• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    我国西北暖湿化的年代际预测技巧及其来源评估

    魏韵 邱惠宇

    魏韵, 邱惠宇, 2025. 我国西北暖湿化的年代际预测技巧及其来源评估. 地球科学, 50(9): 3321-3339. doi: 10.3799/dqkx.2025.015
    引用本文: 魏韵, 邱惠宇, 2025. 我国西北暖湿化的年代际预测技巧及其来源评估. 地球科学, 50(9): 3321-3339. doi: 10.3799/dqkx.2025.015
    Wei Yun, Qiu Huiyu, 2025. Assessment of the Skill and Source of Decadal Climate Prediction of Warming and Humidification in Northwest China. Earth Science, 50(9): 3321-3339. doi: 10.3799/dqkx.2025.015
    Citation: Wei Yun, Qiu Huiyu, 2025. Assessment of the Skill and Source of Decadal Climate Prediction of Warming and Humidification in Northwest China. Earth Science, 50(9): 3321-3339. doi: 10.3799/dqkx.2025.015

    我国西北暖湿化的年代际预测技巧及其来源评估

    doi: 10.3799/dqkx.2025.015
    基金项目: 

    中国博士后科学基金第74批面上项目 2023M743284

    中国地质大学(武汉)“地大学者”人才岗位科研启动经费 2022121

    详细信息
      作者简介:

      魏韵(1995-),女,副教授,研究方向为干旱气候变化及气候预估. ORCID:0000⁃0002⁃2965⁃1881. E⁃mail:weiyun@cug.edu.cn

    • 中图分类号: P467

    Assessment of the Skill and Source of Decadal Climate Prediction of Warming and Humidification in Northwest China

    • 摘要:

      基于1962-2020年的观测和第六次耦合模式比较计划(CMIP6)中年代际气候预测计划(DCPP)的多模式年代际回报和历史模拟试验数据,本文主要评估了DCPP多模式对我国西北地区近60年来夏季显著暖湿化的年代际预测技巧及其主要来源.对西北变暖的多模式年代际预测技巧(与观测的相关系数)都在0.9以上,较高的预测技巧主要来源于外强迫分量,其贡献可达80%~99%;而受初始化与外强迫的共同作用,对西北变湿的多模式年代际预测技巧存在较大差异,其中多模式初始化分量对预测技巧的贡献可分别达到19%~94%.这表明,对我国西北地区未来短期温度和降水变化的订正预估不仅需要重点考虑外强迫的影响,更需要考虑初始化对降水的影响.

       

    • 图  1  西北地区1962-2020年夏季9年平滑的温度和降水时空变化特征

      a. 温度距平(℃);b. 降水距平(mm);c.温度趋势(℃/10a);d.降水趋势(mm/10a);距平相对于1971-2000年.图中加点区域表示p<0.05

      Fig.  1.  Spatiotemporal characteristics of temperature and precipitation in Northwest China during summer from 1962 to 2020 based on 9-year averages

      图  2  DCPP多模式预测的西北地区1962-2020年夏季9年(第2~10年)平滑的温度和降水时空变化特征

      a. 温度距平(℃);b. 降水距平(mm);c. 温度趋势(℃/10a);d. 降水趋势(mm/10a);距平相对于1971-2000年.图a、b中的阴影表示集合平均±1个标准差,图c、d中右上角数值为模式预测趋势与观测趋势的空间相关系数,加点区域表示p<0.05

      Fig.  2.  Spatiotemporal characteristics of temperature and precipitation in Northwest China during summer from 1962 to 2020 based on 9-year (years 2-10) averages from DCPP multi-model predictions

      图  3  DCPP多模式集合平均预测的西北地区1962-2020年夏季9年(第2~10年)平滑温度和降水的预测技巧空间分布

      a. 温度(T)预测的ACCMSSS;b. 降水(Pr)预测的ACCMSSS.图中加点区域表示p<0.10

      Fig.  3.  Spatial distribution of predictive skill for temperature and precipitation in Northwest China during summer from 1962 to 2020 based on 9-year (years 2-10) average from DCPP multi-model ensemble mean predictions

      图  4  1962-2020年夏季DCPP多模式年代际预测西北地区温度和降水的预测技巧随预测范围的变化

      a. 温度预测的潜在技巧;b. 温度预测的实际技巧;c. 降水预测的潜在技巧;d. 降水预测的实际技巧;图中黑色为总技巧,红色为内部变率的技巧,蓝色为外强迫的技巧

      Fig.  4.  Variation of DCPP multi-model prediction skills for summer temperature and precipitation in Northwest China from 1962 to 2020

      图  5  DCPP预测的西北地区1962-2020年夏季9年(第2~10年)平滑温度和降水趋势的模式间差异

      a. 温度趋势(℃/10a);b. 降水趋势(mm/10a).右上角数值为模式预测趋势与观测趋势的空间相关系数,加点区域表示p<0.05

      Fig.  5.  Inter-model differences in predicted trends of summer temperature and precipitation in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      图  6  DCPP预测的西北地区1962-2020年夏季9年(第2~10年)平滑的温度和降水

      a. 温度趋势(℃/10a);b. 温度预测泰勒图;c. 降水趋势(mm/10a);d. 降水预测泰勒图.图a、c中蓝线为最大/小值,绿线为集合平均±标准差

      Fig.  6.  Predictions of temperature and precipitation in Northwest China during summer from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      图  7  DCPP预测的西北地区1962-2020年夏季9年(第2~10年)平滑温度的预测技巧

      a. ACC;b. MSSS.图中加点区域表示p<0.10

      Fig.  7.  Predicted skill for summer temperature in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      图  8  DCPP预测的西北地区1962-2020年夏季9年(第2~10年)平滑降水的预测技巧

      a. ACC;b. MSSS.图中加点区域表示p<0.10

      Fig.  8.  Predicted skill for summer precipitation in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      图  9  DCPP多模式集合平均对西北地区1962-2020夏季9年(第2~10年)平滑温度的预测技巧分解

      a. 预测结果与观测的相关系s数rXY;b. 历史模拟与观测的相关系数rX$ {}_{{}_{\mathrm{u}}} $;c. 初始化分量的技巧ri;d. 外强迫分量的技巧ru;e. 初始化分量与观测的相关系数$ {r}_{X{Y}_{\mathrm{i}}} $;f. 外强迫分量与观测的相关系数$ {r}_{X{Y}_{\mathrm{u}}} $.图中加点区域表示p<0.10

      Fig.  9.  Predictive skill for summer temperature in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP multi-model ensemble mean predictions

      图  10  DCPP多模式集合平均对西北地区1962-2020夏季9年(第2~10年)平滑降水的预测技巧分解

      a. 预测结果与观测的相关系数rXY;b. 历史模拟与观测的相关系数r$ {}_{{X}_{\mathrm{u}}} $;c. 初始化分量的技巧ri;d. 外强迫分量的技巧ru;e. 初始化分量与观测的相关系数$ {r}_{X{Y}_{\mathrm{i}}} $;f. 外强迫分量与观测的相关系数$ {r}_{X{Y}_{\mathrm{u}}} $.图中加点区域表示p<0.10

      Fig.  10.  Predictive skill for summer precipitation in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP multi-model ensemble mean predictions

      图  11  DCPP多模式对西北地区1962-2020年夏季9年(第2~10年)平滑温度的预测技巧分解

      a.初始化分量的技巧ri; b.外强迫分量的技巧ru; c.预测结果与观测的相关系数rXY右上角数值为rirurXY>0区域的占比, 图中加点区域表示p<0.10

      Fig.  11.  Predicted skill for summer temperature in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      图  12  DCPP多模式对西北地区1962-2020年夏季9年(第2~10年)平滑降水的预测技巧分解

      a.初始化分量的技巧ri; b.外强迫分量的技巧ru; c.预测结果与观测的相关系数rXY.右上角为rirurXY>0区域的占比, 图中加点区域表示p<0.10

      Fig.  12.  Predicted skill for summer precipitation in Northwest China from 1962 to 2020 based on 9-year (years 2-10) average from DCPP predictions

      表  1  CMIP6年代际气候预测计划试验数据

      Table  1.   CMIP6 Decadal Climate Prediction Project experimental data

      模式 Hindcast Historical、SSP245 分辨率
      BCC-CSM2-MR 8 1 160×320
      CanESM5 40 50 64×128
      CMCC-CM2-SR5 20 1 192×288
      EC-Earth3 10 23 256×512
      FGOALS-f3-L 9 1 180×288
      IPSL-CM6A-LR 10 11 143×144
      MIROC6 10 50 128×256
      MPI-ESM1-2-LR 16 30 96×192
      合计 123 167
      下载: 导出CSV
    • Boer, G. J., Kharin, V. V., Merryfield, W. J., 2013. Decadal Predictability and Forecast Skill. Climate Dynamics, 41(7): 1817-1833. https://doi.org/10.1007/s00382-013-1705-0
      Boer, G. J., Smith, D. M., Cassou, C., et al., 2016. The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6. Geoscientific Model Development, 9(10): 3751-3777. https://doi.org/10.5194/gmd-9-3751-2016
      Chen, C. Z., Zhang, X. J., Lu, H. Y., et al., 2021. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening of the East Asian Summer Monsoon in the Recent Decades. International Journal of Climatology, 41(2): 1024-1038. https://doi.org/10.1002/joc.6727
      Chen, F. H., Xie, T. T., Yang, Y. J., et al., 2023. Discussion of the "Warming and Wetting" Trend and its Future Variation in the Drylands of Northwest China under Global Warming. Science China Earth Sciences, 53(6): 1246-1262 (in Chinese).
      Ding, Y. H., Liu, Y. J., Xu, Y., et al., 2023. Regional Responses to Global Climate Change: Progress and Prospects for Trend, Causes, and Projection of Climatic Warming-Wetting in Northwest China. Advances in Earth Science, 38(6): 551-562 (in Chinese with English abstract).
      Du, Y., Wang, D. G., Zhu, J. X., 2021. Study on Warming and Humidification Evolution in Northwest China Based on CMIP5. Journal of Water Resources and Water Engineering, 32(5): 61-69, 77 (in Chinese with English abstract).
      Hansen, J., Johnson, D., Lacis, A., et al., 1981. Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213(4511): 957-966. https://doi.org/10.1126/science.213.4511.957
      Hausfather, Z., Drake, H. F., Abbott, T., et al., 2020. Evaluating the Performance of Past Climate Model Projections. Geophysical Research Letters, 47(1): e2019GL085378. https://doi.org/10.1029/2019GL085378
      Hu, S., Zhou, T. J., 2021. Skillful Prediction of Summer Rainfall in the Tibetan Plateau on Multiyear Time Scales. Science Advances, 7(24): eabf9395. https://doi.org/10.1126/sciadv.abf9395
      Li, M., Sun, H. Q., Su, Z. C., 2021. Research Progress in Dry/Wet Climate Variation in Northwest China. Geographical Research, 40(4): 1180-1194 (in Chinese with English abstract).
      Liu, Y. Z., Wu, C. Q., Jia, R., et al., 2018. An Overview of the Influence of Atmospheric Circulation on the Climate in Arid and Semi-Arid Region of Central and East Asia. Science China Earth Sciences, 48(9): 1141-1152 (in Chinese).
      Luo, R., Liu, Y. Z., Zhu, Q. Z., et al., 2021. Effects of Aerosols on Cloud and Precipitation in East-Asian Drylands. International Journal of Climatology, 41(9): 4603-4618. https://doi.org/10.1002/joc.7089
      Peng, D. D., Zhou, T. J., 2017. Why Was the Arid and Semiarid Northwest China Getting Wetter in the Recent Decades? Journal of Geophysical Research: Atmospheres, 122(17): 9060-9075. https://doi.org/10.1002/2016JD026424
      Peng, D. D., Zhou, T. J., Zhang, L. X., 2020. Moisture Sources Associated with Precipitation during Dry and Wet Seasons over Central Asia. Journal of Climate, 33(24): 10755-10771. https://doi.org/10.1175/jcli-d-20-0029.1
      Pyper, B. J., Peterman, R. M., 1998. Comparison of Methods to Account for Autocorrelation in Correlation Analyses of Fish Data. Canadian Journal of Fisheries and Aquatic Sciences, 55(9): 2127-2140. https://doi.org/10.1139/cjfas-55-9-2127
      Qin, M. H., Li, D. L., Dai, A. G., et al., 2018. The Influence of the Pacific Decadal Oscillation on North Central China Precipitation during Boreal Autumn. International Journal of Climatology, 38(S1): e821-e831. https://doi.org/10.1002/joc.5410
      Ren, G. Y., Yuan, Y. J., Liu, Y. J., et al., 2016. Changes in Precipitation over Northwest China. Arid Zone Research, 33(1): 1-19 (in Chinese with English abstract).
      Shi, Y. F., Shen, Y. P., Hu, R. J., 2002. Preliminary Study on Signal, Impact and Foreground of Climatic Shift from Warm-Dry to Warm-Humid in Northwest China. Journal of Glaciolgy and Geocryology, 24(3): 219-226 (in Chinese with English abstract).
      Shi, Y. F., Shen, Y. P., Li, D. L., et al., 2003. Discussion on the Present Climate Change from warm-Dry to Warm Wet in Northwest China. Quaternary Sciences, 23(2): 152-164 (in Chinese with English abstract).
      Smith, D. M., Eade, R., Scaife, A. A., et al., 2019. Robust Skill of Decadal Climate Predictions. NPJ Climate and Atmospheric Science, 2: 13. https://doi.org/10.1038/s41612-019-0071-y
      Sospedra-Alfonso, R., Boer, G. J., 2020. Assessing the Impact of Initialization on Decadal Prediction Skill. Geophysical Research Letters, 47(4): e2019GL086361. https://doi.org/10.1029/2019GL086361
      Wang, Q., Zhai, P. M., 2022. CMIP6 Projections of the "Warming-Wetting" Trend in Northwest China and Related Extreme Events Based on Observational Constraints. Journal of Meteorological Research, 36(2): 239-250. https://doi.org/10.1007/s13351-022-1157-8
      Wang, Q., Zhai, P. M., Qin, D. H., 2020. New Perspectives on 'Warming-Wetting' Trend in Xinjiang, China. Advances in Climate Change Research, 11(3): 252-260. https://doi.org/10.1016/j.accre.2020.09.004
      Wang, S. S., Huang, J. P., He, Y. L., et al., 2014. Combined Effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry-Wet Changes. Scientific Reports, 4: 6651. https://doi.org/10.1038/srep06651
      Wang, S. S., Huang, J. P., Huang, G., et al., 2022. Enhanced Impacts of Indian Ocean Sea Surface Temperature on the Dry/Wet Variations over Northwest China. Journal of Geophysical Research: Atmospheres, 127(11): e2022JD036533. https://doi.org/10.1029/2022JD036533
      Wu, B., Xin, X. G., 2019. Short Commentary on CMIP6 Decadal Climate Prediction Project(DCPP). Climate Change Research, 15(5): 476-480 (in Chinese with English abstract).
      Wu, P., Ding, Y. H., Liu, Y. J., et al., 2019. The Characteristics of Moisture Recycling and Its Impact on Regional Precipitation Against the Background of Climate Warming over Northwest China. International Journal of Climatology, 39(14): 5241-5255. https://doi.org/10.1002/joc.6136
      Wu, P., Liu, Y. J., Ding, Y. H., et al., 2022. Modulation of Sea Surface Temperature over the North Atlantic and Indian-Pacific Warm Pool on Interdecadal Change of Summer Precipitation over Northwest China. International Journal of Climatology, 42(16): 8526-8538. https://doi.org/10.1002/joc.7743
      Xie, J. N., Zhou, J. L., 2001. A Preliminary Study on Trends and Interannual Variaration of Precipitation in Central and Western Portions of Northwest Region of China. Plateau Meteorology, 20(4): 362-367 (in Chinese with English abstract).
      Xu, Y., Ding, Y. H., Zhao, Z. C., 2003. Scenario of Temperature and Precipitation Changes in Northwest China Due to Human Activity in the 21st Century. Journal of Glaciology and Geocryology, 25(3): 327-330 (in Chinese with English abstract).
      Xue, T., Ding, Y. H., Lu, C. H., 2022. Interdecadal Variability of Summer Precipitation in Northwest China and Associated Atmospheric Circulation Changes. Journal of Meteorological Research, 36(6): 824-840. https://doi.org/10.1007/s13351-022-2021-6
      Yang, J. H., Jiang, Z. H., Liu, X. Y., et al., 2012. Influence Research on Spring Vegetation of Eurasia to Summer Drought-Wetness over the Northwest China. Arid Land Geography, 35(1): 10-22 (in Chinese with English abstract).
      Yang, J. H., Zhang, Q., Lu, G. Y., et al., 2021. Climate Transition from Warm-Dry to Warm-Wet in Eastern Northwest China. Atmosphere, 12(5): 548. https://doi.org/10.3390/atmos12050548
      Yao, J. Q., Chen, Y. N., Zhao, Y., et al., 2020. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China. Journal of Hydrology, 585: 124823. https://doi.org/10.1016/j.jhydrol.2020.124823
      Zhang, C. J., Gao, X. J., Zhao, H. Y., 2003. Impact of Global Warming on Autumn Precipitation in Northwest China. Journal of Glaciology and Geocryology, 25(2): 157-164 (in Chinese with English abstract).
      Zhang, J. X., Wang, S. S., Huang, J. P., et al., 2023. The Precipitation-Recycling Process Enhanced Extreme Precipitation in Xinjiang, China. Geophysical Research Letters, 50(15): e2023GL104324. https://doi.org/10.1029/2023GL104324
      Zhang, Q., Hu, Y. Q., Cao, X. Y., et al., 2000. On Some Problems of Arid Climate System of Northwest China. Journal of Desert Research, 20(4): 357-362 (in Chinese with English abstract).
      Zhang, Q., Lin, J. J., Liu, W. C., et al., 2019. Precipitation Seesaw Phenomenon and Its Formation Mechanism in the Eastern and Western Parts of Northwest China during Flood Season. Science China Earth Sciences, 49(12): 2064-2078 (in Chinese).
      Zhang, Q., Yang, J. H., Wang, P. L., et al., 2023. Progress and Prospect on Climate Warming and Humidification in Northwest China. Chinese Science Bulletin, 68(14): 1814-1828 (in Chinese with English abstract). doi: 10.1360/TB-2022-0643
      Zhu, Y. L., Wang, H. J., Ma, J. H., et al., 2015. Contribution of the Phase Transition of Pacific Decadal Oscillation to the Late 1990s' Shift in East China Summer Rainfall. Journal of Geophysical Research: Atmospheres, 120(17): 8817-8827. https://doi.org/10.1002/2015JD023545
      陈发虎, 谢亭亭, 杨钰杰, 等, 2023. 我国西北干旱区"暖湿化" 问题及其未来趋势讨论. 中国科学: 地球科学, 53(6): 1246-1262.
      丁一汇, 柳艳菊, 徐影, 等, 2023. 全球气候变化的区域响应: 中国西北地区气候"暖湿化" 趋势、成因及预估研究进展与展望. 地球科学进展, 38(6): 551-562.
      杜懿, 王大刚, 祝金鑫, 2021. 基于CMIP5的中国西北地区暖湿化演变研究. 水资源与水工程学报, 32(5): 61-69, 77.
      李明, 孙洪泉, 苏志诚, 2021. 中国西北气候干湿变化研究进展. 地理研究, 40(4): 1180-1194.
      刘玉芝, 吴楚樵, 贾瑞, 等, 2018. 大气环流对中东亚干旱半干旱区气候影响研究进展. 中国科学: 地球科学, 48(9): 1141-1152.
      任国玉, 袁玉江, 柳艳菊, 等, 2016. 我国西北干燥区降水变化规律. 干旱区研究, 33(1): 1-19.
      施雅风, 沈永平, 胡汝骥, 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨. 冰川冻土, 24(3): 219-226.
      施雅风, 沈永平, 李栋梁, 等, 2003. 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 23(2): 152-164.
      吴波, 辛晓歌, 2019. CMIP6年代际气候预测计划(DCPP)概况与评述. 气候变化研究进展, 15(5): 476-480.
      谢金南, 周嘉陵, 2001. 西北地区中、东部降水趋势的初步研究. 高原气象, 20(4): 362-367.
      徐影, 丁一汇, 赵宗慈, 2003. 人类活动引起的我国西北地区21世纪温度和降水变化情景分析. 冰川冻土, 25(3): 327-330.
      杨金虎, 江志红, 刘晓芸, 等, 2012. 近半个世纪中国西北干湿演变及持续性特征分析. 干旱区地理, 35(1): 10-22.
      张存杰, 高学杰, 赵红岩, 2003. 全球气候变暖对西北地区秋季降水的影响. 冰川冻土, 25(2): 157-164.
      张强, 胡隐樵, 曹晓彦, 等, 2000. 论西北干旱气候的若干问题. 中国沙漠, 20(4): 357-362.
      张强, 林婧婧, 刘维成, 等, 2019. 西北地区东部与西部汛期降水跷跷板变化现象及其形成机制. 中国科学: 地球科学, 49(12): 2064-2078.
      张强, 杨金虎, 王朋岭, 等, 2023. 西北地区气候暖湿化的研究进展与展望. 科学通报, 68(14): 1814-1828.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  202
    • HTML全文浏览量:  7
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-14
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回