• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于聚类统计的含氦天然气分类与成藏分析: 以四川盆地为例

    罗胜元 蒋恕 张保民 陈林

    罗胜元, 蒋恕, 张保民, 陈林, 2025. 基于聚类统计的含氦天然气分类与成藏分析: 以四川盆地为例. 地球科学, 50(6): 2179-2198. doi: 10.3799/dqkx.2025.020
    引用本文: 罗胜元, 蒋恕, 张保民, 陈林, 2025. 基于聚类统计的含氦天然气分类与成藏分析: 以四川盆地为例. 地球科学, 50(6): 2179-2198. doi: 10.3799/dqkx.2025.020
    Luo Shengyuan, Jiang Shu, Zhang Baomin, Chen Lin, 2025. Classification and Analysis of Helium-Bearing Natural Gas Based on Clustering Statistics: A Case Study of Sichuan Basin. Earth Science, 50(6): 2179-2198. doi: 10.3799/dqkx.2025.020
    Citation: Luo Shengyuan, Jiang Shu, Zhang Baomin, Chen Lin, 2025. Classification and Analysis of Helium-Bearing Natural Gas Based on Clustering Statistics: A Case Study of Sichuan Basin. Earth Science, 50(6): 2179-2198. doi: 10.3799/dqkx.2025.020

    基于聚类统计的含氦天然气分类与成藏分析: 以四川盆地为例

    doi: 10.3799/dqkx.2025.020
    基金项目: 

    中国地质调查项目“洞庭盆地及周缘页岩油气调查评价” DD20243464

    国家自然科学基金项目 42130803

    国家自然科学基金项目 42172038

    武汉地质调查中心青年人才计划项目 QL2022-09

    详细信息
      作者简介:

      罗胜元(1986-),男,高级工程师,博士,从事页岩气、油气地质调查与研究工作. ORCID:0000-0002-4325-4436. E-mail:loshyv@163.com

      通讯作者:

      蒋恕,ORCID:0000-0002-6272-7649. E-mail: jiangsu@cug.edu.cn

    • 中图分类号: P593;P628

    Classification and Analysis of Helium-Bearing Natural Gas Based on Clustering Statistics: A Case Study of Sichuan Basin

    • 摘要: 四川盆地油气资源丰富,多年勘探开发积累了大量的气体组分资料,为氦气研究提供了良好的基础条件.盆地内多层系、多区域天然气中伴生的氦气含量明显不同,气体组分存在差异,烃类与伴生氦气之间的关系尚不清晰.基于四川盆地油气勘探获得的230组天然气组分数据,对氦气含量以及天然气伴生的CH4、N2和CO2含量进行Q型聚类分析,结合地质背景对氦气分布规律进行了研究,提出了氦气资源勘探对策.主要得出以下认识:(1)四川盆地烃类伴生氦气主要可划分出3类,第Ⅰ类为低He低N2低CO2高CH4烃类气藏;第Ⅱ类为富He高N2中CO2中CH4烃类气藏;第Ⅲ类低He低N2高CO2低CH4烃类气藏.(2)第Ⅰ类含氦天然气藏中气体组分均为单峰,He含量低(平均0.033 9%),且与N2含量相关性差;第Ⅱ类富氦天然气藏中非烃组分呈多峰分布,He含量高(平均0.158%),且与N2含量呈极强正相关(r=0.837,P < 0.01),与CO2含量呈强正相关(r=0.662,P < 0.01).(3)Ⅰ类氦气藏包括页岩气藏、古油藏原位裂解的超压气藏,捕获外来氦气含量低,高强度生气也稀释氦气的浓度,Ⅱ类富氦气藏在烃类运移过程中有水溶气脱溶等外源He、N2补充.(4)具有异常高压的天然气藏或页岩气藏,以及高含硫化氢、高含重烃气藏均对He成藏不利;而地层水长距离流动路径上的继承性穹窿圈闭、或与地下水多期“交流”的古老储层可能有外源He的补充,是富氦气藏的勘探目标.本研究针对烃类伴生氦气组分建立的聚类分析方法,可为氦气地质特征研究提供新思路.

       

    • 图  1  四川盆地构造单元分区及气田分布平面图(据帅燕华等, 2023修改)

      Fig.  1.  Distribution of tectonic units and gas fields in the Sichuan basin (modified by Shuai et al., 2023)

      图  2  四川盆地不同层系烃类伴生He含量频率分布直方图(a)和天然气中主要气体与氦气丰度相关图(b~d)

      Fig.  2.  Histogram of frequency distribution of He contents associated with hydrocarbons in different formations in the Sichuan basin (a) and correlation of major genes in natural gas with helium abundance diagrams (b-d)

      图  3  气体组分聚类谱系图

      数据对为气体组分编号(详见附表 1),其中S1l-C2h 152代表第152组数据,烃源岩层为志留系龙马溪组(S1l),储层为石炭系黄龙组(C2h)

      Fig.  3.  Cluster analysis results of gas components

      图  4  聚类分析后4类气体组分相关关系

      Fig.  4.  Correlation diagrams of gas components after cluster analysis

      图  5  聚类分析后3类气体组分的Pearson相关系数矩阵

      P值.**在0.01级别(双尾)上显著相关;*在0.05级别(双尾)上显著相关

      Fig.  5.  Pearson correlation coefficient matrix between gas components after cluster analysis

      图  6  聚类分析获得的3类天然气组分分布频率图

      Fig.  6.  Frequency diagrams of the three types of natural gas components obtained by cluster analysis

      图  7  震旦系灯影组天然气差异聚集与He特征

      根据罗冰等(2015)刘树根等(2015)有修改

      Fig.  7.  Characteristics of natural gas and He accumulation in the Dengying Formation of the Sinian

      图  8  川中威远-高磨地区不同类型氦气藏气体组分相关对比

      Fig.  8.  Correlation diagram of gas components after cluster analysis in the Weiyuan-Gaomo area

      图  9  川中威远-资阳地区灯影组天然气伴生氦气分布及天然气成藏特征

      Fig.  9.  Distribution of helium associated with natural gas in the Dengying Formation in the Weiyuan-Ziyang area of Sichuan basin

      图  10  安岳地区三叠系氦气成藏示意

      Fig.  10.  Schematic diagram of helium accumulation in the Triassic in Anyue area

      图  11  普光气田氦气成藏示意图(a)及气体组分相关系图(b, c)

      Fig.  11.  Schematic diagram of helium in the Puguang gas field (a) and correlation diagram of gas component (b, c)

      图  12  气体溶解度随温度T和盐度S变化

      a.不同气体溶解系数随温度变化,公式拟合参考(Weiss,1970);b.Ar溶解系数随温度T和盐度S变化

      Fig.  12.  Variation of gas solubility with temperature and salinity

      图  13  四川盆地He气藏类型分布平面图(a)、不同气田探明储量(b)、气田He含量及类型分布(c)和不同储层中He气藏类型占比图(d)

      Fig.  13.  The type distribution of helium reservoirs in the Sichuan basin (a), proven reserves (b), He content and types (c), and percentage of helium gas in different gas fields (d)

    • Ballentine, C. J., Burnard, P. G., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47(1): 481-538. https://doi.org/10.2138/rmg.2002.47.12
      Ballentine, C. J., Marty, B., Sherwood Lollar, B., et al., 2005. Neon Isotopes Constrain Convection and Volatile Origin in the Earth's Mantle. Nature, 433: 33-38. https://doi.org/10.1038/nature03182
      Barry, P. H., Lawson, M., Meurer, W. P., et al., 2017. Determining Fluid Migration and Isolation Times in Multiphase Crustal Domains Using Noble Gases. Geology, 45(9): 775-778. https://doi.org/10.1130/g38900.1
      Boreham, C. J., Edwards, D. S., Poreda, R. J., et al., 2018. Helium in the Australian Liquefied Natural Gas Economy. The APPEA Journal, 58(1): 209. https://doi.org/10.1071/aj17049
      Brown, A., 2019. Origin of Helium and Nitrogen in the Panhandle-Hugoton Field of Texas, Oklahoma, and Kansas, United States. AAPG Bulletin, 103(2): 369-403. https://doi.org/10.1306/07111817343
      Chen, J. F., Liu, K. X., Dong, Q. W., et al., 2021. Research Status of Helium Resources in Natural Gas and Prospects of Helium Resources in China. Natural Gas Geoscience, 32(10): 1436-1449(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2021.08.006
      Chen, X. J., Chen, G., Bian, R. K., et al., 2023. The Helium Resource Potential and Genesis Mechanism in Fuling Shale Gas Field, Sichuan Basin. Natural Gas Geoscience, 34(3): 469-476(in Chinese with English abstract).
      Chen, X. R., Wang, Y. P., He, Z. H., et al., 2023. Solubility Models of CH4, CO2 and Noble Gases and Their Geological Applications. Natural Gas Geoscience, 34(4): 707-718(in Chinese with English abstract).
      Cheng, A. R., Sherwood Lollar, B., Gluyas, J. G., et al., 2023. Primary N2-He Gas Field Formation in Intracratonic Sedimentary Basins. Nature, 615(7950): 94-99. https://doi.org/10.1038/s41586-022-05659-0
      Cheng, A. R., Sherwood Lollar, B., Warr, O., et al., 2021. Determining the Role of Diffusion and Basement Flux in Controlling 4He Distribution in Sedimentary Basin Fluids. Earth and Planetary Science Letters, 574: 117175. https://doi.org/10.1016/j.epsl.2021.117175
      Dai, J. X., Ni, Y. Y., Qin, S. F., et al., 2017. Geochemical Characteristics of He and CO2 from the Ordos (Cratonic) and Bohaibay (Rift) Basins in China. Chemical Geology, 469: 192-213. https://doi.org/10.1016/j.chemgeo.2017.02.011
      Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018
      Dai, J. X., Zou, C. N., Zhang, S. C., et al., 2008. Discrimination of Abiogenic and Biogenic Alkane Gases. Science in China (Series D), 51(12): 1737-1749. https://doi.org/10.1007/s11430-008-0133-1
      Danabalan, D., Gluyas, J. G., MacPherson, C. G., et al., 2022. The Principles of Helium Exploration. Petroleum Geoscience, 28(2): 2021-2029. https://doi.org/10.1144/petgeo2021-029
      Deng, B., Liu, S. G., Yao, G. S., et al., 2024. Distribution Pattern and Main Controlling Factors of Paleozoic Giant-and Medium Sized Gas Fields of the Sichuan Super Gas Basin in Southwest China. Natural Gas Industry, 44(7): 54-76(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2024.07.005
      Du, C. G., Hao, F., Zou, H. Y., et al., 2009. Process and Mechanism for Oil and Gas Accumulation, Adjustment and Reconstruction in Puguang Gas Field, Northeast Sichuan Basin, China. Science in China (Series D), 39(12): 1721-1731(in Chinese).
      Fisher, D. E., 1986. Rare Gas Abundances in MORB. Geochimica et Cosmochimica Acta, 50(12): 2531-2541. https://doi.org/10.1016/0016-7037(86)90208-5
      Fu, N., Li, Y. C., Liu, D., et al., 2005. Geochemical Characteristics of Natural Gas Migration in Pinghu Gas Field, East China Sea. Petroleum Exploration and Development, 32(5): 34-37(in Chinese with English abstract).
      Halford, D. T., Karolytė, R., Barry, P. H., et al., 2022. High Helium Reservoirs in the Four Corners Area of the Colorado Plateau, USA. Chemical Geology, 596: 120790. https://doi.org/10.1016/j.chemgeo.2022.120790
      Huang, S. J., Huang, K. K., Tong, H. P., et al., 2010. Origin of CO2 in Natural Gas from the Triassic Feixianguan Formation of Northeast Sichuan Basin. Science China: Earth Sciences, 53(5): 642-648. https://doi.org/10.1007/s11430-010-0046-7
      Li, J., Li, Z. S., Wang, X. B., et al., 2017. New Indexes and Charts for Genesis Identification of Multiple Natural Gases. Petroleum Exploration and Development, 44(4): 503-512(in Chinese with English abstract).
      Li, P., Ma, X. X., Zhang, M. Z., et al., 2023. Research Progress on Diffusion Process and Controlling Factors of Helium in Minerals. Natural Gas Geoscience, 34(4): 697-706(in Chinese with English abstract).
      Li, P. P., Liu, Q. Y., Zhu, D. Y., et al., 2024. Distributions and Accumulation Mechanisms of Helium in Petroliferous Basins. Scientia Sinica (Terrae), 54(10): 3195-3218(in Chinese). doi: 10.1360/SSTe-2023-0219
      Li, W., Yang, J. L., Jiang, J. W., et al., 2009. Origin of Upper Triassic Formation Water in Middle Sichuan Basin and Its Natural Gas Significance. Petroleum Exploration and Development, 36(4): 428-435(in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60138-5
      Li, Y. H., Zhang, W., Wang, L., et al., 2017. Henry's Law and Accumulation of Crust-Derived Helium: A Case from Weihe Basin, China. Natural Gas Geoscience, 28(4): 495-501(in Chinese with English abstract).
      Liang, X., Liu, S. G., Xia, M., et al., 2016. Characteristics and Geological Significance of Gas Chimney of the Sinian Dengying Formation in the Weiyuan Structure, Sichuan Basin. Oil & Gas Geology, 37(5): 702-712(in Chinese with English abstract).
      Liu, K. X., Chen, J. F., Fu, R., et al., 2022. Discussion on Distribution Law and Controlling Factors of Helium-Rich Natural Gas in Weiyuan Gas Field. Journal of China University of Petroleum (Edition of Natural Science), 46(4): 12-21(in Chinese with English abstract).
      Liu, Q. Y., Jin, Z. J., Wu, X. Q., et al., 2014. Genetic Origin of Sulfate Compounds in H2S Bearing Gas Reservoirs of Sichuan Basin, China. Natural Gas Geoscience, 25(1): 33-38(in Chinese with English abstract).
      Liu, S. G., Sun, W., Zhao, Y. H., et al., 2015. Differential Accumulation and Distribution of Natural Gas and Their Main Controlling Factors in the Upper Sinian Dengying Fm., Sichuan Basin. Natural Gas Industry, 35(1): 10-23(in Chinese with English abstract).
      Liu, W. H., 2025. Molecular Dynamics Simulation: The Key to Reveal the Enrichment Mechanisms of Helium. Scientia Sinica (Terrae), 55(2): 660-661(in Chinese with English abstract).
      Liu, W. H., Teng, G. R., Gao, B., et al., 2010. H2S Formation and Enrichment Mechanism in Medium to Large Scale Natural Gas Fields (Reservoirs) in Sichuan Basin. Petroleum Exploration and Development, 37(5): 513-522(in Chinese with English abstract).
      Luo, B., Luo, W. J., Wang, W. Z., et al., 2015. Formation Mechanism of the Sinian Natural Gas Reservoir in the Leshan-Longnvsi Paleo-Uplift, Sichuan Basin. Natural Gas Geoscience, 26(3): 444-455(in Chinese with English abstract).
      Milkov, A. V., Faiz, M., Etiope, G., 2020. Geochemistry of Shale Gases from around the World: Composition, Origins, Isotope Reversals and Rollovers, and Implications for the Exploration of Shale Plays. Organic Geochemistry, 143: 103997. https://doi.org/10.1016/j.orggeochem.2020.103997
      Nie, H. K., Liu, Q. Y., Dang, W., et al., 2023. Enrichment Mechanism and Resource Potential of Shale-Type Helium: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin. Scientia Sinica (Terrae), 53(6): 1285-1294(in Chinese).
      Ozima, M., Podosek, F. A., 2001. Noble Gas Geochemistry. Cambridge University Press, Cambridge, 178-180. https://doi.org/10.1017/cbo9780511545986
      Prinzhofer, A., Dos Santos Neto, E. V., Battani, A., 2010. Coupled Use of Carbon Isotopes and Noble Gas Isotopes in the Potiguar Basin (Brazil): Fluids Migration and Mantle Influence. Marine and Petroleum Geology, 27(6): 1273-1284. https://doi.org/10.1016/j.marpetgeo.2010.03.004
      Qin, S. F., Li, J. Y., Liang, C. G., et al., 2022. Helium Enrichment Mechanism of Helium Rich Gas Reservoirs in Central and Western China: Degassing and Accumulation from Old Formation Water. Natural Gas Geoscience, 33(8): 1203-1217(in Chinese with English abstract).
      Qin, S. F., Tao, G., Luo, X., et al., 2023a. Difference between Helium Enrichment and Natural Gas Accumulation and Misunderstandings in Helium Exploration. Natural Gas Industry, 43(12): 138-151(in Chinese with English abstract).
      Qin, S. F., Zhou, G. X., Li, J. Y., et al., 2023b. The Coupling Effect of Helium and Nitrogen Enrichment and Its Significance. Natural Gas Geoscience, 34(11): 1981-1992(in Chinese with English abstract).
      Qin, S. F., Dou, L. R., Tao, G., et al., 2024. Helium Enrichment Theory and Exploration Ideas for Helium-Rich Gas Reservoirs. Petroleum Exploration and Development, 51(5): 1160-1174(in Chinese with English abstract).
      Shuai, Y. H., Li, J., Tian, X. W., et al., 2023. Accumulation Mechanisms of Sinian to Triassic Gas Reservoirs in the Central and Western Sichuan Basin and Their Significance for Oil and Gas Prospecting. Acta Geologica Sinica, 97(5): 1526-1543(in Chinese with English abstract).
      Smith, S. P., Kennedy, B. M., 1983. The Solubility of Noble Gases in Water and in NaCl Brine. Geochimica et Cosmochimica Acta, 47(3): 503-515. https://doi.org/10.1016/0016-7037(83)90273-9
      Tao, S. Z., Wu, Y. P., Tao, X. W., et al., 2024. Helium: Accumulation Model, Resource Exploration and Evaluation, and Integrative Evaluation of the Entire Industrial Chain. Earth Science Frontiers, 31(1): 351-367(in Chinese with English abstract).
      Wang, P., Shen, Z. M., Liu, S. B., et al., 2014. Geochemical Characteristics of Nonhydrocarbon in Natural Gas in West Sichuan Depression and Its Implications. Natural Gas Geoscience, 25(3): 394-401 (in Chinese with English abstract).
      Wang, X. F., Liu, Q. Y., Liu, W. H., et al., 2023. Helium Accumulation in Natural Gas Systems in Chinese Sedimentary Basins. Marine and Petroleum Geology, 150: 106155. https://doi.org/10.1016/j.marpetgeo.2023.106155
      Wang, X. F., Liu, W. H., Li, X. B., et al., 2020. Radiogenic Helium Concentration and Isotope Variations in Crustal Gas Pools from Sichuan Basin, China. Applied Geochemistry, 117: 104586. https://doi.org/10.1016/j.apgeochem.2020.104586
      Wang, X. F., Liu, W. H., Li, X. B., et al., 2022. Application of Noble Gas Geochemistry to the Quantitative Study of the Accumulation and Expulsion of Lower Paleozoic Shale Gas in Southern China. Applied Geochemistry, 146: 105446. https://doi.org/10.1016/j.apgeochem.2022.105446
      Weiss, R. F., 1970. Helium Isotope Effect in Solution in Water and Seawater. Science, 168(3928): 247-248. https://doi.org/10.1126/science.168.3928.247
      Wu, W., Cheng, P., Liu, S. Y., et al., 2023a. Gas-in-Place (GIP) Variation and Main Controlling Factors for the Deep Wufeng-Longmaxi Shales in the Luzhou Area of the Southern Sichuan Basin, China. Journal of Earth Science, 34(4): 1002-1011. https://doi.org/10.1007/s12583-021-1593-x
      Wu, Z. J., Li, T. F., Ji, S., et al., 2023b. Gas Generation from Coal and Coal-Measure Mudstone Source Rocks of the Xujiahe Formation in the Western Sichuan Depression, Sichuan Basin. Journal of Earth Science, 34(4): 1012-1025. https://doi.org/10.1007/s12583-022-1627-z
      Wu, S., Wang, J., Zhang, C. G., et al., 2024. Genesis and Distribution Law of Rich Lithium-Potassium Brine in the Lower Triassic of Puguang Area. Fault-Block Oil & Gas Field, 31(1): 96-105(in Chinese with English abstract).
      Wu, W., Luo, B., Luo, W. J., et al., 2016. Further Discussion about the Origin of Natural Gas in the Sinian of Central Sichuan Paleo-Uplift, Sichuan Basin, China. Natural Gas Geoscience, 27(8): 1447-1453(in Chinese with English abstract).
      Wu, X. Q., Dai, J. X., Liao, F. R., et al., 2013. Origin and Source of CO2 in Natural Gas from the Eastern Sichuan Basin. Science China Earth Sciences, 56(8): 1308-1317. https://doi.org/10.1007/s11430-013-4601-x
      Xie, Z. Y., Yang, W., Hu, G. Y., et al., 2007. Light Hydrocarbon Compositions of Natural Gases and Their Application in Sichuan Basin. Natural Gas Geoscience, 18(5): 720-725(in Chinese with English abstract).
      Yang, Y. M., Yang, Y., Yang, G., et al., 2019. Gas Accumulation Conditions and Key Exploration & Development Technologies of Sinian and Cambrian Gas Reservoirs in Anyue Gas Field. Acta Petrolei Sinica, 40(4): 493-508(in Chinese with English abstract).
      Yi, J. Z., Bao, H. Y., Zheng, A. W., et al., 2019. Main Factors Controlling Marine Shale Gas Enrichment and High-Yield Wells in South China: A Case Study of the Fuling Shale Gas Field. Marine and Petroleum Geology, 103: 114-125. https://doi.org/10.1016/j.marpetgeo.2019.01.024
      Yin, F., Liu, R. B., Wang, W., et al., 2013. Geochemical Characters of the Tight Sandstone Gas from Xujiahe Formation in Yuanba Gas Field and Its Gas Source. Natural Gas Geoscience, 24(3): 621-627(in Chinese with English abstract).
      You, B., Chen, J. F., Xiao, H., et al., 2023. Accumulation Models and Key Conditions of Crustal-Derived Helium-Rich Gas Reservoirs. Natural Gas Geoscience, 34(4): 672-683(in Chinese with English abstract).
      Zhang, L. Y., Wu, K. L., Chen, Z. X., et al., 2021. Gas Storage and Transport in Porous Media: From Shale Gas to Helium-3. Planetary and Space Science, 204: 105283. https://doi.org/10.1016/j.pss.2021.105283
      Zhang, W., Li, Y. H., Zhao, F. H., et al., 2019. Using Noble Gases to Trace Groundwater Evolution and Assess Helium Accumulation in Weihe Basin, Central China. Geochimica et Cosmochimica Acta, 251: 229-246. https://doi.org/10.1016/j.gca.2019.02.024
      Zhang, W., Li, Y. H., Zhao, F. H., et al., 2020. Granite is an Effective Helium Source Rock: Insights from the Helium Generation and Release Characteristics in Granites from the North Qinling Orogen, China. Acta Geologica Sinica(English Edition), 94(1): 114-125. https://doi.org/10.1111/1755-6724.14397
      Zhu, D. Y., Liu, Q. Y., Li, P. P., et al., 2024. Configuration Relationship of Source and Reservoir and Enrichment Mechanism of Helium-Rich Gas Reservoirs. Acta Geologica Sinica, 98(11): 3182-3201(in Chinese with English abstract).
      陈践发, 刘凯旋, 董勍伟, 等, 2021. 天然气中氦资源研究现状及我国氦资源前景. 天然气地球科学, 32(10): 1436-1449.
      陈新军, 陈刚, 边瑞康, 等, 2023. 四川盆地涪陵页岩气田氦气资源潜力与成因机理. 天然气地球科学, 34(3): 469-476.
      陈祥瑞, 王云鹏, 何志华, 等, 2023. CH4、CO2与稀有气体溶解度的估算模型及其地质应用. 天然气地球科学, 34(4): 707-718.
      邓宾, 刘树根, 姚根顺, 等, 2024. 四川超级含气盆地古生界大中型气田分布规律及其主控因素. 天然气工业, 44(7): 54-76.
      杜春国, 郝芳, 邹华耀, 等, 2009. 川东北地区普光气田油气运聚和调整、改造机理与过程. 中国科学(D辑), 39(12): 1721-1731.
      傅宁, 李友川, 刘东, 等, 2005. 东海平湖气田天然气运移地球化学特征. 石油勘探与开发, 32(5): 34-37.
      李剑, 李志生, 王晓波, 等, 2017. 多元天然气成因判识新指标及图版. 石油勘探与开发, 44(4): 503-512.
      李朋朋, 刘全有, 朱东亚, 等, 2024. 含油气盆地氦气分布特征与成藏机制. 中国科学: 地球科学, 54(10): 3195-3218.
      李平, 马向贤, 张明震, 等, 2023. 矿物中氦的扩散过程及控制因素研究进展. 天然气地球科学, 34(4): 697-706.
      李伟, 杨金利, 姜均伟, 等, 2009. 四川盆地中部上三叠统地层水成因与天然气地质意义. 石油勘探与开发, 36(4): 428-435.
      李玉宏, 张文, 王利, 等, 2017. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例. 天然气地球科学, 28(4): 495-501.
      梁霄, 刘树根, 夏铭, 等, 2016. 四川盆地威远构造震旦系灯影组气烟囱特征及其地质意义. 石油与天然气地质, 37(5): 702-712.
      刘凯旋, 陈践发, 付娆, 等, 2022. 威远气田富氦天然气分布规律及控制因素探讨. 中国石油大学学报(自然科学版), 46(4): 12-21.
      刘全有, 金之钧, 吴小奇, 等, 2014. 四川盆地含H2S天然气中硫化物成因探讨. 天然气地球科学, 25(1): 33-38. .
      刘树根, 孙玮, 赵异华, 等, 2015. 四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素. 天然气工业, 35(1): 10-23.
      刘文汇, 2025. 分子动力学模拟计算是揭示氦富集机制的关键. 中国科学: 地球科学, 55(2): 660-661.
      刘文汇, 腾格尔, 高波, 等, 2010. 四川盆地大中型天然气田(藏)中H2S形成及富集机制. 石油勘探与开发, 37(5): 513-522.
      罗冰, 罗文军, 王文之, 等, 2015. 四川盆地乐山: 龙女寺古隆起震旦系气藏形成机制. 天然气地球科学, 26(3): 444-455.
      聂海宽, 刘全有, 党伟, 等, 2023. 页岩型氦气富集机理与资源潜力: 以四川盆地五峰组-龙马溪组为例. 中国科学: 地球科学, 53(6): 1285-1294.
      秦胜飞, 窦立荣, 陶刚, 等, 2024. 氦气富集理论及富氦资源勘探思路. 石油勘探与开发, 51(5): 1160-1174.
      秦胜飞, 李济远, 梁传国, 等, 2022. 中国中西部富氦气藏氦气富集机理: 古老地层水脱氦富集. 天然气地球科学, 33(8): 1203-1217.
      秦胜飞, 陶刚, 罗鑫, 等, 2023a. 氦气富集与天然气成藏差异、勘探误区. 天然气工业, 43(12): 138-151.
      秦胜飞, 周国晓, 李济远, 等, 2023b. 氦气与氮气富集耦合作用及其重要意义. 天然气地球科学, 34(11): 1981-1992.
      帅燕华, 李剑, 田兴旺, 等, 2023. 四川盆地川中-川西震旦系-三叠系天然气成藏分析及勘探意义. 地质学报, 97(5): 1526-1543.
      陶士振, 吴义平, 陶小晚, 等, 2024. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术. 地学前缘, 31(1): 351-367.
      王鹏, 沈忠民, 刘四兵, 等, 2014. 川西坳陷天然气中非烃气地球化学特征及应用. 天然气地球科学, 25(3): 394-401.
      吴双, 王峻, 张春光, 等, 2024. 普光地区下三叠统富锂钾卤水成因与分布规律. 断块油气田, 31(1): 96-105.
      吴伟, 罗冰, 罗文军, 等, 2016. 再论四川盆地川中古隆起震旦系天然气成因. 天然气地球科学, 27(8): 1447-1453.
      谢增业, 杨威, 胡国艺, 等, 2007. 四川盆地天然气轻烃组成特征及其应用. 天然气地球科学, 18(5): 720-725.
      杨跃明, 杨雨, 杨光, 等, 2019. 安岳气田震旦系、寒武系气藏成藏条件及勘探开发关键技术. 石油学报, 40(4): 493-508.
      印峰, 刘若冰, 王威, 等, 2013. 四川盆地元坝气田须家河组致密砂岩气地球化学特征及气源分析. 天然气地球科学, 24(3): 621-627.
      尤兵, 陈践发, 肖洪, 等, 2023. 壳源富氦天然气藏成藏模式及关键条件. 天然气地球科学, 34(4): 672-683.
      朱东亚, 刘全有, 李朋朋, 等, 2024. 富氦气藏源储关系及富集机理. 地质学报, 98(11): 3182-3201.
    • 加载中
    图(13)
    计量
    • 文章访问数:  123
    • HTML全文浏览量:  5
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-12
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回