Processing math: 100%
  • 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例

    黄元耕 辛佰仑 郭镇 李子珩 乔慧捷 黄鑫月 陈中强

    黄元耕, 辛佰仑, 郭镇, 李子珩, 乔慧捷, 黄鑫月, 陈中强, 2025. 计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例. 地球科学, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    引用本文: 黄元耕, 辛佰仑, 郭镇, 李子珩, 乔慧捷, 黄鑫月, 陈中强, 2025. 计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例. 地球科学, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    Citation: Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022

    计算模拟方法提高深时食物网稳定性演变的时间分辨率: 以煤山剖面二叠纪‒三叠纪生态记录为例

    doi: 10.3799/dqkx.2025.022
    基金项目: 

    国家自然科学基金重点项目 41930322

    国家自然科学基金面上项目 42377205

    广东省自然科学基金项目 2024A1515012584

    古生物学与油气地层应用全国重点实验室开放课题项目 223111

    详细信息
      作者简介:

      黄元耕(1991-),男,副研究员,主要从事地球生物学方向的科研与教学工作

      通讯作者:

      黄元耕,ORCID: 0000⁃0002⁃2900⁃3331. E⁃mail: yghuang@cug.edu.cn

      陈中强,ORCID: 0000⁃0001⁃5341⁃6913. E⁃mail: zhong.qiang.chen@cug.edu.cn

    • 中图分类号: P534

    Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section

    • 摘要: 约2.52亿年前发生的二叠纪‒三叠纪(P-Tr)之交生物大灭绝是地质历史上规模最大的生态危机事件,被认为是当代生态危机参照案例.不过,整合多个门类、系统刻画生物群落食物网结构整体演变过程的研究仍然匮乏.特别是,化石记录的不完备性及其在地层记录的低时间分辨率成为人们“以古鉴今”的卡点.本研究基于浙江煤山P-Tr界线金钉子剖面丰富的化石物种出现记录,利用PyRate贝叶斯模拟方法对所有物种在剖面上真实首现与末现时间进行了重新估算.结果显示,物种多样性的下降分为3个阶段,第1和第3阶段迅速下降,第2阶段缓慢下降.在此基础上,探讨以不同时间分辨率划分古群落的方案,从50 ka每个群落,不断提高时间分辨率,到1 ka每群落,分析各种划分方案下相邻群落物种组成的相似度.随着时间分辨率的提高,煤山剖面相邻群落的物种组成越来越像,对于1~4 ka每群落的方案,5%以上相邻群落在物种组成上完全一样.因此选取5 ka每群落的时间分辨率,构建了连续的古群落序列,量化评估了群落组成和模拟食物网稳定性/抗灾能力在P-Tr之交的演变过程.结果表明,生态结构以及群落稳定性在第1和第2阶段的变化不大,在第3阶段骤然变化.古群落在第1和第2阶段尚具备较强的抗灾能力,可能因为这两个阶段消失的主要为冗余物种,群落的生态结构和功能维持了完整,随着第3阶段多种功能群的消失,生态结构才完全崩溃重组.本文探讨了煤山古群落划分的不同时间分辨率方案,重建了5 ka分辨率下的古生态结构演变过程,为开展高分辨率深时生态系统演化及古今对比研究提供了新思路.

       

    • 越来越多的证据表明我们地球的生物多样性正在锐减,生态系统变得更加脆弱.面对被极度破坏的生态系统,人们非常关注第6次生物大灭绝事件是否真的很快就要到来(Barnosky et al.,2011).反观地球历史,虽然地球生命遭受了至少5次大灭绝的洗礼,但它们仍一次次从灾难中复苏并辐射,生态系统也变得越来越繁荣.因此,总结地球深时极端生物环境/气候事件的发生模式和诱因,“以古鉴今”,可为当代脆弱生态系统管理提供经验教训,并对它们将来演化方向提供合理的预测.特别是,加强研究地质历史重大转折时期的大灭绝事件对于深入理解现代生态系统的变化和保护有着重要的意义.然而,化石记录的不完备性及其在深时地层记录的低时间分辨率成为目前“以古鉴今”研究的卡点.

      二叠纪‒三叠纪之交生物大灭绝事件(Permian⁃Triassic Mass Extinction Event,简称PTME)是一个典型例子,本次大灭绝是地球生命自显生宙以来遭受最严重的一次浩劫,海洋和陆地生态系统均受重创(张华等,2024),导致约90%的海洋无脊椎动物和约75%的陆生动物在短时间内灭绝(Erwin et al.,2002).PTME对生物群落结构与生态系统功能也产生了深远而持久的影响,标志着古生代海洋生态格局的终结与生物多样性组成的剧烈重塑,不仅规模空前,而且是地球生物圈演化史上一个重要的转折期(Chen and Benton,2012).这一转折时期伴随生物的大灭绝,出现各种极端环境事件,比如海洋表面温度急剧升高(Joachimski et al.,2012Sun et al.,2012Del Rey et al.,2016)、大规模海洋缺氧(Algeo et al.,2011Clarkson et al.,2016Huang et al.,20172019Zhang et al.,2018)、海洋酸化(Payne et al.,2012Sephton et al.,2015Clarkson et al.,2015Garbelli et al.,2016)、强烈火山作用(Bond and Grasby,2017Grasby et al.,2017Chen et al.,2018Wang et al.,2018Shen et al.,2019Kaiho et al.,2021Zhang et al.,2021)、陆地干旱和野火频发(Shen et al.,2011Zhou et al.,2021Song et al.,2022)、陆地植被破坏与增强的陆地风化(Ward et al.,2000Xie et al.,2007Algeo,2010Algeoand Twitchett,2010)、有毒金属元素大量输入(Sanei et al.,2012Grasby et al.,20172020Wang et al.,2018Chu et al.,2021Zhang et al.,2021),这些极端环境事件在现今也有发生,有些具有愈演愈烈的趋势.因此,PTME被认为是“21世纪的深时参照案例”(Payne and Clapham,2012).然而,古‒今生态系统变化时间尺度大不相同,深时海陆生物多样性模式和关键环境因子尚缺乏能与当代匹配的高分辨率记录.因此,当今全球变化与深时记录对比存在巨大鸿沟(沈树忠等,20222024).此前的研究利用古生态模型对二叠纪‒三叠纪(P⁃Tr)之交的古食物网崩塌阈值开展模拟(Huang et al.,2023).不过,该研究将PTME划分为灭绝前、灭绝中和灭绝后3个阶段,每个阶段长达~60 ka,因此,每个阶段古食物网的崩塌阈值和生态结构演变规律依然难以直接与当代情景相对比.另外,也无法回答在“灭绝中”这个阶段,群落稳定性是线性下降的,还是存在一个深时生态临界点(tipping point),在临界点前保持相对稳定,直至跨越临界点后迅速崩溃.该问题的核心也在于精细的时间分辨率,因为现代群落是时间点上物种的合集,而古群落是某一时间段内物种的合集,时间尺度越短越能精确刻画生态结构的演变过程.为了克服化石记录时间分辨率低这一弱点,古生物学家们开发出PyRate贝叶斯模拟技术方法,将离散的化石记录模拟成时间连续的生物出现数据(Silvestro et al.,2014b2019).该方法要求研究剖面的化石物种在地层中出现的数据越多越好.我国浙江省长兴县煤山剖面的化石记录满足PyRate贝叶斯模拟方法的要求,该剖面完整记录了晚二叠世海相生物灭绝过程,同时包括了二叠系‒三叠系界线和长兴阶‒吴家坪阶界线两个“金钉子”(Global Stratotype Section and Point,简称GSSP).煤山剖面保存了良好的化石记录,并得到了充分的研究(Jin et al.,2000Chen et al.,2015Foster et al.,2024),其生物和地球化学数据具有显著的时空连续性,提供了揭示这一重大地质转折期生态系统演化的关键素材(Foster et al.,2017).

      当前进入了以大数据和数据密集型计算为基础的研究时期(吴冲龙和刘刚,2019),地质学与计算科学的结合正在突破传统方法的限制,使地质学研究进入更加定量化与系统化的阶段(陈中强和黄元耕,2022).本文基于煤山剖面的化石出现(occurrence)记录,参考PyRate贝叶斯模拟技术(Silvestro et al.,2014a2014b2019),利用新型计算机模拟与统计建模方法估算每个物种在地层中真实的首现和末现时间,对比以不同时间尺度/分辨率划分古群落的方案,从50 ka每个群落到1 ka每个群落,不断提高时间分辨率,分析各种划分方案下相邻群落物种组成的相似度.最终选取合适的时间分辨率重建古群落序列,以此量化评估该剖面记录的古群落组成和食物网结构在P⁃Tr之交高分辨的演变过程,最终为深入理解生态系统在P⁃Tr之交的转变模式提供新的视角与实证.

      二叠纪‒三叠纪之交,浙江省长兴县煤山地区位于华南地块扬子台地的东缘,地处古特提斯洋东部靠近赤道地区.煤山剖面的地层记录连续完整,是研究PTME及其生态响应的重要窗口(Jin et al.,2000Shen et al.,2011Song et al.,2013Chen et al.,2015).该剖面因其地层序列连续并富含海相生物化石,于2001年被国际地质科学联合会(IUGS)选定为全球海相二叠系‒三叠系层型剖面和点(Global Stratotype Section and Point,GSSP)(Yin et al.,2001).煤山剖面自下而上连续发育了晚二叠世吴家坪期至早三叠世奥伦尼克期的完整沉积序列,产出丰富的古生物化石(曹长群和郑全锋,2009),包括软骨鱼、硬骨鱼、菊石、牙形石、双壳类、腕足类、腹足类、珊瑚等重要化石类群,为重建PTME期间海洋古食物网稳定性演化和生态系统演替过程提供了关键材料.此外,煤山剖面不仅具备岩石学与地球化学的高分辨率连续记录(Foster et al.,2024),还展现了生物多样性在大灭绝事件前后变化的精细特征,使其成为深入探讨PTME发生机制、生物灭绝模式及生态系统恢复路径的重要天然实验室.

      本文系统收集了产自煤山剖面第13a层至第39层(张克信等,2009)的全部发表化石数据(剔除淡水物种与孢粉类群).该时期地层涵盖了长兴组上部至殷坑组下部,时代跨度从晚长兴期延续至格里斯巴赫亚期(早印度期),较长的研究时段可以有效降低边界效应对分析结果的干扰.共计收录了4 653条化石出现记录,隶属于503个物种、200个属,涵盖了牙形石、有孔虫、放射虫、双壳类、腕足类与介形类等多个门类.化石数据来源于37篇文献(具体数据详见附表 1),并在数据清理过程中进行了全面核查与修订.为确保数据质量,本文核对并更正了物种名称中的排版错误,审慎处理了带有开放命名标识(如“”、?、aff.、cf.和informal)的化石记录,避免因同物异名导致物种重复记录.此外,严格遵循最新的分类学成果,确保物种鉴定的准确性与一致性.在地层年代方面,参考了Foster et al.2024)对煤山剖面地层的年代划分.针对早期文献中对煤山剖面地层单位划分存在差异的问题,本研究重新审定了样本的地层归属,将其精确限定至确认的具体层位或子层.对于未能明确指派至特定地层/子层的化石记录,由于无法可靠推断其生灭时间,故将其排除在分析范围之外.

      PyRate贝叶斯模拟技术(Silvestro et al.,2014a2014b2019)是一种基于古生物学数据,采用贝叶斯框架对生物多样性演化速率进行估计的方法,能够有效考虑化石保存过程对数据完整性的影响.该方法分析的核心数据为化石出现数据,即某一物种在特定地点和地层中的出现.与传统多样性分析方法相比,PyRate最大程度地利用了化石信息,从而生成更精细且更具可信度的多样性动态变化结果.PyRate能够精确推断物种的延限.即便化石记录存在缺失或不完整,其也能有效估算物种的实际存续时间范围.在化石记录零散或存在“隐匿期”的情况下,PyRate能利用现有化石出现数据,通过贝叶斯推断方法重建物种的潜在延限,从而更精确地刻画物种的演化历程.此外,PyRate允许生物出现与消失速率以连续函数形式随时间动态变化,突破了传统方法仅能在离散时间节点进行速率估计的局限.通过这种时间连续性建模,PyRate能细致捕捉多样性变化的微观动态,显著提升了生物多样性演变历程的重建分辨率.

      1.4.1   网络营养等级

      网络营养等级(Network Trophic Position,简称NTP)是一种用于定量表征物种在食物网能量传递链条中相对位置的重要指标.作为传统营养级(trophic level)的改进方法,NTP不仅关注物种的直接捕食关系,还综合考虑复杂网络中的多层次交互作用,从而更全面地反映物种在生态系统中的功能角色及其生态位特征.其定义公式为:

      NTPi=2+1γiSj=1aij(lj), (1)

      其中,NTPi是针对功能群i计算得出的;γi是消费者功能群的数量;S是食物网中功能群的数量;aij是一个二值变量,取值为0或1,其中1表示功能群i捕食功能群j;lj表示功能群j到某个初级生产者功能群的最短路径长度(Roopnarine and Dineen,2018).

      1.4.2   最大食物链长度

      最大食物链长度(Path Max)是生态网络分析中用于衡量食物网内捕食链条最长路径的关键指标,表示从初级生产者到最高营养级捕食者所经过的最大捕食层级数.该指标反映了食物网的层级结构复杂度和能量传递效率,是评估生态系统功能与稳定性的重要参数之一.在稳定的生态系统中,较大的最大食物链长度通常表明物种间存在更为复杂的营养级结构,生态网络具有较强的功能分化和资源利用效率.然而,在受到环境扰动或物种灭绝影响的生态系统中,最大食物链长度可能显著缩短,体现出捕食链条的简化和功能退化.因此,最大食物链长度不仅可以量化生态网络的结构深度,还能在古生态研究中揭示生态系统在环境变化下的演化特征与稳定性变化.

      1.4.3   连接密度

      连接密度(Link Density)是衡量食物网复杂性的重要生态学指标,用于描述网络中捕食关系的密集程度.具体而言,它表示食物网中实际存在的连接(捕食关系)数量相对于物种数量的比例,从而反映古食物网的复杂性.其定义公式为:

      LinkDensity=LS, (2)

      其中:L表示食物网中的捕食连接总数;S表示食物网中的物种数量.

      1.4.4   连通度

      连通度(Connectance)是衡量食物网复杂性和连通性的核心指标之一,用于描述实际捕食关系在所有潜在捕食关系中所占的比例.它能够反映古生态系统中相互作用的密集程度及其整体结构的复杂性.其定义公式为:

      Connectance=LS2, (3)

      其中:L表示食物网中的捕食连接总数;S表示食物网中的物种数量.

      1.4.5   模块度与模块数量

      模块度(Modularity)用于评估网络中节点在不同模块(或社区)中的划分质量,其核心思想是:如果网络能够被良好地划分为若干相对紧密互联的子结构,则该网络应当呈现出高模块度(Newman,2006).在此,模块(或社区)通常指网络中节点之间具有较高连接密度,且与其他模块之间连接较为稀疏的子结构.通过量化节点间连接密度的差异性,模块度不但能够刻画群落的内部组织特征,还能揭示古群落可能存在的功能分区与结构分层.而模块数量(Number of Modules)则表示对古群落进行划分后所获得的这些模块(或社区)的总个数,可用于衡量网络被拆分为多少个功能或结构单元.

      Species⁃Level Networks(SLN)用于从功能群级(guild⁃level)食物网派生物种级别(species⁃ level)的捕食关系结构(Roopnarine,2010Huang et al.,2023).在此,功能群(guild)可视为一类在资源利用方式或生态功能上相似的物种集合,其成员在相同环境资源或生态位中扮演相近的角色(Roopnarine,2009).基于对各功能群内物种丰度及功能群之间捕食关系的精确分析,SLN能够基于生态规则派生出可能的物种间的捕食关系,重建物种级别的食物网.Cascading Extinction on Graphs 1.5(CEG 1.5)是为模拟生态群落动态变化而设计的计算框架,最早被应用在南非Karoo盆地P⁃Tr之交古群落稳定性的研究中(Roopnarine et al.,2007),旨在评估食物网在外部扰动下的稳定性与抗性.该模型精确模拟扰动所引发的上下游级联效应(cascading effect).比如在模拟初级生产力减少等古生态背景下的关键情境时,CEG可量化次级灭绝规模,识别群落崩溃的临界点,并评估群落的抗性和组成稳定性.其独特优势在于结合元网络约束、随机化建模与动态交互分析,揭示食物网稳定性的变化.这为解析古生态系统演变机制提供了重要的理论支撑与量化工具.

      煤山剖面原始化石数据统计表明,物种多样性在21层达到高峰,随后不断下降,在27层明显反弹,随后继续下降直到31层后基本稳定(图 1),与前人在煤山剖面建立的物种多样性变化曲线相似(Song et al.,2013Wang et al.,2014Foster et al.,2024).

      图  1  煤山剖面原始化石出现数据(a);煤山剖面不同地层的物种丰度分布(b)
      图a中纵轴为物种编号,每个点代表某一物种在特定时间的出现记录;图b中,纵轴为地层编号,横轴为物种丰度
      Fig.  1.  Original fossil occurrence data of the Meishan section (a); species richness distribution of different strata in the Meishan section (b)

      使用具有处理化石年代不确定性优势的Reversible Jump Markov Chain Monte Carlo(RJMCMC)算法,并结合速率异质性的Gamma模型,采用时间可变泊松过程模型(Time⁃variable Poisson Process,简称TPP)假设在预定义的时间范围内保存率保持恒定,分门类运行化石出现数据,可获得煤山剖面252.00~251.97 Ma物种多样性变化曲线(图 2).模拟的煤山物种多样性曲线展示出物种多样性从最高峰下降到最低点用了超过100 ka,物种多样性的下降分为3个阶段,第1阶段迅速下降,每千年约减少3个物种,第2阶段缓慢下降,每千年约减少1.02个物种,第3阶段迅速下降,每千年约减少2.7个物种(图 2b).

      图  2  PyRate模拟估算的煤山物种延限(a)及对应物种多样性变化轨迹(b)
      红色和紫色虚线标记251.94 Ma和251.88 Ma时间点
      Fig.  2.  The species durations estimated by PyRate simulations for the Meishan section (a) and the corresponding trajectory of species diversity changes (b)

      古生物群落是指在一定空间内分布的各物种的种群集合,包括动物、植物、微生物等各个物种的种群,共同组成生态系统中有生命的部分.群落中的各种生物不是互相独立的,彼此具有复杂的种间关系.而古群落就是指在一定的地质历史时期,在一定的古地理范围内,相互之间具有联系的各种生物的集合体.古群落与现代群落相比,最大的区别在于古群落的时间跨度要比现代群落大得多.本文对252.00~251.75 Ma这一大灭绝发生窗口内煤山剖面物种延限数据按照不同的时间分辨率进行划分,以建立古群落.显然,时间分辨率越高,即群落的时间范围越短,则相邻群落间的物种组成差异就越小,直到完全相同,则继续提高时间分辨率就没有实际意义.为此,本文探索不同的古群落划分方案,从50 ka每群落逐渐提高时间分辨率,到1 ka每群落.每种方案选取不同的时间起点,重复100次.研究表明,随着时间分辨率的提高,物种组成相同的群落比例呈指数上升(图 3).从50 ka每群落到20 ka每群落,所有相邻群落的物种组成都不一样,到10 ka每群落后,开始出现相邻群落物种完全一致的情况,从10 ka每群落到4 ka每群落,物种组成相同的群落比例缓慢上升,且不超过10%.从3 ka每群落开始,物种组成相同的群落比例快速上升,在1 ka每群落的划分方案下,约40%的相邻群落都完全相同.本文以5%物种组成相同的群落为接受的上限,因此选取5 ka每群落的划分方案(图 3),将252.00~251.75 Ma的时间区间划分为连续的50个古群落,形成了具有时序连续性的古群落序列(图 4).该方案保证了不同古群落间在物种组成方面的显著差异,避免了因人为过度细分而丧失实际意义,对于解析大灭绝过程中的生态演变具有较好的适用性.

      图  3  不同时间分辨率的群落划分方案,及其对应的“物种组成相同的相邻群落”比例
      Fig.  3.  Community division schemes at different temporal resolutions and the corresponding proportion of adjacent communities with identical species compositions
      图  4  煤山剖面252.00~251.75 Ma古群落序列划分
      每个古群落时间延限为5 ka
      Fig.  4.  Paleocommunity sequence division from 252.00 to 251.75 Ma in the Meishan section

      根据煤山剖面古群落内每一种生物的体型大小、食性特征(如肉食、杂食、草食)、生活方式等生态功能(ecological function),将所有生物分别划入不同的功能群,功能群内部的生物在营养级上完全一致(Roopnarine et al.,2017Huang et al.,20212023),形成了一个新的“古群落序列‒功能群序列”空间,每个点都代表了古群落序列中某一古群落的功能群丰度(guild richness),也即某个功能群内有多少个物种.为进一步分析煤山剖面古群落序列的物种组成变化情况,使用非度量多维标度(Non⁃metric multidimensional scaling,简称NMDS)分析方法,采取Bray⁃Curtis相异度,综合考虑功能群的差异和功能群丰度之间的差异.将原本的“古群落序列‒功能群序列”空间降维,再对所得的一系列二维坐标进行核密度分析(图 5).

      图  5  煤山剖面古群落物种组成演变分析
      其中,C1至C12代表了252.00~251.94 Ma间的古群落,C13至C20代表了251.94~251.90 Ma间的古群落,C21至C31代表了251.90~251.85 Ma间的古群落,C32至C50代表了251.85~251.75 Ma间的古群落;每个点(古群落)的颜色值反映了其与周围点(古群落)的功能群组成差异,值越高说明与周围古群落功能群组成越相似,反之亦然
      Fig.  5.  Paleocommunity composition evolution in the Meishan section

      古群落序列在维度1上的变化幅度较小,而在维度2上差异显著.从C1到C50,维度2的值持续增大,但群落物种的多样性却显著下降,表明维度2很可能反映了生物多样性的变化,其值越低则群落物种多样性越高.在C1至C12群落时间段,也即PTME灭绝前,相邻群落的组成高度相似.当时间推进至251.94~251.90 Ma时(C13至C20群落),群落的功能群组成出现了显著差异,且在二维空间中的分布更加分散,反映出群落开始经历功能分化与生态重组.随着时间进入251.90~251.85 Ma(C21至C30群落),群落的功能群组成趋于一致,空间分布上的分散性也有所降低,表明经过初期的波动后群落变化在某种程度上出现了短暂的收敛.然而,到了251.85 Ma之后,群落在功能群的组成上再次出现大范围的分化,空间分布极度分散(图 5),体现了群落结构的全面重构以及物种多样性的深度丧失.

      本文在充分考虑古生态数据不确定性的基础上,基于煤山剖面已建好的物种与功能群的对应关系,借助前人构建好的二叠纪‒三叠纪之交华南地区功能群以及功能群级(guild⁃level)捕食关系网络(Huang et al.,2023),针对古群落序列中的每个古群落分别通过SLN独立生成了100个物种级古食物网.随后计算网络营养等级(NTP)、最大食物链长度(Path Max)、连接密度(Link Density)和连通度(Connectance)四项生态学指标在时间序列上的变化(图 6),分析古群落在不同时期所呈现的生态结构差异.同时,为进一步深入探究古群落模块化特征的演变,利用Infomap算法对煤山剖面古群落序列中由SLN构建的物种级食物网结构进行了模块度分析,并定量测算了模块度与模块数量.为直观呈现不同古群落在模块特征上的变化趋势,进一步绘制了模块度与模块数量的误差线图,结果如图 7所示.

      图  6  煤山剖面古食物网的网络营养等级、最大食物链长度、连接密度和连通度的变化
      Fig.  6.  Changes in network trophic position, path max, link density, and connectance of Meishan food webs
      图  7  煤山剖面古食物网模块数量与模块度的变化
      Fig.  7.  Variations of the number of modules and modularity of the Meishan food webs

      综合以上结果,在约252.0~251.9 Ma这一阶段,群落食物网整体呈现较高的模块度与相对丰富的模块数量,表明在若干功能分区内,物种间联系紧密,而各分区之间的相互作用相对有限,从而为系统提供了较强的局部稳健性和对外界扰动的抵抗能力(Stouffer and Bascompte,2011Grilli et al.,2016Gilarranz et al.,2017).在251.90~251.85 Ma时段,大部分指标保持稳定或小幅变化.然而,到了~251.85 Ma时,群落结构遭遇了迅速而深刻的冲击:网络营养等级和最大食物链长度的下行趋势显示高等级捕食者的严重丧失,连接密度的骤减进一步凸显捕食关系数量锐减比物种多样性的减少更严重,网络复杂性因此显著下降.连接度的变化实际上更多地反映了群落大小的变化(Huang et al.,2023),是一种“被动紧密化”,小群落天然具有更高的连接度(Dunne et al.,2004).同时,模块度也呈现稳定下滑,说明尽管仍存一定数量的功能分区,但其内部凝聚力正不断削弱,难以维持原有的模块化特征.

      本文利用CEG程序对古群落序列中的每个古群落进行建模分析.在模拟中,首先随机选择某一初级生产者使其灭绝,观察初级生产者灭绝后对群落中其他物种的影响,并记录由此引发的次生灭绝及其比例(次生灭绝率).随后,通过逐步增加初级生产者的灭绝比例(从0~100%),系统统计由此引发的次生灭绝率变化,最终生成CEG模拟数据.模拟数据包含两个核心维度:一是环境波动指数(0~100%),表示初级生产者灭绝的比例;二是次生灭绝率(0~100%),表示在给定波动指数下,群落中因次生灭绝而消失的物种比例.轻微扰动下次生灭绝率(Secondary Extinction Level at low Perturbation,简称SELP)是定量评估重建生态群落在环境干扰下次级物种灭绝程度的关键指标,主要衡量群落在轻微扰动条件下的次级灭绝水平,低SELP值表明群落具备较强的抗冲击能力,次级灭绝较少,结构稳固且功能健全;而高SELP值则反映出群落内部物种间关系较为脆弱,即使轻微扰动也可能引发较大范围的次级灭绝,揭示群落稳定性较低(Huang et al.,2023).为评估古群落的稳定性变化趋势,本文对古群落序列中每个古群落的100组随机模拟数据分别计算SELP值,并对统计结果进行分析,以揭示不同古群落在生态稳定性方面的差异与演变特征,最终结果如图 8所示.

      图  8  煤山剖面古群落在低扰动下次生灭绝率的变化
      Fig.  8.  Variations of the secondary extinction of the Meishan commmunities at low-level perturbations

      结果表明,251.94~251.90 Ma区间段内,群落SELP值较低,表明在生物大灭绝初期阶段,生态系统可保持一定的韧性与缓冲效果(Chen and Benton,2012),而本文的研究结果进一步印证了这一观点.在251.90~251.85 Ma这一阶段中,SELP值逐渐升高,显示群落对扰动的敏感度不断提高,次生灭绝风险显著上升.此时不仅种群数量和多样性继续下滑,关键功能物种的丧失也导致营养与交互关系进一步削弱,使得系统抗干扰能力持续走低.在251.85 Ma之后,群落SELP值达到相对高位,说明轻微扰动也可触发显著的次生灭绝,凸显生态网络结构稳定性的全面丧失.尽管部分研究指出在灾后恢复期会出现新的生态创新或多样化潜力(Knoll et al.,1996),但在煤山剖面,至少在大灭绝之后的100 ka内群落整体仍处于脆弱与高度敏感的状态,尚未形成有效的功能冗余或稳健交互网络.

      煤山剖面物种多样性下降过程可以分为3个阶段.第1阶段迅速下降,每千年减少约3个物种,第2阶段缓慢下降,每千年减少约1.02个物种,第3阶段迅速下降,每千年约减少2.7个物种.在5%相邻群落物种组成相同的接受度下,煤山剖面古群落划分最高的时间分辨率可以达到5 ka每群落,与当代生态危机的研究分辨率仍有差距.基于这套划分方案,发现在251.94~251.90 Ma时间段内,煤山古群落尚能保持一定程度的稳定性与缓冲能力,尽管已出现部分功能与捕食层级的初步削弱,但仍能应对外界波动.随后在251.90~251.85 Ma期间,群落整体稳定性小幅降低.到了251.85 Ma之后,关键物种的丧失与更高级捕食链条的坍塌日益加剧,达到系统临界点,原有的多功能区划被迅速瓦解,生态网络深度崩溃,极少的剩余生物种群在高度匮乏的环境中被动聚集,轻微变化也会引发显著的次生灭绝.

      附表见https://doi.org/10.3799/dqkx.2025.022.

      致谢: 感谢匿名审稿专家的建设性意见建议!
    • 图  1  煤山剖面原始化石出现数据(a);煤山剖面不同地层的物种丰度分布(b)

      图a中纵轴为物种编号,每个点代表某一物种在特定时间的出现记录;图b中,纵轴为地层编号,横轴为物种丰度

      Fig.  1.  Original fossil occurrence data of the Meishan section (a); species richness distribution of different strata in the Meishan section (b)

      图  2  PyRate模拟估算的煤山物种延限(a)及对应物种多样性变化轨迹(b)

      红色和紫色虚线标记251.94 Ma和251.88 Ma时间点

      Fig.  2.  The species durations estimated by PyRate simulations for the Meishan section (a) and the corresponding trajectory of species diversity changes (b)

      图  3  不同时间分辨率的群落划分方案,及其对应的“物种组成相同的相邻群落”比例

      Fig.  3.  Community division schemes at different temporal resolutions and the corresponding proportion of adjacent communities with identical species compositions

      图  4  煤山剖面252.00~251.75 Ma古群落序列划分

      每个古群落时间延限为5 ka

      Fig.  4.  Paleocommunity sequence division from 252.00 to 251.75 Ma in the Meishan section

      图  5  煤山剖面古群落物种组成演变分析

      其中,C1至C12代表了252.00~251.94 Ma间的古群落,C13至C20代表了251.94~251.90 Ma间的古群落,C21至C31代表了251.90~251.85 Ma间的古群落,C32至C50代表了251.85~251.75 Ma间的古群落;每个点(古群落)的颜色值反映了其与周围点(古群落)的功能群组成差异,值越高说明与周围古群落功能群组成越相似,反之亦然

      Fig.  5.  Paleocommunity composition evolution in the Meishan section

      图  6  煤山剖面古食物网的网络营养等级、最大食物链长度、连接密度和连通度的变化

      Fig.  6.  Changes in network trophic position, path max, link density, and connectance of Meishan food webs

      图  7  煤山剖面古食物网模块数量与模块度的变化

      Fig.  7.  Variations of the number of modules and modularity of the Meishan food webs

      图  8  煤山剖面古群落在低扰动下次生灭绝率的变化

      Fig.  8.  Variations of the secondary extinction of the Meishan commmunities at low-level perturbations

    • Algeo, T. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates. Journal of Earth Science, 21(1): 107-110. https://doi.org/10.1007/s12583⁃010⁃0182⁃1
      Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian⁃Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
      Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023⁃1026 https://doi.org/10.1130/G31203.1
      Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471(7336), 51-57. https://doi.org/10.1038/nature09678
      Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
      Cao, C. Q., Zheng, Q. F., 2009. Geological event sequences of the Permian⁃Triassic transition recorded in the microfacies in Meishan. Science in China (Series D), 39(4): 481-487 (in Chinese).
      Chen, Z. ⁃Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chen, Z. ⁃Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems during and after Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese).
      Chen, Z. ⁃Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian⁃Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth⁃Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
      Chen, Z. ⁃Q., Zhao, L. S., Wang, X. D., et al., 2018. Great Paleozoic⁃Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 29(4): 721-732. https://doi.org/10.1007/s12583⁃018⁃0797⁃1
      Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
      Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa019
      Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End⁃Permian Mass Extinction and Recovery. Nature Communications, 7(1): 12236. doi: 10.1038/ncomms12236.https://doi.org/ 10.1038/ncomms12236
      Del Rey, A., Deckart, K., Arriagada, C., et al., 2016. Resolving the Paradigm of the Late Paleozoic⁃Triassic Chilean Magmatism: Isotopic Approach. Gondwana Research, 37: 172-181. https://doi.org/10.1016/j.gr.2016.06.008
      Dunne, J. A., Williams, R. J., Martinez, N. D., 2004. Network Structure and Robustness of Marine Food Webs. Marine Ecology Progress Series, 273: 291-302. https://doi.org/10.3354/meps273291
      Erwin, D. H., Bowring, S. A., Jin, Y. G., 2002. End⁃Permian Mass Extinctions: A Review. In: Koeberl, C., MacLeod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2356⁃6.363
      Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10): 851-877. https://doi.org/10.1080/14772019.2016.1245680
      Foster, W. J., Frank, A. B., Li, Q. J., et al., 2024. Thermal and Nutrient Stress Drove Permian⁃Triassic Shallow Marine Extinctions. Cambridge Prisms: Extinction, 2: e9. https://doi.org/10.1017/ext.2024.9
      Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
      Gilarranz, L. J., Rayfield, B., Liñán⁃Cembrano, G., et al., 2017. Effects of Network Modularity on the Spread of Perturbation Impact in Experimental Metapopulations. Science, 357(6347): 199-201. https://doi.org/10.1126/science.aal4122
      Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/G38487.1
      Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and Stability in Ecological Communities. Nature Communications, 7: 12031. https://doi.org/10.1038/ncomms12031
      Huang, Y. G., Chen, Z. Q., Algeo, T. J., et al., 2019. Two⁃Stage Marine Anoxia and Biotic Response during the Permian⁃Triassic Transition in Kashmir, Northern India: Pyrite Framboid Evidence. Global and Planetary Change, 172: 124-139. https://doi.org/10.1016/j.gloplacha.2018.10.002
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2021. Ecological Dynamics of Terrestrial and Freshwater Ecosystems across Three Mid⁃Phanerozoic Mass Extinctions from Northwest China. Proceedings of the Royal Society B: Biological Sciences, 288: rspb. 20210148. https://doi.org/10.1098/rspb.2021.0148
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2023. The Stability and Collapse of Marine Ecosystems during the Permian⁃Triassic Mass Extinction. Current Biology, 33(6): 1059-1070. https://doi.org/10.1016/j.cub.2023.02.007
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
      Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian⁃Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
      Kaiho, K., Aftabuzzaman, M., Jones, D. S., et al., 2021. Pulsed Volcanic Combustion Events Coincident with the End⁃Permian Terrestrial Disturbance and the Following Global Crisis. Geology, 49(3): 289-293. https://doi.org/10.1130/g48022.1
      Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273: 452-457. https://doi.org/10.1126/science.273.5274.452
      Newman, M. E., 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23): 8577-8582. https://doi.org/10.1073/pnas.0601602103
      Payne, J. L., Clapham, M. E., 2012. End⁃Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty⁃First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105329
      Qiu, Z. P., 2019. Carbonate Thermoluminescence from Meishan Section, Zhejiang Province and Its Implication for Environmental Changes during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Roopnarine, P. D., 2009. Ecological Modeling of Paleocommunity Food Webs. In: Dietl, G. P., Flessa, K. W., eds., Conservation Paleobiology: Using the Past to Manage for the Future. Yale University Press, Yale, 195-220.
      Roopnarine, P. D., 2010. Graphs, Networks, Extinction and Paleocommunity Food Webs. In: Alroy, J., Hunt, G., eds., Quantitative Methods in Paleobiology. Yale University Press, Yale, 143-161.
      Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., et al., 2007. Trophic Network Models Explain Instability of Early Triassic Terrestrial Communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622): 2077-2086. https://doi.org/10.1098/rspb.2007.0515
      Roopnarine, P. D., Angielczyk, K. D., Olroyd, S. L., et al., 2017. Comparative Ecological Dynamics of Permian⁃Triassic Communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. Journal of Vertebrate Paleontology, 37(Suppl. ): 254-272. https://doi.org/10.1080/02724634.2018.1424714
      Roopnarine, P. D., Dineen, A. A., 2018. Coral Reefs in Crisis: The Reliability of Deep⁃Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C. L., Schneider, C. L., eds., Marine Conservation Paleobiology. Springer International Publishing, Cham, 105-141. https://doi.org/10.1007/978⁃3⁃319⁃73795⁃9_6
      Sanei, H., Grasby, S. E., Beauchamp, B., 2012. Latest Permian Mercury Anomalies. Geology, 40(1): 63-66. https://doi.org/10.1130/G32596.1
      Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/G36227.1
      Shen, J., Chen, J., Algeo, T. J., et al., 2019. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
      Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High⁃Resolution Digital Geological Timeline? Earth Science, 47(10): 3766-3769 (in Chinese with English abstract).
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events versus Global Changes: Progresses and Challenges. China Science Bulletin, 69(2): 268-285 (in Chinese with English abstract).
      Silvestro, D., Salamin, N., Antonelli, A., et al., 2019. Improved Estimation of Macroevolutionary Rates from Fossil Data Using a Bayesian Framework. Paleobiology, 45(4): 546-570. https://doi.org/10.1017/pab.2019.23
      Silvestro, D., Salamin, N., Schnitzler, J., 2014a. PyRate: A New Program to Estimate Speciation and Extinction Rates from Incomplete Fossil Data. Methods in Ecology and Evolution, 5(10): 1126-1131. https://doi.org/10.1111/2041⁃210X.12263
      Silvestro, D., Schnitzler, J., Liow, L. H., et al., 2014b. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63(3): 349-367. https://doi.org/10.1093/sysbio/syu006
      Song, H. J., 2012. Extinction and Recovery of Foraminifera and Calcareous Algae during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
      Song, Y., Tian, Y., Yu, J. X., et al., 2022. Wildfire Response to Rapid Climate Change during the Permian⁃Triassic Biotic Crisis. Global and Planetary Change, 215: 103872. https://doi.org/10.1016/j.gloplacha.2022.103872
      Stouffer, D. B., Bascompte, J., 2011. Compartmentalization Increases Food⁃Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648-3652. https://doi.org/10.1073/pnas.1014353108
      Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
      Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End⁃Permian Mass Extinction. Paleobiology, 40(1): 113-129. https://doi.org/10.1666/13022
      Ward, P. D., Montgomery, D. R., Smith, R., 2000. Altered River Morphology in South Africa Related to the Permian⁃Triassic Extinction. Science, 289(5485): 1740-1743. https://doi.org/10.1126/science.289.5485.1740
      Wu, C. L., Liu, G., 2019. Big Data and Future Development of Geological Science. Geological Bulletin of China, 38(7): 1081-1088 (in Chinese with English abstract).
      Xie, S. C., Pancost, R. D., Huang, J., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian⁃Triassic Crisis. Geology, 35(12): 1083-1086. https://doi.org/10.1130/G24224A.1
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Zhang, F. F., Algeo, T. J., Romaniello, S. J., et al., 2018. Congruent Permian⁃Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global⁃Oceanic Anoxia and Validation of the U⁃Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1
      Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      Zhang, K. X., Lai, X. L., Tong, J. N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.018
      Zhou, W. F., Algeo, T. J., Luo, G. M., et al., 2021. Hydrocarbon Compound Evidence in Marine Successions of South China for Frequent Wildfires during the Permian⁃Triassic Transition. Global and Planetary Change, 200: 103472. https://doi.org/10.1016/j.gloplacha.2021.103472
      曹长群, 郑全锋, 2009. 煤山二叠纪‒三叠纪过渡期事件地层时序的微观地层记录. 中国科学(D辑), 39(4): 481-487.
      陈中强, 黄元耕, 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827
      沈树忠, 樊隽轩, 王向东, 等, 2022. 如何打造高精度地质时间轴?地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
      沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
      吴冲龙, 刘刚, 2019. 大数据与地质学的未来发展. 地质通报, 38(7): 1081-1088.
      张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
      张克信, 赖旭龙, 童金南, 等, 2009. 全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展. 古生物学报, 48(3): 474-486. doi: 10.3969/j.issn.0001-6616.2009.03.018
    • dqkxzx-50-3-951-附表1.xlsx
    • 加载中
    图(8)
    计量
    • 文章访问数:  360
    • HTML全文浏览量:  131
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-10
    • 刊出日期:  2025-03-25

    目录

    /

    返回文章
    返回