• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    矿物-微生物相互作用研究的新利器:三维原子探针(APT)

    方谦 杨僚 仇鑫程 杨浩 洪汉烈 陈中强

    方谦, 杨僚, 仇鑫程, 杨浩, 洪汉烈, 陈中强, 2025. 矿物-微生物相互作用研究的新利器:三维原子探针(APT). 地球科学, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016
    引用本文: 方谦, 杨僚, 仇鑫程, 杨浩, 洪汉烈, 陈中强, 2025. 矿物-微生物相互作用研究的新利器:三维原子探针(APT). 地球科学, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016
    Fang Qian, Yang Liao, Qiu Xincheng, Yang Hao, Hong Hanlie, Chen Zhong-Qiang, 2025. A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT). Earth Science, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016
    Citation: Fang Qian, Yang Liao, Qiu Xincheng, Yang Hao, Hong Hanlie, Chen Zhong-Qiang, 2025. A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT). Earth Science, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016

    矿物-微生物相互作用研究的新利器:三维原子探针(APT)

    doi: 10.3799/dqkx.2025.016
    基金项目: 

    国家自然科学基金项目 41930322

    国家自然科学基金项目 42102031

    详细信息
      作者简介:

      方谦(1993-),男,研究员,从事黏土矿物学与地质微生物相关研究.ORCID:0000⁃0001⁃9537⁃5312. E⁃mail:qian.fang@cug.edu.cn

    • 中图分类号: P579

    A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT)

    • 摘要: 矿物-微生物相互作用是地球系统中最为活跃的地质动力之一,对地球演化过程具有深远的影响,也是矿物学和地质微生物学领域最重要的交叉研究方向之一.要全面正确理解微生物与矿物之间的相互作用,重点之一在于揭示超微尺度下微生物如何影响矿物表面结构和物质组成的变化.尽管近年来矿物-微生物相互作用的研究取得了显著进展,但由于该相互作用涉及更小尺度的微观过程,在纳米甚至亚纳米尺度同时表征矿物结构、化学成分和微生物残存印记等方面仍面临巨大挑战,因此许多原理性和机制性问题依然亟待解决.近年来新兴的三维原子探针(APT)技术突破了这一分析极限,可在亚纳米(近原子)尺度实现对几乎所有元素/同位素同时成像与定量分析(检测限为10-6),可为重建矿物-微生物相互作用过程提供近原子尺度、高灵敏度分析.APT最初是在材料科学领域发展并得到广泛应用,近年来该技术在地球科学领域受到日益增多的关注.本文概述了APT的原理、发展和样品制备等基本内容,介绍了生物矿化的概念及相关研究,并重点讨论了APT技术在微生物矿化、地质微生物的残存信号识别、生物材料等矿物-微生物相互作用领域的重要应用.最后,客观总结了当前APT技术在矿物-微生物相互作用研究中的局限性和面临的问题,并展望这种超级原位微区分析技术在矿物-微生物研究领域的未来发展方向.

       

    • 图  1  三维原子探针LEAP6000XR仪器全貌

      设备来自中国地质大学(武汉)地质微生物与环境全国重点实验室

      Fig.  1.  Overview of the LEAP 6000XR three-dimensional atom probe instrument

      图  2  矿物晶体的典型微观结构特征(左),以及常见成像分析技术的空间分辨率(右)

      可见三维原子探针技术在现存所有微观技术手段中在分辨率与检测限方面都做到了极致.修改自Gault et al.2021

      Fig.  2.  Typical microstructural features of mineral crystals (left) and spatial resolution of common imaging analysis techniques (right)

      图  3  生物矿化领域的结构实体层次和典型的空间表征技术

      a. X射线计算机断层扫描(XCT)、同步辐射X射线计算机断层扫描(SXCT)、聚焦离子束‒扫描电子显微镜(FIB-SEM)、扫描透射电子显微镜((S)TEM)、电子能量损失谱(EELS)、三维原子探针(APT)技术在样本大小和分辨率方面填补了矿化组织和生物界面3D成像的不同空白;b. 骨骼中不同层次的结构单元,从微观骨单元水平到小于单个胶原纤维的原子水平的不同特征,修改自Grandfield(2022

      Fig.  3.  Hierarchical structural entities in biomineralization and typical spatial characterization techniques

      图  4  APT技术在生物矿物研究中的应用实例

      a. 石鳖牙齿中含有机纤维的代表性样品,显示C与Na或Mg的共存现象;b. 人体骨骼中Mg与胶原纤维之间存在紧密的空间联系;c. 人类牙釉质中Mg、Na、F和COH的纳米级元素分布图;d. 人类牙釉质微观结构中镁与有机物的分布特征及其界面性质:左图为镁‒无定形磷酸钙(Mg-ACP)晶间相中Na的等值面图;右图为C、Mg以及Mg-ACP晶间相中Mg的等值面图;e. 人体上颌骨中Ca、C和Na的元素分布图,表明在有机‒无机界面上,Na与骨骼的有机成分呈共存关系;f. 兔骨胶原纤维中C、N(代表胶原纤维)与Ca、P(代表矿物质)的原子级分布.矿物主要分布于胶原纤维的外部,同时在纤维内部可观察到矿物密度的周期性增加,Ca与P呈现约30 nm的周期性间距;g. 有孔虫方解石中有机‒矿物界面的元素分布特征;h. 方解石中的三维原子重建及元素等值面;i. 碳酸盐晶体中的晶体内几丁质等有机成分与水和水合氢分子形成离散簇的图像特征.参考文献见正文

      Fig.  4.  Applications of APT technology in biomineral research

      图  5  APT技术在地质样品中有机质/微生物残存研究中的应用实例

      a. 牙形石磷灰石尖端的C和N等浓度面分析结果,等值分别为N=2.0%(原子百分比)和C=0.7%(左图);C和N在三个团簇中的浓度分布显示了其局部特征(右);b. 细菌磁铁矿中FeO、C和N的三维分布图像,显示三者之间具有显著的依存关系,揭示了生物成因磁铁矿的独特化学特征.参考文献见正文

      Fig.  5.  Applications of APT technology in geological marker research

      图  6  APT技术在生物材料研究中的应用实例

      a. 象牙牙本质中大致平行于z轴方向的高密度有机纤维分布;b. 封存在金中的羟基磷灰石纳米颗粒,其中Au、Ag和0.6% Ca的等值面被标出(左),以及代表性yz平面上的垂直切片图像(右);c. 在Au(黄色)基底上电沉积的磷酸钙涂层APT三维重建图(左)和沿z轴方向的一维原子浓度分布(右);d. 退火前驱玻璃中ZrO的簇集现象(左),以及玻璃陶瓷中尖晶石(ZnAl₂O₄)晶体与ZrO₂相邻共存的结构特征(右);e. 玻璃陶瓷中Zr、Si和Y的元素分布,清晰地显示钇元素在ZrO₂(红色箭头)和ZrO₂/SiO₂异相界面(绿色箭头)处的偏析现象;f. 含银纳米颗粒的金属基质纳米复合材料中,Al、V和Ag的元素分布特征.参考文献见正文

      Fig.  6.  Applications of APT Technology in Biomaterials Research

    • Baumgartner, J., Morin, G., Menguy, N., et al., 2013. Magnetotactic Bacteria Form Magnetite from a Phosphate-Rich Ferric Hydroxide via Nanometric Ferric (Oxyhydr)Oxide Intermediates. Proceedings of the National Academy of Sciences, 110(37): 14883-14888. https://doi.org/10.1073/pnas.1307119110
      Branson, O., Bonnin, E. A., Perea, D. E., et al., 2016. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation. Proceedings of the National Academy of Sciences, 113(46): 12934-12939. https://doi.org/10.1073/pnas.1522864113
      Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903
      Chen, Y. S., Griffith, M. J., Cairney, J. M., 2021. Cryo Atom Probe: Freezing Atoms in Place for 3D Mapping. Nano Today, 37: 101107. https://doi.org/10.1016/j.nantod.2021.101107
      Daulton, T. L., Little, B. J., Kim, J. W., et al., 2002. Quantitative Environmental Cell-Transmission Electron Microscopy: Studies of Microbial Cr(VI) and Fe(III) Reduction. JEOL News, 37(3): 6-13.
      DeRocher, K. A., Smeets, P. J. M., Goodge, B. H., et al., 2020. Chemical Gradients in Human Enamel Crystallites. Nature, 583: 66-71. https://doi.org/10.1038/s41586-020-2433-3
      Dong, H. L., 2010. Mineral-Microbe Interactions: A Review. Frontiers of Earth Science in China, 4(2): 127-147. https://doi.org/10.1007/s11707-010-0022-8
      Dong, H. L., Huang, L. Q., Zhao, L. D., et al., 2022. A Critical Review of Mineral-Microbe Interaction and Co-Evolution: Mechanisms and Applications. National Science Review, 9(10): nwac128. https://doi.org/10.1093/nsr/nwac128
      Ferraz, M. P., Monteiro, F. J., Manuel, C. M., 2004. Hydroxyapatite Nanoparticles: A Review of Preparation Methodologies. Journal of Applied Biomaterials & Biomechanics, 2(2): 74-80
      Fratzl, P., Weinkamer, R., 2007. Nature's Hierarchical Materials. Progress in Materials Science, 52(8): 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001
      Fu, L., Engqvist, H., Xia, W., 2020. Glass-Ceramics in Dentistry: A Review. Materials (Basel, Switzerland), 13(5): E1049. https://doi.org/10.3390/ma13051049
      Fu, L., Williams, J., Micheletti, C., et al., 2021. Three-Dimensional Insights into Interfacial Segregation at the Atomic Scale in a Nanocrystalline Glass-Ceramic. Nano Letters, 21(16): 6898-6906. https://doi.org/10.1021/acs.nanolett.1c02051
      Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano-Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026
      Gault, B., Chiaramonti, A., Cojocaru-Mirédin, O., et al., 2021. Atom Probe Tomography. Nature Reviews Methods Primers, 1: 51. https://doi.org/10.1038/s43586-021-00047-w
      Gault, B., Moody, M. P., Cairney, J. M., et al., 2012. Atom Probe Microscopy. Springer, New York. https://doi.org/10.1007/978-1-4614-3436-8
      Golla, U., Putnis, A., 2001. Valence State Mapping and Quantitative Electron Spectroscopic Imaging of Exsolution in Titanohematite by Energy-Filtered TEM. Physics and Chemistry of Minerals, 28(2): 119-129. https://doi.org/10.1007/s002690000136
      Gordon, L. M., Cohen, M. J., MacRenaris, K. W., et al., 2015. Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel. Science, 347(6223): 746-750. https://doi.org/10.1126/science.1258950
      Gordon, L. M., Joester, D., 2011. Nanoscale Chemical Tomography of Buried Organic-Inorganic Interfaces in the Chiton Tooth. Nature, 469: 194-197. https://doi.org/10.1038/nature09686
      Gordon, L. M., Tran, L., Joester, D., 2012a. Atom Probe Tomography of Apatites and Bone-Type Mineralized Tissues. ACS Nano, 6(12): 10667-10675. https://doi.org/10.1021/nn3049957
      Gordon, L., Joester, D., Suram, S., et al., 2012b. Atom Probe Tomography of Organic/Inorganic Interfaces in Biominerals. Microscopy and Microanalysis, 18(S2): 1608-1609. https://doi.org/10.1017/s1431927612009890
      Grandfield, K., Micheletti, C., Deering, J., et al., 2022. Atom Probe Tomography for Biomaterials and Biomineralization. Acta Biomaterialia, 148: 44-60. https://doi.org/10.1016/j.actbio.2022.06.010
      Hao, J. Y., Deng, X. M., 2002. Research Progress of Composite Biomaterials. Polymer Bulletin, (5): 1-8 (in Chinese with English abstract).
      Hazen, R. M., Papineau, D., Bleeker, W., et al., 2008. Mineral Evolution. American Mineralogist, 93(11-12): 1693-1720. https://doi.org/10.2138/am.2008.2955
      Höland, W., Rheinberger, V., Apel, E., et al., 2006. Clinical Applications of Glass-Ceramics in Dentistry. Journal of Materials Science: Materials in Medicine, 17(11): 1037-1042. https://doi.org/10.1007/s10856-006-0441-y
      Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano-Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract).
      Jacoby, R., Peukert, M., Succurro, A., et al., 2017. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in Plant Science, 8: 1617. https://doi.org/10.3389/fpls.2017.01617
      Javaux, E. J., 2019. Challenges in Evidencing the Earliest Traces of Life. Nature, 572: 451-460. https://doi.org/10.1038/s41586-019-1436-4
      Jehannin, M., Rao, A., Cölfen, H., 2019. New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 141(26): 10120-10136. https://doi.org/10.1021/jacs.9b01883
      Jeong, J., Kim, J. H., Shim, J. H., et al., 2019. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomaterials Research, 23: 4. https://doi.org/10.1186/s40824-018-0149-3
      Jiang, Y. W., Carvalho-de-Souza, J. L., Wong, R. C. S., et al., 2016. Heterogeneous Silicon Mesostructures for Lipid-Supported Bioelectric Interfaces. Nature Materials, 15: 1023-1030. https://doi.org/10.1038/nmat4673
      Jones, J. R., 2013. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomaterialia, 9(1): 4457-4486. https://doi.org/10.1016/j.actbio.2012.08.023
      Kalita, S. J., Bhardwaj, A., Bhatt, H. A., 2007. Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering. Materials Science and Engineering: C, 27(3): 441-449. https://doi.org/10.1016/j.msec.2006.05.018
      Kim, D. H., Ghaffari, R., Lu, N., et al., 2012. Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14: 113-128. https://doi.org/10.1146/annurev-bioeng-071811-150018
      Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012-821X(83)90100-0
      Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al., 2011. Aerobic Bacterial Pyrite Oxidation and Acid Rock Drainage during the Great Oxidation Event. Nature, 478: 369-373. https://doi.org/10.1038/nature10511
      Kopp, R. E., Kirschvink, J. L., 2008. The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria. Earth-Science Reviews, 86(1-4): 42-61. https://doi.org/10.1016/j.earscirev.2007.08.001
      La Fontaine, A., Zavgorodniy, A., Liu, H., et al., 2016. Atomic-Scale Compositional Mapping Reveals Mg-Rich Amorphous Calcium Phosphate in Human Dental Enamel. Science Advances, 2(9): e1601145. https://doi.org/10.1126/sciadv.1601145
      Langelier, B., Wang, X. Y., Grandfield, K., 2017. Atomic Scale Chemical Tomography of Human Bone. Scientific Reports, 7: 39958. https://doi.org/10.1038/srep39958
      Lee, B. E. J., Langelier, B., Grandfield, K., 2021. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography. Advanced Biology, 5(9): 2100657. https://doi.org/10.1002/adbi.202100657
      LeGeros, R. Z., 2008. Calcium Phosphate-Based Osteoinductive Materials. Chemical Reviews, 108(11): 4742-4753. https://doi.org/10.1021/cr800427g
      Liu, J., Sheng, A. X., Liu, F., et al., 2018. Nanominerals and Their Environmental Effects. Earth Science, 43(5): 1450-1463 (in Chinese with English abstract).
      Loo, S. C., Moore, T., Banik, B., et al., 2010. Biomedical Applications of Hydroxyapatite Nanoparticles. Current Pharmaceutical Biotechnology, 11(4): 333-342. https://doi.org/10.2174/138920110791233343
      Lowenstam, H. A., Weiner, S., 1989. Evolution of Biomineralization. In: Lowenstam, H. A., Weiner, S., eds., On Biomineralization. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780195049770.003.0014
      Lu, A. H., Du, Y. F., Fang, Q., et al., 2025. Mineral- Enhanced Biological Photosynthesis: New Breakthroughs in Theory and Application. Earth Science Frontiers, 32(1): 466-469 (in Chinese with English abstract).
      Lu, X. C., Li, J., Liu, H., et al., 2019. Microbial Oxidation of Metal Sulfides and Its Consequences. Acta Petrologica Sinica, 35(1): 153-163 (in Chinese with English abstract).
      Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
      Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford.
      McCarroll, I. E., Bagot, P. A. J., Devaraj, A., et al., 2020. New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems. Materials Today Advances, 7: 100090. https://doi.org/10.1016/j.mtadv.2020.100090
      Meldrum, F. C., 2005. Biomineralisation Processes. In: Vadgama, P., ed., Surfaces and Interfaces for Biomaterials. Elsevier, Amsterdam, 666-692. https://doi.org/10.1533/9781845690809.4.666
      Metoki, N., Baik, S. I., Isheim, D., et al., 2018. Atomically Resolved Calcium Phosphate Coating on a Gold Substrate. Nanoscale, 10(18): 8451-8458. https://doi.org/10.1039/c8nr00372f
      Miller, M. K., Forbes, R. G., 2014. Atom-Probe Tomography: The Local Electrode Atom Probe. Springer, New York.
      Miot, J., Benzerara, K., Kappler, A., 2014. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods. Annual Review of Earth and Planetary Sciences, 42: 271-289. https://doi.org/10.1146/annurev-earth-050212-124110
      Mitchell, A. L., Perea, D. E., Wirth, M. G., et al., 2021. Nanoscale Microstructure and Chemistry of Transparent Gahnite Glass-Ceramics Revealed by Atom Probe Tomography. Scripta Materialia, 203: 114110. https://doi.org/10.1016/j.scriptamat.2021.114110
      Moody, M. P., Ceguerra, A. V., Breen, A. J., et al., 2014. Atomically Resolved Tomography to Directly Inform Simulations for Structure-Property Relationships. Nature Communications, 5: 5501. https://doi.org/10.1038/ncomms6501
      Moore, E. K., Jelen, B. I., Giovannelli, D., et al., 2017. Metal Availability and the Expanding Network of Microbial Metabolisms in the Archaean Eon. Nature Geoscience, 10: 629-636. https://doi.org/10.1038/ngeo3006
      Mosiman, D. S., Chen, Y. S., Yang, L., et al., 2021. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 5(2): e2000692. https://doi.org/10.1002/smtd.202000692
      Perea, D. E., Gerstl, S. S. A., Chin, J., et al., 2017. An Environmental Transfer Hub for Multimodal Atom Probe Tomography. Advanced Structural and Chemical Imaging, 3(1): 12. https://doi.org/10.1186/s40679-017-0045-2
      Pérez-Huerta, A., Cappelli, C., Jabalera, Y., et al., 2022. Biogeochemical Fingerprinting of Magnetotactic Bacterial Magnetite. Proceedings of the National Academy of Sciences, 119(31): e2203758119. https://doi.org/10.1073/pnas.2203758119
      Pérez-Huerta, A., Coronado, I., Hegna, T. A., 2018. Understanding Biomineralization in the Fossil Record. Earth-Science Reviews, 179: 95-122. https://doi.org/10.1016/j.earscirev.2018.02.015
      Pérez-Huerta, A., Laiginhas, F., 2018. Preliminary Data on the Nanoscale Chemical Characterization of the Inter-Crystalline Organic Matrix of a Calcium Carbonate Biomineral. Minerals, 8(6): 223. https://doi.org/10.3390/min8060223
      Pérez-Huerta, A., Suzuki, M., Cappelli, C., et al., 2019. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C, 5(3): 50. https://doi.org/10.3390/c5030050
      Perry, R. S., McLoughlin, N., Lynne, B. Y., et al., 2007. Defining Biominerals and Organominerals: Direct and Indirect Indicators of Life. Sedimentary Geology, 201(1-2): 157-179. https://doi.org/10.1016/j.sedgeo.2007.05.014
      Pett-Ridge, J., Weber, P. K., 2012. NanoSIP: NanoSIMS Applications for Microbial Biology. In: Navid, A., ed., Microbial Systems Biology: Methods and Protocols, Springer, New York, 375-408.
      Qiu, S., Gervinskas, G., Venugopal, H., et al., 2021. Graphene Encapsulation Enables Vitreous Ice Sample for APT and Near-Atomic Reconstruction of Nanoparticle-Liquid Interface. Microscopy and Microanalysis, 27(S1): 1270-1271. https://doi.org/10.1017/s1431927621004761
      Rahaman, M. N., Day, D. E., Sonny Bal, B., et al., 2011. Bioactive Glass in Tissue Engineering. Acta Biomaterialia, 7(6): 2355-2373. https://doi.org/10.1016/j.actbio.2011.03.016
      Ransom, B., Bennett, R. H., Baerwald, R., et al., 1999. In Situ Conditions and Interactions between Microbes and Minerals in Fine-Grained Marine Sediments; A TEM Microfabric Perspective. American Mineralogist, 84(1-2): 183-192. https://doi.org/10.2138/am-1999-1-220
      Reddy, S. M., Saxey, D. W., Rickard, W. D., et al., 2020. Atom Probe Tomography: Development and Application to the Geosciences. Geostandards and Geoanalytical Research, 44(1): 5-50. https://doi.org/10.1111/ggr.12313
      Ren, Y. R., Autefage, H., Jones, J. R., et al., 2022. Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 28(4): 1310-1320. https://doi.org/10.1017/S1431927621012976
      Suzuki, A., Kawahata, H., 2003. Carbon Budget of Coral Reef Systems: An Overview of Observations in Fringing Reefs, Barrier Reefs and Atolls in the Indo-Pacific Regions. Tellus B: Chemical and Physical Meteorology, 55(2): 428-444. https://doi.org/10.3402/tellusb.v55i2.16761
      Tasciotti, E., Liu, X. W., Bhavane, R., et al., 2008. Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nature Nanotechnology, 3: 151-157. https://doi.org/10.1038/nnano.2008.34
      Taylor, S. D., Liu, J., Zhang, X., et al., 2019. Visualizing the Iron Atom Exchange Front in the Fe(II)-Catalyzed Recrystallization of Goethite by Atom Probe Tomography. Proceedings of the National Academy of Sciences, 116(8): 2866-2874. https://doi.org/10.1073/pnas.1816620116
      Templeton, A., Knowles, E., 2009. Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annual Review of Earth and Planetary Sciences, 37: 367-391. https://doi.org/10.1146/annurev.earth.36.031207.124346
      Uebe, R., Schüler, D., 2016. Magnetosome Biogenesis in Magnetotactic Bacteria. Nature Reviews Microbiology, 14: 621-637. https://doi.org/10.1038/nrmicro.2016.99
      van Aken, P. A., Liebscher, B., 2002. Quantification of Ferrous/Ferric Ratios in Minerals: New Evaluation Schemes of Fe L23 Electron Energy-Loss Near-Edge Spectra. Physics and Chemistry of Minerals, 29(3): 188-200. https://doi.org/10.1007/s00269-001-0222-6
      Wang, B., Tang, R. K., 2013. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine. Progress in Chemistry, 25(4): 633-641 (in Chinese with English abstract).
      Wang, C., Chen, X. M., 2007. Progress of Chitosan Composite Biomaterials. Chemical Intermediates, (2): 1-3, 19 (in Chinese with English abstract).
      Weiner, S., Wagner, H. D., 1998. The Material Bone: Structure-Mechanical Function Relations. Annual Review of Materials Research, 28: 271-298. https://doi.org/10.1146/annurev.matsci.28.1.271
      Wittig, N. K., Maja, Ø., Palle, J., et al., 2022. Opportunities for Biomineralization Research Using Multiscale Computed X-Ray Tomography as Exemplified by Bone Imaging. Journal of Structural Biology, 214(1): 107822. https://doi.org/10.1016/j.jsb.2021.107822
      Worden, A. Z., Follows, M. J., Giovannoni, S. J., et al., 2015. Rethinking the Marine Carbon Cycle: Factoring in the Multifarious Lifestyles of Microbes. Science, 347(6223): 1257594. https://doi.org/10.1126/science.1257594
      Xie, S. C., Yan, J. X., Yang, Y., et al., 2023. Coevolution of Microorganisms and Sedimentary Rocks. Acta Sedimentologica Sinica, 41(6): 1635-1644 (in Chinese with English abstract).
      Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese).
      Xie, S. C., Zhu, Z. M., Zhang, H. B., et al., 2024. Earth Sphere Interaction Reflected in Microbial Fingerprints through Earth's History—A Critical Review. Earth Science Frontiers, 31(1): 446-454 (in Chinese with English abstract).
      Yang, Z., Gu, H., Sha, G., et al., 2018. TC4/Ag Metal Matrix Nanocomposites Modified by Friction Stir Processing: Surface Characterization, Antibacterial Property, and Cytotoxicity in Vitro. ACS Applied Materials & Interfaces, 10(48): 41155-41166. https://doi.org/10.1021/acsami.8b16343
      Yuan, P., 2018. Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals. Earth Science, 43(5): 1384-1407 (in Chinese with English abstract).
      Zhang, S., Gervinskas, G., Qiu, S., et al., 2022. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization. Nano Letters, 22(16): 6501-6508. https://doi.org/10.1021/acs.nanolett.2c01495
      Zhou, B. X., Liu, W. Q., 2007. The Application of 3DAP in the Study of Materials Science. Materials Science and Technology, 15(3): 405-408 (in Chinese with English abstract).
      郝建原, 邓先模, 2002. 复合生物材料的研究进展. 高分子通报, (5): 1-8.
      胡行伟, 张丽梅, 贺纪正, 2013. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用. 生态学报, 33(2): 348-357.
      刘娟, 盛安旭, 刘枫, 等, 2018. 纳米矿物及其环境效应. 地球科学, 43(5): 1450-1463.
      鲁安怀, 杜逸飞, 方谦, 等, 2025. 矿物增强生物光合作用理论与应用研究取得新突破. 地学前缘, 32(1): 466-469.
      陆现彩, 李娟, 刘欢, 等, 2019. 金属硫化物微生物氧化的机制和效应. 岩石学报, 35(1): 153-163.
      王本, 唐睿康, 2013. 生物矿化: 无机化学和生物医学间的桥梁之一. 化学进展, 25(4): 633-641.
      王畅, 陈晓明, 2007. 壳聚糖复合生物材料研究进展. 化工中间体, (2): 1-3, 19.
      谢树成, 颜佳新, 杨义, 等, 2023. 微生物与沉积岩的协同演化. 沉积学报, 41(6): 1635-1644.
      谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22.
      谢树成, 朱宗敏, 张宏斌, 等, 2024. 小小地质微生物演绎跨圈层的相互作用. 地学前缘, 31(1): 446-454.
      袁鹏, 2018. 纳米结构矿物的特殊结构和表-界面反应性. 地球科学, 43(5): 1384-1407.
      周邦新, 刘文庆, 2007. 三维原子探针及其在材料科学研究中的应用. 材料科学与工艺, 15(3): 405-408.
    • 加载中
    图(6)
    计量
    • 文章访问数:  262
    • HTML全文浏览量:  140
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-03
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回