• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例

    黄元耕 辛佰仑 郭镇 李子珩 乔慧捷 黄鑫月 陈中强

    黄元耕, 辛佰仑, 郭镇, 李子珩, 乔慧捷, 黄鑫月, 陈中强, 2025. 计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例. 地球科学, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    引用本文: 黄元耕, 辛佰仑, 郭镇, 李子珩, 乔慧捷, 黄鑫月, 陈中强, 2025. 计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例. 地球科学, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    Citation: Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022

    计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例

    doi: 10.3799/dqkx.2025.022
    基金项目: 

    国家自然科学基金重点项目 41930322

    国家自然科学基金面上项目 42377205

    广东省自然科学基金项目 2024A1515012584

    古生物学与油气地层应用全国重点实验室开放课题项目 223111

    详细信息
      作者简介:

      黄元耕(1991-),男,副研究员,主要从事地球生物学方向的科研与教学工作

      通讯作者:

      黄元耕,ORCID: 0000⁃0002⁃2900⁃3331. E⁃mail: yghuang@cug.edu.cn

      陈中强,ORCID: 0000⁃0001⁃5341⁃6913. E⁃mail: zhong.qiang.chen@cug.edu.cn

    • 中图分类号: P534

    Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section

    • 摘要: 约2.52亿年前发生的二叠纪‒三叠纪(P-Tr)之交生物大灭绝是地质历史上规模最大的生态危机事件,被认为是当代生态危机参照案例.不过,整合多个门类、系统刻画生物群落食物网结构整体演变过程的研究仍然匮乏.特别是,化石记录的不完备性及其在地层记录的低时间分辨率成为人们“以古鉴今”的卡点.本研究基于浙江煤山P-Tr界线金钉子剖面丰富的化石物种出现记录,利用PyRate贝叶斯模拟方法对所有物种在剖面上真实首现与末现时间进行了重新估算.结果显示,物种多样性的下降分为3个阶段,第1和第3阶段迅速下降,第2阶段缓慢下降.在此基础上,探讨以不同时间分辨率划分古群落的方案,从50 ka每个群落,不断提高时间分辨率,到1 ka每群落,分析各种划分方案下相邻群落物种组成的相似度.随着时间分辨率的提高,煤山剖面相邻群落的物种组成越来越像,对于1~4 ka每群落的方案,5%以上相邻群落在物种组成上完全一样.因此选取5 ka每群落的时间分辨率,构建了连续的古群落序列,量化评估了群落组成和模拟食物网稳定性/抗灾能力在P-Tr之交的演变过程.结果表明,生态结构以及群落稳定性在第1和第2阶段的变化不大,在第3阶段骤然变化.古群落在第1和第2阶段尚具备较强的抗灾能力,可能因为这两个阶段消失的主要为冗余物种,群落的生态结构和功能维持了完整,随着第3阶段多种功能群的消失,生态结构才完全崩溃重组.本文探讨了煤山古群落划分的不同时间分辨率方案,重建了5 ka分辨率下的古生态结构演变过程,为开展高分辨率深时生态系统演化及古今对比研究提供了新思路.

       

    • 图  1  煤山剖面原始化石出现数据(a);煤山剖面不同地层的物种丰度分布(b)

      图a中纵轴为物种编号,每个点代表某一物种在特定时间的出现记录;图b中,纵轴为地层编号,横轴为物种丰度

      Fig.  1.  Original fossil occurrence data of the Meishan section (a); species richness distribution of different strata in the Meishan section (b)

      图  2  PyRate模拟估算的煤山物种延限(a)及对应物种多样性变化轨迹(b)

      红色和紫色虚线标记251.94 Ma和251.88 Ma时间点

      Fig.  2.  The species durations estimated by PyRate simulations for the Meishan section (a) and the corresponding trajectory of species diversity changes (b)

      图  3  不同时间分辨率的群落划分方案,及其对应的“物种组成相同的相邻群落”比例

      Fig.  3.  Community division schemes at different temporal resolutions and the corresponding proportion of adjacent communities with identical species compositions

      图  4  煤山剖面252.00~251.75 Ma古群落序列划分

      每个古群落时间延限为5 ka

      Fig.  4.  Paleocommunity sequence division from 252.00 to 251.75 Ma in the Meishan section

      图  5  煤山剖面古群落物种组成演变分析

      其中,C1至C12代表了252.00~251.94 Ma间的古群落,C13至C20代表了251.94~251.90 Ma间的古群落,C21至C31代表了251.90~251.85 Ma间的古群落,C32至C50代表了251.85~251.75 Ma间的古群落;每个点(古群落)的颜色值反映了其与周围点(古群落)的功能群组成差异,值越高说明与周围古群落功能群组成越相似,反之亦然

      Fig.  5.  Paleocommunity composition evolution in the Meishan section

      图  6  煤山剖面古食物网的网络营养等级、最大食物链长度、连接密度和连通度的变化

      Fig.  6.  Changes in network trophic position, path max, link density, and connectance of Meishan food webs

      图  7  煤山剖面古食物网模块数量与模块度的变化

      Fig.  7.  Variations of the number of modules and modularity of the Meishan food webs

      图  8  煤山剖面古群落在低扰动下次生灭绝率的变化

      Fig.  8.  Variations of the secondary extinction of the Meishan commmunities at low-level perturbations

    • Algeo, T. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates. Journal of Earth Science, 21(1): 107-110. https://doi.org/10.1007/s12583⁃010⁃0182⁃1
      Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian⁃Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
      Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023⁃1026 https://doi.org/10.1130/G31203.1
      Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471(7336), 51-57. https://doi.org/10.1038/nature09678
      Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
      Cao, C. Q., Zheng, Q. F., 2009. Geological event sequences of the Permian⁃Triassic transition recorded in the microfacies in Meishan. Science in China (Series D), 39(4): 481-487 (in Chinese).
      Chen, Z. ⁃Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chen, Z. ⁃Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems during and after Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese).
      Chen, Z. ⁃Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian⁃Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth⁃Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
      Chen, Z. ⁃Q., Zhao, L. S., Wang, X. D., et al., 2018. Great Paleozoic⁃Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 29(4): 721-732. https://doi.org/10.1007/s12583⁃018⁃0797⁃1
      Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
      Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa019
      Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End⁃Permian Mass Extinction and Recovery. Nature Communications, 7(1): 12236. doi: 10.1038/ncomms12236.https://doi.org/ 10.1038/ncomms12236
      Del Rey, A., Deckart, K., Arriagada, C., et al., 2016. Resolving the Paradigm of the Late Paleozoic⁃Triassic Chilean Magmatism: Isotopic Approach. Gondwana Research, 37: 172-181. https://doi.org/10.1016/j.gr.2016.06.008
      Dunne, J. A., Williams, R. J., Martinez, N. D., 2004. Network Structure and Robustness of Marine Food Webs. Marine Ecology Progress Series, 273: 291-302. https://doi.org/10.3354/meps273291
      Erwin, D. H., Bowring, S. A., Jin, Y. G., 2002. End⁃Permian Mass Extinctions: A Review. In: Koeberl, C., MacLeod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2356⁃6.363
      Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10): 851-877. https://doi.org/10.1080/14772019.2016.1245680
      Foster, W. J., Frank, A. B., Li, Q. J., et al., 2024. Thermal and Nutrient Stress Drove Permian⁃Triassic Shallow Marine Extinctions. Cambridge Prisms: Extinction, 2: e9. https://doi.org/10.1017/ext.2024.9
      Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
      Gilarranz, L. J., Rayfield, B., Liñán⁃Cembrano, G., et al., 2017. Effects of Network Modularity on the Spread of Perturbation Impact in Experimental Metapopulations. Science, 357(6347): 199-201. https://doi.org/10.1126/science.aal4122
      Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/G38487.1
      Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and Stability in Ecological Communities. Nature Communications, 7: 12031. https://doi.org/10.1038/ncomms12031
      Huang, Y. G., Chen, Z. Q., Algeo, T. J., et al., 2019. Two⁃Stage Marine Anoxia and Biotic Response during the Permian⁃Triassic Transition in Kashmir, Northern India: Pyrite Framboid Evidence. Global and Planetary Change, 172: 124-139. https://doi.org/10.1016/j.gloplacha.2018.10.002
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2021. Ecological Dynamics of Terrestrial and Freshwater Ecosystems across Three Mid⁃Phanerozoic Mass Extinctions from Northwest China. Proceedings of the Royal Society B: Biological Sciences, 288: rspb. 20210148. https://doi.org/10.1098/rspb.2021.0148
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2023. The Stability and Collapse of Marine Ecosystems during the Permian⁃Triassic Mass Extinction. Current Biology, 33(6): 1059-1070. https://doi.org/10.1016/j.cub.2023.02.007
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
      Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian⁃Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
      Kaiho, K., Aftabuzzaman, M., Jones, D. S., et al., 2021. Pulsed Volcanic Combustion Events Coincident with the End⁃Permian Terrestrial Disturbance and the Following Global Crisis. Geology, 49(3): 289-293. https://doi.org/10.1130/g48022.1
      Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273: 452-457. https://doi.org/10.1126/science.273.5274.452
      Newman, M. E., 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23): 8577-8582. https://doi.org/10.1073/pnas.0601602103
      Payne, J. L., Clapham, M. E., 2012. End⁃Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty⁃First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105329
      Qiu, Z. P., 2019. Carbonate Thermoluminescence from Meishan Section, Zhejiang Province and Its Implication for Environmental Changes during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Roopnarine, P. D., 2009. Ecological Modeling of Paleocommunity Food Webs. In: Dietl, G. P., Flessa, K. W., eds., Conservation Paleobiology: Using the Past to Manage for the Future. Yale University Press, Yale, 195-220.
      Roopnarine, P. D., 2010. Graphs, Networks, Extinction and Paleocommunity Food Webs. In: Alroy, J., Hunt, G., eds., Quantitative Methods in Paleobiology. Yale University Press, Yale, 143-161.
      Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., et al., 2007. Trophic Network Models Explain Instability of Early Triassic Terrestrial Communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622): 2077-2086. https://doi.org/10.1098/rspb.2007.0515
      Roopnarine, P. D., Angielczyk, K. D., Olroyd, S. L., et al., 2017. Comparative Ecological Dynamics of Permian⁃Triassic Communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. Journal of Vertebrate Paleontology, 37(Suppl. ): 254-272. https://doi.org/10.1080/02724634.2018.1424714
      Roopnarine, P. D., Dineen, A. A., 2018. Coral Reefs in Crisis: The Reliability of Deep⁃Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C. L., Schneider, C. L., eds., Marine Conservation Paleobiology. Springer International Publishing, Cham, 105-141. https://doi.org/10.1007/978⁃3⁃319⁃73795⁃9_6
      Sanei, H., Grasby, S. E., Beauchamp, B., 2012. Latest Permian Mercury Anomalies. Geology, 40(1): 63-66. https://doi.org/10.1130/G32596.1
      Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/G36227.1
      Shen, J., Chen, J., Algeo, T. J., et al., 2019. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
      Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High⁃Resolution Digital Geological Timeline? Earth Science, 47(10): 3766-3769 (in Chinese with English abstract).
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events versus Global Changes: Progresses and Challenges. China Science Bulletin, 69(2): 268-285 (in Chinese with English abstract).
      Silvestro, D., Salamin, N., Antonelli, A., et al., 2019. Improved Estimation of Macroevolutionary Rates from Fossil Data Using a Bayesian Framework. Paleobiology, 45(4): 546-570. https://doi.org/10.1017/pab.2019.23
      Silvestro, D., Salamin, N., Schnitzler, J., 2014a. PyRate: A New Program to Estimate Speciation and Extinction Rates from Incomplete Fossil Data. Methods in Ecology and Evolution, 5(10): 1126-1131. https://doi.org/10.1111/2041⁃210X.12263
      Silvestro, D., Schnitzler, J., Liow, L. H., et al., 2014b. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63(3): 349-367. https://doi.org/10.1093/sysbio/syu006
      Song, H. J., 2012. Extinction and Recovery of Foraminifera and Calcareous Algae during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
      Song, Y., Tian, Y., Yu, J. X., et al., 2022. Wildfire Response to Rapid Climate Change during the Permian⁃Triassic Biotic Crisis. Global and Planetary Change, 215: 103872. https://doi.org/10.1016/j.gloplacha.2022.103872
      Stouffer, D. B., Bascompte, J., 2011. Compartmentalization Increases Food⁃Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648-3652. https://doi.org/10.1073/pnas.1014353108
      Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
      Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End⁃Permian Mass Extinction. Paleobiology, 40(1): 113-129. https://doi.org/10.1666/13022
      Ward, P. D., Montgomery, D. R., Smith, R., 2000. Altered River Morphology in South Africa Related to the Permian⁃Triassic Extinction. Science, 289(5485): 1740-1743. https://doi.org/10.1126/science.289.5485.1740
      Wu, C. L., Liu, G., 2019. Big Data and Future Development of Geological Science. Geological Bulletin of China, 38(7): 1081-1088 (in Chinese with English abstract).
      Xie, S. C., Pancost, R. D., Huang, J., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian⁃Triassic Crisis. Geology, 35(12): 1083-1086. https://doi.org/10.1130/G24224A.1
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Zhang, F. F., Algeo, T. J., Romaniello, S. J., et al., 2018. Congruent Permian⁃Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global⁃Oceanic Anoxia and Validation of the U⁃Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1
      Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      Zhang, K. X., Lai, X. L., Tong, J. N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.018
      Zhou, W. F., Algeo, T. J., Luo, G. M., et al., 2021. Hydrocarbon Compound Evidence in Marine Successions of South China for Frequent Wildfires during the Permian⁃Triassic Transition. Global and Planetary Change, 200: 103472. https://doi.org/10.1016/j.gloplacha.2021.103472
      曹长群, 郑全锋, 2009. 煤山二叠纪‒三叠纪过渡期事件地层时序的微观地层记录. 中国科学(D辑), 39(4): 481-487.
      陈中强, 黄元耕, 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827
      沈树忠, 樊隽轩, 王向东, 等, 2022. 如何打造高精度地质时间轴?地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
      沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
      吴冲龙, 刘刚, 2019. 大数据与地质学的未来发展. 地质通报, 38(7): 1081-1088.
      张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
      张克信, 赖旭龙, 童金南, 等, 2009. 全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展. 古生物学报, 48(3): 474-486. doi: 10.3969/j.issn.0001-6616.2009.03.018
    • dqkxzx-50-3-951-附表1.xlsx
    • 加载中
    图(8)
    计量
    • 文章访问数:  311
    • HTML全文浏览量:  110
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-10
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回