• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江苏滨海地下水有机质季节变化特征及对氮迁移转化影响

    刘晨 龚绪龙 梁莹 刘源 姜雪 马凯歌 马瑞

    刘晨, 龚绪龙, 梁莹, 刘源, 姜雪, 马凯歌, 马瑞, 2025. 江苏滨海地下水有机质季节变化特征及对氮迁移转化影响. 地球科学, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053
    引用本文: 刘晨, 龚绪龙, 梁莹, 刘源, 姜雪, 马凯歌, 马瑞, 2025. 江苏滨海地下水有机质季节变化特征及对氮迁移转化影响. 地球科学, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053
    Liu Chen, Gong Xulong, Liang Ying, Liu Yuan, Jiang Xue, Ma Kaige, Ma Rui, 2025. Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation. Earth Science, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053
    Citation: Liu Chen, Gong Xulong, Liang Ying, Liu Yuan, Jiang Xue, Ma Kaige, Ma Rui, 2025. Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation. Earth Science, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053

    江苏滨海地下水有机质季节变化特征及对氮迁移转化影响

    doi: 10.3799/dqkx.2025.053
    基金项目: 

    国家自然科学基金项目 42425207

    江苏海岸带生态敏感区生态地质调查项目 苏财资环[2022]27号

    详细信息
      作者简介:

      刘晨(2001-),男,硕士研究生,主要从事水文地球化学方面的研究. ORCID:0009-0005-7941-4082.E-mail:liuchen15629946101@163.com

      通讯作者:

      马瑞, 教授,博士生导师,E-mail: rma@cug.edu.cn

    • 中图分类号: P641.3

    Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation

    • 摘要: 溶解性有机质(dissolved organic matter,DOM)在滨海湿地碳循环过程中发挥着重要作用,滨海地区水文过程的季节变化会影响DOM的组成,从而控制氮的迁移和转化途径.本研究选取江苏省连云港市滨海湿地作为研究区,基于地下水、河水以及海水的水化学数据,结合三维荧光光谱和紫外可见光谱,研究了DOM的季节特征及其对氮转化的影响.结果表明:滨海地区地下水DOM包括3种组分:陆源类富里酸(C1)、陆源类腐殖酸(C2)和微生物源类蛋白组分(C3).研究区内NH4-N和DOC浓度随着距海岸越近逐渐升高,N浓度与DOM组分特征相关.丰水期地下水受到降雨和河水补给,外源大分子DOM入渗伴随着NH4-N进入地下水.含水层处于偏还原状态,硝化过程受到抑制.枯水期咸淡水之间的相互作用较弱,此时地下水中C3组分较高.同时含水层处于氧化性较强的环境中,促进了硝化作用.在潮间带地下水中,DOM的特点是腐殖化程度较高,NH4-N和DOC富集程度表明土壤含氮有机质的矿化.此外,较长的水体滞留时间和较强的微生物活动很可能会促进硝酸盐异化还原成铵(dissimilatory nitrate reduction to ammonium,DNRA),并导致NH4-N进一步富集.

       

    • 图  1  研究区概况及采样点分布图(a)和水文地质剖面图(A-A'和B-B')(b)

      Fig.  1.  Overview of the study area and distribution of sampling sites (a) and hydrogeologic profiles (A-A ' and B-B') (b)

      图  2  研究区丰、枯水期不同水样δ2H和δ18O分布

      Fig.  2.  Distribution of δ2H and δ18O of different water samples in the study area during wet and dry periods

      图  3  研究区丰、枯水期地下水电导率EC与δ18O关系分布

      Fig.  3.  Distribution of groundwater conductivity EC in relation to δ18O in the study area during the wet and dry periods

      图  4  研究区丰、枯水期地下水NO3-N和NH4-N浓度与海岸距离关系

      Fig.  4.  Groundwater NO3-N and NH4-N concentrations versus coastal distance during wet and dry periods in the study area

      图  5  PARAFAC获得的DOM组分及荧光特征(荷载值无单位)

      Fig.  5.  DOM fractions and fluorescence characteristics obtained by PARAFAC (loading values unitless)

      图  6  研究区丰、枯水期不同水样荧光指数与组分占比关系

      Fig.  6.  Relationship between fluorescence index and fraction occupancy of different water samples in the study area during wet and dry periods

      图  7  研究区丰、枯水期不同水样HIXBIX与NH4-N浓度关系

      Fig.  7.  Relationship between HIX and BIX and NH4-N concentration in different water samples during wet and dry periods in the study area

      图  8  研究区丰、枯水期地下水DOC与NH4-N浓度关系

      Fig.  8.  Relationship between DOC content and NH4-N concentration in groundwater during wet and dry water periods in the study area

      图  9  研究区丰、枯水期不同水样NO3-N和NH4-N浓度与组分占比关系

      Fig.  9.  Relationship between NO3-N and NH4-N concentrations and fraction occupancy of different water samples in the study area during wet and dry periods

      图  10  研究区丰、枯水期地下水NH4-N浓度与光谱指数关系(光谱指数无单位)

      Fig.  10.  Relationship between groundwater NH4-N concentration and spectral index during wet and dry water periods in the study area (spectral index unitless)

      图  11  研究区氮迁移转化概念模型

      Fig.  11.  Conceptual model of nitrogen transport and transformation in the study area

      表  1  研究区地下水主要水化学指标

      Table  1.   Main hydrochemical indicators of groundwater in the study area

      指标 单位 地下水类型 丰水期
      (2022年7月/2023年7月)
      枯水期
      (2023年4/11月)
      最小值 最大值 平均值 最小值 最大值 平均值
      水温 区域地下水 16.5 27 20.87 15.9 24 18.84
      潮间带地下水 25.30 34.70 29.71 15.20 24.80 19.28
      pH 区域地下水 6.46 8.12 7.30 6.38 8.35 7.49
      潮间带地下水 6.65 7.41 6.94 6.84 7.90 7.39
      DO mg/L 区域地下水 1.26 11.84 4.02 1.33 6.31 3.92
      潮间带地下水 0.77 5.25 2.57 0.27 7.15 3.65
      EC μS/cm 区域地下水 586 25 177 3 846.45 505 16 675 6 047.08
      潮间带地下水 2 291 53 647 2 6493.5 5 582 46 694 32 395.50
      ORP mV 区域地下水 -148.3 108.7 8.57 -1 118.9 203 59.76
      潮间带地下水 -258.40 -26 -140.67 -169 60.40 -34.83
      NO2- mg/L 区域地下水 0.006 0.318 0.042 0.006 1.175 0.115
      潮间带地下水 0.02 0.26 0.12 0 0.08 0.02
      总Fe mg/L 区域地下水 0.02 2.95 0.33 0.05 0.65 0.19
      潮间带地下水 0.69 10.10 3.26 0.05 5.90 2.13
      Fe2+ mg/L 区域地下水 0.01 2.55 0.15 0 0.55 0.09
      潮间带地下水 0.67 4.05 1.67 0.01 1.55 0.60
      S2- μg/L 区域地下水 0 113 10.85 0 22 7.54
      潮间带地下水 90 329 225.86 0 511 161.57
      NH4-N mg/L 区域地下水 0 65 3.07 0.02 3.2 0.59
      潮间带地下水 1.81 10.65 5.62 0.05 12.00 2.79
      CO32- mg/L 区域地下水 0 105.02 3.18 0 18.75 1.56
      潮间带地下水 0 0 0 0 0 0
      HCO3- mg/L 区域地下水 122.02 903.71 399.60 165.60 743.56 504.38
      潮间带地下水 198.28 1 254.52 467.70 183.21 2 394.64 970.56
      Ca2+ mg/L 区域地下水 13.64 1 102.43 181.69 25.69 999.61 158.88
      潮间带地下水 109.90 575.17 363.99 136.03 674.37 373.29
      K+ mg/L 区域地下水 0.34 119.04 29.72 1.20 75.38 27.78
      潮间带地下水 14.94 370.81 196.62 26.14 315.58 223.92
      Mg2+ mg/L 区域地下水 13.341 738.21 95.65 18.34 794.75 123.48
      潮间带地下水 49.07 1 475.91 673.14 161.83 1 389.21 950.42
      Na+ mg/L 区域地下水 43.94 4 411.53 630.72 28.89 4 263.75 811.45
      潮间带地下水 282.11 1 1004.8 5 078.59 1 054.6 8 642.97 6 499.26
      Cl- mg/L 区域地下水 50.91 13 891.3 1 632.01 52.90 11 087.9 1 717.53
      潮间带地下水 422.86 31 834.0 1 3811.7 1 906.5 22 121.9 15 322.48
      Br- mg/L 区域地下水 0 30.88 5.01 0.20 43.66 8.10
      潮间带地下水 10.46 133.54 60.90 6.37 161.58 59.16
      NO3-N mg/L 区域地下水 0.52 73.76 25.85 0.89 95.96 20.76
      潮间带地下水 0.52 50.72 22.32 3.99 96.45 36.09
      SO42- mg/L 区域地下水 23.48 1 105.66 204.00 31.36 768.45 220.10
      潮间带地下水 61.85 2 357.56 1 199.54 128.38 2 181.41 1 357.61
      TDS g/L 区域地下水 0.25 21.04 2.89 0.37 19.05 3.26
      潮间带地下水 1.18 47.81 21.98 4.21 34.90 26.05
      DOC mg/L 区域地下水 2.76 11.61 4.86 1.08 8.22 3.47
      潮间带地下水 5.06 15.37 10.98 3.80 13.30 7.55
      18O 区域地下水 -9.68 -2.28 -6.74 -9.02 -3.42 -6.93
      潮间带地下水 -6.78 -2.29 -4.29 -9.19 -1.29 -3.66
      2H 区域地下水 -68.01 -21.53 -46.79 -63.20 -23.20 -46.27
      潮间带地下水 -47.80 -18.23 -32.53 -55.16 -6.67 -23.15
      下载: 导出CSV
    • Barnes, R. T., Sawyer, A. H., Tight, D. M., et al., 2019. Hydrogeologic Controls of Surface Water⁃Groundwater Nitrogen Dynamics within a Tidal Freshwater Zone. Journal of Geophysical Research: Biogeosciences, 124(11): 3343-3355. https://doi.org/10.1029/2019jg005164
      Bernhardt, E. S., Likens, G. E., 2002. Dissolved Organic Carbon Enrichment Alters Nitrogen Dynamics in a Forest Stream. Ecology, 83(6): 1689-1700. https://doi.org/10.1890/0012⁃9658(2002)083[1689:docean]2.0.CO;2
      Chen, M. L., Maie, N., Parish, K., et al., 2013. Spatial and Temporal Variability of Dissolved Organic Matter Quantity and Composition in an Oligotrophic Subtropical Coastal Wetland. Biogeochemistry, 115(1): 167-183. https://doi.org/10.1007/s10533⁃013⁃9826⁃4
      Derrien, M., Yang, L. Y., Hur, J., 2017. Lipid Biomarkers and Spectroscopic Indices for Identifying Organic Matter Sources in Aquatic Environments: A Review. Water Research, 112: 58z71. https://doi.org/10.1016/j.watres.2017.01.023
      Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial⁃Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      Fellman, J. B., Hood, E., Edwards, R. T., et al., 2009. Changes in the Concentration, Biodegradability, and Fluorescent Properties of Dissolved Organic Matter during Stormflows in Coastal Temperate Watersheds. Journal of Geophysical Research: Biogeosciences, 114(G1). https://doi.org/10.1029/2008jg000790
      Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
      Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi⁃Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
      Han, Q., Chen, D. Y., Guo, Y. K., et al., 2018. Saltwater⁃Freshwater Mixing Fluctuation in Shallow Beach Aquifers. Estuarine, Coastal and Shelf Science, 207: 93-103. https://doi.org/10.1016/j.ecss.2018.03.027
      He, D. M., Wang, L. F., Zhu, Y. Y., et al., 2020. Distribution and Seasonal Dynamics of Soil Dissolved Organic Carbon in Coastal Wetlands of Jiangsu Province. Journal of Jiangsu Forestry Science & Technology, 47(3): 11-15(in Chinese with English abstract).
      Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
      Ishii, S. K. L., Boyer, T. H., 2012. Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environmental Science & Technology, 46(4): 2006-2017. https://doi.org/10.1021/es2043504
      Jiao, J. J., Wang, Y., Cherry, J. A., et al., 2010. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer⁃Aquitard System in the Pearl River Delta, China. Environmental Science & Technology, 44(19): 7470-7475. https://doi.org/10.1021/es1021697
      Kim, M. J., Nriagu, J., Haack, S., 2000. Carbonate Ions and Arsenic Dissolution by Groundwater. Environmental Science & Technology, 34(15): 3094-3100. https://doi.org/10.1021/es990949p
      Lafrenière, M., Lamoureux, S., 2008. Seasonal Dynamics of Dissolved Nitrogen Exports from Two High Arctic Watersheds, Melville Island, Canada. Hydrology Research, 39(4): 323-335. https://doi.org/10.2166/nh.2008.008
      Lapworth, D. J., Gooddy, D. C., Butcher, A. S., et al., 2008. Tracing Groundwater Flow and Sources of Organic Carbon in Sandstone Aquifers Using Fluorescence Properties of Dissolved Organic Matter (DOM). Applied Geochemistry, 23(12): 3384-3390. https://doi.org/10.1016/j.apgeochem.2008.07.011
      Liang, Y., Ma, R., Prommer, H., et al., 2024. Unravelling Coupled Hydrological and Geochemical Controls on Long⁃Term Nitrogen Enrichment in a Large River Basin. Environmental Science & Technology, 58(48): 21315-21326. https://doi.org/10.1021/acs.est.4c05015
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Lun, J. Q., Zhou, W. X., Sun, M. Y., et al., 2024. Meta-Analysis: Global Patterns and Drivers of Denitrification, Anammox and DNRA Rates in Wetland and Marine Ecosystems. Science of the Total Environment, 954: 176694. https://doi.org/10.1016/j.scitotenv.2024.176694
      Mao, L. F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493(in Chinese with English abstract).
      McKnight, D. M., Boyer, E. W., Westerhoff, P. K., et al., 2001. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnology and Oceanography, 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
      Porubsky, W. P., Weston, N. B., Joye, S. B., 2009. Benthic Metabolism and the Fate of Dissolved Inorganic Nitrogen in Intertidal Sediments. Estuarine, Coastal and Shelf Science, 83(4): 392-402. https://doi.org/10.1016/j.ecss.2009.04.012
      Rysgaard, S., Thastum, P., Dalsgaard, T., et al., 1999. Effects of Salinity on NH4+ Adsorption Capacity, Nitrification, and Denitrification in Danish Estuarine Sediments. Estuaries, 22(1): 21-30. https://doi.org/10.2307/1352923
      Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684 (in Chinese with English abstract).
      Singh, S., Dash, P., Silwal, S., et al., 2017. Influence of Land Use and Land Cover on the Spatial Variability of Dissolved Organic Matter in Multiple Aquatic Environments. Environmental Science and Pollution Research, 24(16): 14124-14141. https://doi.org/10.1007/s11356⁃017⁃8917⁃5
      Smith, M. A., Kominoski, J. S., Gaiser, E. E., et al., 2021. Stormwater Runoff and Tidal Flooding Transform Dissolved Organic Matter Composition and Increase Bioavailability in Urban Coastal Ecosystems. Journal of Geophysical Research: Biogeosciences, 126(7): e2020JG006146. https://doi.org/10.1029/2020jg006146
      Smith, M. A., Kominoski, J. S., Price, R. M., et al., 2023. Linking Seasonal Changes in Organic Matter Composition and Nutrients to Shifting Hydraulic Gradients in Coastal Urban Canals. Water Resources Research, 59(2): e2022WR033334. https://doi.org/10.1029/2022WR033334
      Stedmon, C. A., Markager, S., 2005a. Resolving the Variability in Dissolved Organic Matter Fluorescence in a Temperate Estuary and Its Catchment Using PARAFAC Analysis. Limnology and Oceanography, 50(2): 686-697. https://doi.org/10.4319/lo.2005.50.2.0686
      Stedmon, C. A., Markager, S., 2005b. Tracing the Production and Degradation of Autochthonous Fractions of Dissolved Organic Matter by Fluorescence Analysis. Limnology and Oceanography, 50(5): 1415-1426. https://doi.org/10.4319/lo.2005.50.5.1415
      Stedmon, C. A., Seredyńska⁃Sobecka, B., Boe⁃Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066
      Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6part2): 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
      van den Berg, E. M., Boleij, M., Kuenen, J. G., et al., 2016. DNRA and Denitrification Coexist over a Broad Range of Acetate/N⁃NO3- Ratios, in a Chemostat Enrichment Culture. Frontiers in Microbiology, 7: 1842. https://doi.org/10.3389/fmicb.2016.01842
      van den Berg, E. M., van Dongen, U., Abbas, B., et al., 2015. Enrichment of DNRA Bacteria in a Continuous Culture. The ISME Journal, 9(10): 2153-2161. https://doi.org/10.1038/ismej.2015.26
      Wang, S. Y., Pi, Y. X., Song, Y. P., et al., 2020. Hotspot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) Process in Freshwater Sediments of Riparian Zones. Water Research, 173: 115539. https://doi.org/10.1016/j.watres.2020.115539
      Wang, Y. X., Gan, Y. Q., Deng, Y. M., et al., 2020. Land⁃Ocean Interactions and Their Eco⁃Environmental Effects in the Coastal Zone: Current Progress and Future Perspectives. Bulletin of Geological Science and Technology, 39(1): 1-10(in Chinese with English abstract).
      Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., et al., 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20): 4702-4708. https://doi.org/10.1021/es030360x
      Xiao, Y. H., Sara⁃Aho, T., Hartikainen, H., et al., 2013. Contribution of Ferric Iron to Light Absorption by Chromophoric Dissolved Organic Matter. Limnology and Oceanography, 58(2): 653-662. https://doi.org/10.4319/lo.2013.58.2.0653
      Xu, J., Liang, Y., Zhang, Z. C., et al., 2023. Effects of Seasonal Variation in Organic Matter in Groundwater on Reactive Nitrogen Transport in the Jianghan Plain. Bulletin of Geological Science and Technology, 42(4): 228-240, 298 (in Chinese with English abstract).
      Yamashita, Y., Jaffé, R., Maie, N., et al., 2008. Assessing the Dynamics of Dissolved Organic Matter (DOM) in Coastal Environments by Excitation Emission Matrix Fluorescence and Parallel Factor Analysis (EEM⁃PARAFAC). Limnology and Oceanography, 53(5): 1900-1908. https://doi.org/10.4319/lo.2008.53.5.1900
      Zhang, L., Wang, S. R., Wu, Z. H., 2014. Coupling Effect of pH and Dissolved Oxygen in Water Column on Nitrogen Release at Water: Sediment Interface of Erhai Lake, China. Estuarine, Coastal and Shelf Science, 149: 178-186. https://doi.org/10.1016/j.ecss.2014.08.009
      Zhang, X. H., Cao, F., Huang, Y., et al., 2022. Variability of Dissolved Organic Matter in Two Coastal Wetlands along the Changjiang River Estuary: Responses to Tidal Cycles, Seasons, and Degradation Processes. Science of the Total Environment, 807: 150993. https://doi.org/10.1016/j.scitotenv.2021.150993
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai⁃Xizang Plateau. Earth Science, 49(3): 1177-1188(in Chinese with English abstract).
      Zsolnay, A., Baigar, E., Jimenez, M., et al., 1999. Differentiating with Fluorescence Spectroscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying. Chemosphere, 38(1): 45-50. https://doi.org/10.1016/s0045⁃6535(98)00166⁃0
      何冬梅, 王琳飞, 祝亚云, 等, 2020. 江苏滨海湿地土壤可溶性有机碳的分布和季节动态. 江苏林业科技, 47(3): 11-15.
      毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
      沈帅, 马腾, 杜尧, 等, 2017. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律. 地球科学, 42(5): 674-684. doi: 10.3799/dqkx.2017.055
      王焰新, 甘义群, 邓娅敏, 等, 2020. 海岸带海陆交互作用过程及其生态环境效应研究进展. 地质科技通报, 39(1): 1-10.
      许洁, 梁莹, 张振超, 等, 2023. 江汉平原地下水中有机质季节变化对氮反应迁移的影响. 地质科技通报, 42(4): 228-240, 298.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  151
    • HTML全文浏览量:  8
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-24
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回