204-210.
      孙靖, 薛晶晶, 厚刚福, 等, 2020. 莫北区块三工河组浅水三角洲储层特征及勘探前景. 特种油气藏, 27(3): 34-39.
      谭程鹏, 于兴河, 刘蓓蓓, 等, 2018. 季节性河流体系高流态沉积构造特征: 以内蒙古岱海湖半滩子河为例. 古地理学报, 20(6): 929-940.
      吴胜和, 徐振华, 刘钊, 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202-215.
      徐张帆, 王先伟, 2021. 平原联围感潮河网暴雨洪涝灾害风险分析: 以珠江三角洲中顺大围为例. 水利水电技术(中英文), 52(8): 51-65.
      杨跃明, 王小娟, 陈双玲, 等, 2022. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征. 天然气工业, 42(1): 12-24.
      曾灿, 尹太举, 宋亚开, 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. doi: 10.3799/dqkx.2017.134
      朱筱敏, 刘媛, 方庆, 等, 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99.
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  105
    • HTML全文浏览量:  5
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-03
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回