• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造

    杨婷 王世广 房立华 王未来 李思祺 胥广银 唐方头

    杨婷, 王世广, 房立华, 王未来, 李思祺, 胥广银, 唐方头, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
    引用本文: 杨婷, 王世广, 房立华, 王未来, 李思祺, 胥广银, 唐方头, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
    Yang Ting, Wang Shiguang, Fang Lihua, Wang Weilai, Li Siqi, Xu Guangyin, Tang Fangtou, 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
    Citation: Yang Ting, Wang Shiguang, Fang Lihua, Wang Weilai, Li Siqi, Xu Guangyin, Tang Fangtou, 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033

    2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造

    doi: 10.3799/dqkx.2025.033
    基金项目: 

    国家重点研发计划项目 2024YFC3012904

    中央级公益性科研院所基本科研业务费专项 DQJB225Y01

    国家自然科学基金项目 42374081

    国家自然科学基金项目 42202258

    详细信息
      作者简介:

      杨婷(1986-),女,博士,助理研究员,主要从事地震精定位与深部结构成像研究. ORCID:0000-0003-1311-1394. E-mail:yangting@cea-igp.ac.cn

      通讯作者:

      王世广,ORCID: 0000-0001-8959-5634. E-mail: wangshguang@qq.com

      房立华, ORCID: 0000-0003-2156-4406. E-mail: fanglihua@ief.ac.cn

    • 中图分类号: P65

    Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau

    • 摘要:

      2025年1月7日9时5分,西藏定日发生MS6.8强震,造成了重大人员伤亡和财产损失.震中位于藏南申扎‒定结裂谷南段西部的丁木错地堑内,其震源机制为典型的正断型地震.此次地震的发震断层为丁木错断裂,但地震形成的地表破裂展布特征、断裂带的几何结构以及地堑的演化模式等还有待深入研究.根据野外地表破裂调查和余震序列重定位,探讨了此次地震的变形特征及丁木错地堑的演化模式.震后科考发现,丁木错东、西两侧均发育有明显的地表破裂,为典型的地堑结构,尼辖错仅在东部发育地表位错,位错量较大,为典型的半地堑结构,地表破裂总长~30 km,且表现出了边界断裂向盆地内部迁移的特征.基于双差定位方法,结合固定台网和流动观测台网,对震后13 d的地震序列进行了重定位,共获得4 312个高精度定位结果,主震震中位置28.51°N,87.52°E,震源深度为11.3 km.余震序列与地表破裂走向一致,呈~NS向分布,深度集中在~4~17 km,余震分布揭示了断层东倾和西倾并存的特征.结合地表破裂和余震序列分布,认为此次地震的发震断层为丁木错断裂的东部边界断裂,倾角~60°~70°.地震序列主要集中在上地壳,此次地震可能是对喜马拉雅弧形逆冲形成的边界应力的响应.

       

    • 图  1  青藏高原内部活动断裂及震源机制解分布

      断层引自 Tapponnier et al.,2001Wang et al.,2024;红色断层线为申扎‒定结裂谷内的主要断裂带;震源机制解引自GCMT(https://www.globalcmt.org/CMTsearch.html

      Fig.  1.  Tectonic map and focal mechanism in the interior of Tibetan Plateau

      图  2  申扎‒定结裂谷主要活动断裂和历史地震分布

      断层引自 Tapponnier et al.,2001Wang et al.,2024;红色断层线为申扎‒定结裂谷内的主要断裂带;地震数据为公元前780年至今M5.0以上地震,历史地震来源顾功叙(1983);现代地震据中国地震台网中心(http://www.ceic.ac.cn

      Fig.  2.  Map showing the major active faults and epicenters of historical earthquake along Shenzha-Dingjie rift

      图  3  丁木错地堑构造地质和地表破裂分布

      修改自1∶25万地质图定结县幅(H45C004003)、陈塘区幅(G45C001003),中国地质大学(武汉),2003. 箭头指示野外照片位置(图 4a图 5a图 6a),地表破裂数据源自野外调查和中国地震局地震预测研究所震后遥感解译(https://www.ief.ac.cn/zhxw/info/2025/92337.html

      Fig.  3.  Geological and surface rupture map along Dingmucuo graben

      图  4  丁木错西地表破裂野外照片

      a.无人机正射影像显示两条近~NS走向的平行地表破裂错断了废弃河道(位置见图 3);b.丁木错西单支地表破裂沿先前陡坎发育,垂直位错达0.13 m(位置见a);c.丁木错西单支地表破裂的垂直位错达0.12 m(位置见a),红色倒三角指示地表破裂位置

      Fig.  4.  Surface rupture along west of Dingmucuo

      图  5  尼辖错北地表破裂野外照片

      a.尼辖错北地表破裂的无人机照片(位置见图 3),红色倒三角表示地表破裂位置,白色倒三角表示先存断层陡坎;b.尼辖错北地表破裂呈右阶分布,最宽地表变形~50 m(位置见a);c.尼辖错北地表破裂的垂直位错达~2.5 m(位置见a)

      Fig.  5.  Surface rupture along north of Nixiaco

      图  6  丁木错东地表破裂和滑塌变形照片

      a.丁木错东地表破裂和滑塌变形无人机照片(位置见图 3);b.丁木错东地表破裂/滑塌变形和挤压鼓包野外照片(位置见a);c.丁木错东地表破裂野外照片.绿色倒三角表示滑塌变形带,红色倒三角表示地表破裂位置,白色倒三角表示地表裂隙,黑色倒三角表示先存断层陡坎

      Fig.  6.  Surface rupture and landslide deformation in the east of Dingmucuo

      图  7  台站分布(a)、余震震级‒频度(b)和定位时采用的一维P波速度模型(c)

      Fig.  7.  Station distribution map (a), aftershock magnitude-frequency distribution (b) and 1-D P-wave velocity model used in earthquake location (c)

      图  8  地震余震序列在平面上(a)和剖面上(b~d)随时间的分布

      黄色五角星表示主震位置,黄色圆圈表示M3.5级以上余震的位置,绿色三角形表示震区周边的流动台站. 余震颜色表示距离主震发生的时间. 震源机制解由中国地震台网中心的马亚伟博士提供. 图中黑色断层线为先存断层,红色断层线为形成地表破裂的断层

      Fig.  8.  Map (a) and profile (b‒d) views of the Dingri aftershock sequence

      图  9  丁木错地堑演化模式(修改自Kapp et al., 2008

      a.丁木错断裂半地堑初始形成阶段;b.丁木错断裂迁移过程;c.丁木错断裂现今演化阶段

      Fig.  9.  Evolution model of Dingmucuo rift (modified after Kapp et al., 2008)

    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
      Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
      England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561
      Fang, L. H., Wu, J. P., Su, J. R., et al., 2018. Relocation of Mainshock and Aftershock Sequence of the Ms7.0 Sichuan Jiuzhaigou Earthquake. Chinese Science Bulletin, 63(7): 649-662 (in Chinese). doi: 10.1360/N972017-01184
      Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): 2005JB004120. https://doi.org/10.1029/2005jb004120
      Gu, G. X., 1983. The Catalogue of Earthquakes in China (1831 BC-1969 AD). Science Press, Beijing, 894 (in Chinese).
      He, R. Z., Shang, X. F., Yu, C. Q., et al., 2014. A Unified Map of Moho Depth and Vp/Vs Ratio of Continental China by Receiver Function Analysis. Geophysical Journal International, 199(3): 1910-1918. https://doi.org/10.1093/gji/ggu365
      Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth-Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).
      Jiao, L. Q., Tapponnier, P., Coudurier-Curveur Mccallum, A., et al., 2024. The Shape of the Himalayan "Arc": An Ellipse Pinned by Syntaxial Strike-Slip Fault Tips. Proceedings of the National Academy of Sciences of the United States of America, 121(4): e2313278121. https://doi.org/10.1073/pnas.2313278121
      Kali, E., van der Woerd, J., Leloup, P. H., et al., 2010. Extension in Central-South Tibet, Insight from Cosmogenic Nuclide Dating. AGU Fall Meeting Abstracts, San Francisco, T41D-04.
      Kapp, P., Taylor, M., Stockli, D., et al., 2008. Development of Active Low-Angle Normal Fault Systems during Orogenic Collapse: Insight from Tibet. Geology, 36(1): 7. https://doi.org/10.1130/g24054a.1
      Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035
      Li, K., Tapponnier, P., Xu, X. W., et al., 2023. The 2022, MS6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412
      Li, N., Liu, L. Q., Zhu, L. D., et al., 2024. Quaternary Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51 (6): 1048-1056 (in Chinese with English abstract).
      Li, Z. C., Sun, J. Z., Ji, Z. M., et al., 2025. Rapid Simulation of Acceleration Waveform at Everest Seismic Station of Xizang Dingri MS6.8 Earthquake on January 7, 2025. Earth Science (in Chinese with English abstract).
      McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091-7613(1998)0260691:roocit>2.3.co;2 doi: 10.1130/0091-7613(1998)0260691:roocit>2.3.co;2
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Seeber, L., Armbruster, J. G., 1984. Some Elements of Continental Subduction along the Himalayan Front. Tectonophysics, 105(1-4): 263-278. https://doi.org/10.1016/0040-1951(84)90207-5
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Teng, J. W., Xiong, S. B., Yin, Z. X., et al., 1983. Structure of the Crust and Upper Mantle Pattern and Velocity Distributional Characteristics at Northern Region of the Himalayan Mountains. Chinese Journal of Geophysics, 26(6): 525-540 (in Chinese with English abstract).
      Tian, T. T., Wu, Z. H., 2023. The Latest Prehistoric Earthquake Event of Dingmucuo Normal Fault in the Southern Section of Shenzha-Dingjie Rift in Tibet and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
      Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014gc005369
      Wang, S. G., Chevalier, M. L., Tapponnier, P., et al., 2024. Timing and Characteristics of Co-Seismic Surface Ruptures in the Yadong Rift, Southern Tibet. Journal of Structural Geology, 188: 105264. https://doi.org/10.1016/j.jsg.2024.105264
      Wang, S. G., Replumaz, A., Chevalier, M. L., et al., 2022a. Decoupling between Upper Crustal Deformation of Southern Tibet and Underthrusting of Indian Lithosphere. Terra Nova, 34(1): 62-71. https://doi.org/10.1111/ter.12563
      Wang, S. G., Shen, X. M., Chevalier, M. L., et al., 2022b. Illite K-Ar and (U-Th)/He Low-Temperature Thermochronology Reveal Onset Timing of Yadong- Gulu Rift in Southern Tibetan Plateau. Frontiers in Earth Science, 10: 993796. https://doi.org/10.3389/feart.2022.993796
      Wang, W. L, Fang, L. H., Wu, J. P., et al, 2021. Aftershock Sequence Relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China. Science China Earth Science, 51(7): 1193-1202 (in Chinese).
      Wang, Y. Z., Chen, S., Chen, K., 2021. Source Model and Tectonic Implications of the 2020 Dingri MW5.7 Earthquake Constrained by InSAR Data. Earthquake, 41(1): 116-128 (in Chinese with English abstract).
      Xu, X. Y., 2019, Late Quaternary Activity and Its Environmental Effects of the N-S Trend Kharta Fault in Xaiinza-Dinggyr Rift, Southern Tibet. Institute of Geology, China Earthquake Administration (Dissertation), Beijing, 1-84 (in Chinese with English abstract).
      Yang, P. X., Ren, J. W., Chen, Z. W., et al., 2010. Tectonic Geomorphology of the Northern Segment of Shenzha-Dingjie Graben since Miocene in Middle Tibetan Plateau. Earthquake, 30(3): 81-89 (in Chinese with English abstract).
      Yang, T., Jia, K., Zhu, A. Y., et al., 2023. The 2022 MS5.8 and 6.0 Maerkang Earthquakes: Two Strike-Slip Events Occurred on V-Shaped Faults. Bulletin of the Seismological Society of America, 113(6): 2432-2446. https://doi.org/10.1785/0120220206
      Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0210-9
      Yu, C., Li, Z. H., Hu, X. N., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0175-8
      Zhang, Z., Klemperer, S., 2010. Crustal Structure of the Tethyan Himalaya, Southern Tibet: New Constraints from Old Wide-Angle Seismic Data. Geophysical Journal International, 181: 1247-1260. https://doi.org/10.1111/j.1365-246X.2010.04578.x
      房立华, 吴建平, 苏金蓉, 等, 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位. 科学通报, 63(7): 649-662.
      顾功叙, 1983. 中国地震目录: 公元前1831——公元1969年. 北京: 科学出版社.
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      李楠, 刘陇强, 朱利东, 等, 2024. 喜马拉雅北缘丁木错地堑第四纪软沉积物变形构造. 成都理工大学学报(自然科学版), 51 (6): 1048-1056.
      李宗超, 孙吉泽, 纪志伟, 等, 2025. 2025年1月7日西藏定日MS6.8地震珠峰地震台加速度时程快速模拟. 地球科学. https://doi.org/10.3799/dqkx.2025.009
      滕吉文, 熊绍柏, 尹周勋, 等, 1983. 喜马拉雅山北部地区的地壳结构模型和速度分布特征. 地球物理学报, 26(6): 525-540.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      王未来, 房立华, 吴建平, 等, 2021.2021年青海玛多MS7.4地震序列精定位研究. 中国科学: 地球科学, 51(7): 1193-1202.
      王永哲, 陈石, 陈鲲, 2021. InSAR数据约束的2020年西藏定日MW5.7地震源模型及构造意义. 地震, 41(1): 116-128.
      徐心悦, 2019. 藏南申扎‒定结断裂西卡达正断裂晚第四纪活动性及其环境效应(硕士学位论文). 北京: 中国地震局地质研究所, 1-84.
      杨攀新, 任金卫, 陈正位, 等, 2010, 西藏中部申扎‒定结地堑系北段中新世以来构造地貌学研究. 地震, 30(3): 81-89.
    • 加载中
    图(9)
    计量
    • 文章访问数:  1607
    • HTML全文浏览量:  68
    • PDF下载量:  164
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-01
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回