• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深层碳酸盐岩低序级断裂体系发育特征及勘探启示:以塔里木盆地顺北油气田为例

    刘雨晴 邓尚 李海英 郭康康 刘大卫 耿锋 汝智星 彭威龙 符东宇 刘爽

    刘雨晴, 邓尚, 李海英, 郭康康, 刘大卫, 耿锋, 汝智星, 彭威龙, 符东宇, 刘爽, 2025. 深层碳酸盐岩低序级断裂体系发育特征及勘探启示:以塔里木盆地顺北油气田为例. 地球科学, 50(6): 2239-2254. doi: 10.3799/dqkx.2025.054
    引用本文: 刘雨晴, 邓尚, 李海英, 郭康康, 刘大卫, 耿锋, 汝智星, 彭威龙, 符东宇, 刘爽, 2025. 深层碳酸盐岩低序级断裂体系发育特征及勘探启示:以塔里木盆地顺北油气田为例. 地球科学, 50(6): 2239-2254. doi: 10.3799/dqkx.2025.054
    Liu Yuqing, Deng Shang, Li Haiying, Guo Kangkang, Liu Dawei, Geng Feng, Ru Zhixing, Peng Weilong, Fu Dongyu, Liu Shuang, 2025. Development Characteristics and Exploration Implications of Low-Order Fault Systems in Tarim Basin: An Example from Shunbei Oil and Gas Field. Earth Science, 50(6): 2239-2254. doi: 10.3799/dqkx.2025.054
    Citation: Liu Yuqing, Deng Shang, Li Haiying, Guo Kangkang, Liu Dawei, Geng Feng, Ru Zhixing, Peng Weilong, Fu Dongyu, Liu Shuang, 2025. Development Characteristics and Exploration Implications of Low-Order Fault Systems in Tarim Basin: An Example from Shunbei Oil and Gas Field. Earth Science, 50(6): 2239-2254. doi: 10.3799/dqkx.2025.054

    深层碳酸盐岩低序级断裂体系发育特征及勘探启示:以塔里木盆地顺北油气田为例

    doi: 10.3799/dqkx.2025.054
    基金项目: 

    国家自然科学基金企业创新发展联合基金项目 U21B2063

    国家自然科学基金企业创新发展联合基金项目 U24B6001

    国家自然科学基金企业创新发展联合基金项目 42472220

    详细信息
      作者简介:

      刘雨晴(1990-),女,博士,副研究员,主要从事构造地质方面研究. ORCID:0000-0002-1082-1318.E-mail:liuyqsmile@163.com

      通讯作者:

      邓尚,研究员,主要从事构造地质与石油地质综合研究. E-mail: shang_deng@126.com

    • 中图分类号: P542;P618.1

    Development Characteristics and Exploration Implications of Low-Order Fault Systems in Tarim Basin: An Example from Shunbei Oil and Gas Field

    • 摘要: 塔里木盆地深层海相碳酸盐岩物性致密,在应力集中下容易形成脆性变形,表现为多序级高陡走滑断裂体系发育.其中,低序级断裂(主干二级以下)“规模小、活动弱、方向杂”,其分布及成因是构造领域近期研究的热点和难点问题.基于顺北地区连片三维地震资料,开展了低序级断裂地球物理识别方法攻关和分布预测,综合地震资料、钻井、测井资料的系统分析和野外多轮次踏勘,揭示了顺北地区低序级断裂的展布规律、成因模式、成储成藏特征等,初步提出勘探评价与部署思路建议:(1)探索形成了一套“先增强预处理、后分区优选属性”的低序级断裂识别技术序列,将低序级断裂带识别长度精度提高至1 km;(2)落实顺北中东部NE向、NEE向、NW向、近NS向和近EW向等5组走向低序级断裂,并划分为近平行体系、锐夹角体系和近垂直体系等3种成因类型;(3)明确低序级断裂内部通常不发育完整的核带结构,由多组系裂缝带组成,缺少大套角砾破碎带以及角砾空腔,较主干断裂规模小、连通性弱,易形成超压油气藏系统.本文指出寻找规模储集体目标对于低序级断控领域部署至关重要,需考虑地质工程一体化,优选低序级断裂高密度区的“串珠”并进行一井多靶井型设计.

       

    • 图  1  塔里木盆地顺北地区及邻区构造单元及中奥陶统碳酸盐顶面走滑断裂体系分布

      Fig.  1.  The tectonic units and distribution of major faults in the Lower Paleozoic in the Shunbei area and the surroundings

      图  2  顺北地区构造地层格架(修改自Qiu et al., 2022)及主干走滑断裂典型构造样式

      Fig.  2.  Stratigraphic column of the Shunbei area with well-seismic tie (modified from Qiu et al., 2022) and structural styles of major strike-slip faults

      图  3  地震增强预处理流程

      Fig.  3.  Seismic enhancement preprocessing workflow

      图  4  顺北地区中奥陶统碳酸盐岩顶面原始相干属性(a)与分区优选属性(b)对比

      Fig.  4.  Comparison between the original coherent attribute (a) and the zonal preferred attributes (b) of top surface of Middle Ordovician carbonate rocks in the Shunbei area

      图  5  低序级断裂识别校验及精度确定

      图a、b、c分别为选取的低序级断裂识别实例的平面展布、垂向剖面和长度推算;图d为挤压性质断层长度与最大垂向位移关系,引自文献Kim and Sanderson(2005)

      Fig.  5.  Low-order fault identification verification and accuracy determination

      图  6  顺北地区中奥陶统碳酸盐岩多序级断裂展布及低序级断裂走向玫瑰花图

      Fig.  6.  Distribution of multi-order fault and trend roses of low-order faults in the Middle Ordovician carbonate rocks of Shunbei area

      图  7  顺北地区低序级断裂典型剖面

      Fig.  7.  Typical profiles of low-order faults in Shunbei area

      图  8  顺北地区低序级断裂与高序级断裂夹角统计(a)、成因模式(b)及柯坪地区野外和地震证据(c)

      Fig.  8.  Statistics of the angle between low-order faults and high-order faults (a), genetic model (b) and evidences from fields and seismics

      图  9  顺北多序级断控储层规模差异(a)及演化过程(b)

      Fig.  9.  Differences among the size of reservoirs controlled by multi-order faults (a) and their evolution process (b)

      图  10  “串珠”分类(a)和一井多靶目标剖面(b,目标位置见图10d)

      Fig.  10.  "String beads " classification (a) and multi-target profile of one well (b, see Fig. 10d for location)

      图  11  低序级断裂密度(a)及其与鹰下段串珠、鹰上-鹰下贯通型串珠叠合(b、c)和一井多靶目标设计(d)

      Fig.  11.  Low-order fracture density (a) and its superposition with the beads of the lower Yingshan strata, the upper and lower eagle through beads (b, c) and the design of multi-target in one well (d)

      表  1  已钻揭多序级断裂内部储集体规模统计

      Table  1.   Statistics of the internal reservoir size of the drilled multi-order faults

      表  2  低序级断裂与主干断裂带钻井油气藏特征对比

      Table  2.   Comparison of the characteristics of drilled oil and gas reservoirs between the low-order faults and the major faults

      断裂级别 钻井 生产层位 气油比(m3/m3) 压力系数 测试日产油(m3) 测试日产气(104m3) 单位压降产能(t/MPa)
      低序级断裂 顺北21X O2yj-O1-2y 1 3350 2.01 1.94 2.59 292
      顺深1X O1-2y 1 3807 2.03 46.31 63.94 2 230
      富东1 O2yj-O1-2y 1 8925 2.1 21.4 40.5 -
      顺托1 O2yj-O1-2y 9349 1.6 2.15 2.01 -
      顺南7 O1-2y-O1p 气藏 1.48 - 12.29 -
      顺南5 O1-2y-O1p 气藏 1.65 - -
      主干断裂 顺北44X O1-2y 547 1.17 1 036.8 56.76 18 332
      顺北42X O2yj-O1-2y 2 550 1.17 322.32 82.18 4 444.65
      注:表中部分数据王清华等(2023);钻井位置见图 1图 6.
      下载: 导出CSV
    • An, H. T., Li, H. Y., Wang, J. Z., et al., 2009. Tectonic Evolution and Its Controlling on Oil and Gas Accumulation in the Northern Tarim Basin. Geotectonica et Metallogenia, 33(1): 142-147(in Chinese with English abstract).
      Bai, T. X., Gross, M. R., 1999. Theoretical Analysis of Cross-Joint Geometries and Their Classification. Journal of Geophysical Research: Solid Earth, 104(B1): 1163-1177. https://doi.org/10.1029/1998jb900044
      Cao, Z. C., Yun, L., Qi, L. X., et al., 2024. A Major Discovery of Hydrocarbon-Bearing Layers over 1 000-Meter Thick in Well Shunbei 84X, Shunbei Area, Tarim Basin and Its Implications. Oil & Gas Geology, 45(2): 341-356(in Chinese with English abstract).
      Chen, H. H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066(in Chinese with English abstract).
      Cruikshank, K. M., Zhao, G. Z., Johnson, A. M., 1991. Analysis of Minor Fractures Associated with Joints and Faulted Joints. Journal of Structural Geology, 13(8): 865-886. https://doi.org/10.1016/0191-8141(91)90083-u
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Deng, S., Liu, Y. Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Deng, S., Qiu, H. B., Liu, D. W., et al., 2024. Advances in Research on the Genetic Mechanisms of Intracratonic Strike-Slip Fault System and Their Control on Hydrocarbon Accumulation: A Case Study of the Northern Tarim Basin. Oil & Gas Geology, 45(5): 1211-1225(in Chinese with English abstract).
      Deng, S., Zhao, R., Kong, Q. F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77-102. https://doi.org/10.1306/07202119113
      Du, Y. J., Aydin, A., 1995. Shear Fracture Patterns and Connectivity at Geometric Complexities along Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 100(B9): 18093-18102. https://doi.org/10.1029/95jb01574
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221(in Chinese with English abstract).
      He, S. G., Deng, S., Liu, Y. Q., et al., 2023. New Structural Style of Spatial Architecture and Derived Structure of Intracratonic Strike-Slip Faults: A Case Study of Shunbei No. 12 Fault, Tarim Basin. Earth Science, 48(6): 2136-2150(in Chinese with English abstract).
      Kattenhorn, S. A., 2004. Strike-Slip Fault Evolution on Europa: Evidence from Tailcrack Geometries. Icarus, 172(2): 582-602. https://doi.org/10.1016/j.icarus.2004.07.005
      Kim, Y. S., Sanderson, D. J., 2005. The Relationship between Displacement and Length of Faults: A Review. Earth-Science Reviews, 68(3-4): 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
      Li, Y. T., Deng, S., Zhang, J. B., et al., 2023. Fault Zone Architecture of Strike-Slip Faults in Deep, Tight Carbonates and Development of Reservoir Clusters under Fault Control: A Case Study in Shunbei, Tarim Basin. Earth Science Frontiers, 30(6): 80-94(in Chinese with English abstract).
      Liu, Y. Q., Deng, S., 2022. Structural Analysis of Intraplate Strike-Slip Faults with Small to Medium Displacement: A Case Study of the Shunbei 4 Fault, Tarim Basin. Journal of China University of Mining & Technology, 51(1): 124-136(in Chinese with English abstract).
      Liu, Y. Q., Deng, S., Zhang, J. B., et al., 2023. Characteristics and Formation Mechainism of the Strike-Slip Fault Networks in the Shunbei Area and the Surroundings, Tarim Basin. Earth Science Frontiers, 30(6): 95-109(in Chinese with English abstract).
      Liu, Y. Q., Deng, S., Zhang, R., et al., 2022. Characterization and Petroleum Geological Significance of Deep Igneous Intrusions and Related Structures in the Shunbei Area, Tarim Basin. Oil & Gas Geology, 43(1): 105-117(in Chinese with English abstract).
      Luo, Q., Wang, Q. J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360(in Chinese with English abstract).
      Peng, W. L., Deng, S., Zhang, J. B., et al., 2024. Genetic Mechanism and Main Controlling Factors of Deep Marine Condensate Reservoirs: A Case Study of the Shunbei No. 4 Fault Zone in Tarim Basin, NW China. Natural Gas Geoscience, 35(5): 838-850(in Chinese with English abstract).
      Peng, W. L., Lin, H. X., Liu, Q. Y., et al., 2023. Geochemical Characteristics of Helium and Favorable Exploration Areas in the Tarim Basin, China. Natural Gas Geoscience, 34(4): 576-586(in Chinese with English abstract).
      Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract).
      Qiu, H. B., Deng, S., Zhang, J. B., et al., 2022. The Evolution of a Strike-Slip Fault Network in the Guchengxu High, Tarim Basin (NW China). Marine and Petroleum Geology, 140: 105655. https://doi.org/10.1016/j.marpetgeo.2022.105655
      Scholz, C. H., Choi, E., 2022. What Comes First: The Fault or the Ductile Shear Zone? Earth and Planetary Science Letters, 577: 117273. https://doi.org/10.1016/j.epsl.2021.117273
      Scholz, C. H., Cowie, P. A., 1990. Determination of Total Strain from Faulting Using Slip Measurements. Nature, 346: 837-839. https://doi.org/10.1038/346837a0
      Tang, D. Q., Chen, H. H., Geng, F., et al., 2023. Characteristics of Intraplate Small-Displacement Strike-Slip Faults: A Case Study of Tarim, Sichuan and Ordos Basins. Earth Science, 48(6): 2067-2086(in Chinese with English abstract).
      Wang, C. W., 2008. Study on the Overpressure Development, Evolvement and Origin Mechanism in the Carbonate Reservoir of the Northeast Area, Sichuan Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Wang, Q. H., Cai, Z. Z., Zhang, Y. T., et al., 2024. Research Progress and Trend of Ultra-Deep Strike-Slip Fault-Controlled Hydrocarbon Reservoirs in Tarim Basin. Xinjiang Petroleum Geology, 45(4): 379-386(in Chinese with English abstract).
      Wang, Q. H., Yang, H. J., Zhang, Y. T., et al., 2023. Great Discovery and Its Significance in the Ordovician in Well Fudong 1 in Fuman Oilfield, Tarim Basin. China Petroleum Exploration, 28(1): 47-58(in Chinese with English abstract).
      Willemse, E. J. M., Peacock, D. C. P., Aydin, A., 1997. Nucleation and Growth of Strike-Slip Faults in Limestones from Somerset, U. K. . Journal of Structural Geology, 19(12): 1461-1477. https://doi.org/10.1016/s0191-8141(97)00056-4
      Yun, L., 2021. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Yun, L., Zhu, X. X., 2022. A New Trap Type: Fault-Controlled Fracture-Vuggy Trap. Oil & Gas Geology, 43(1): 34-42(in Chinese with English abstract).
      Zeng, S., Qiu, N. S., Li, H. L., et al., 2023. Differential Overpressure Distribution in Ordovician Carbonates, Shuntuoguole Area, Tarim Basin. Earth Science Frontiers, 30(6): 305-315(in Chinese with English abstract).
      Zhang, J. B., Deng, S., Han, J., et al., 2024. Study on Development Mechanism and Variability of Strike-Slip Fault-Controlled Reservoirs Regulated by Multi-Stage Structural Stress: A Case Study of the Shunbei Area, Tarim Basin. Petroleum Geology & Experiment, 46(4): 775-785(in Chinese with English abstract).
      安海亭, 李海银, 王建忠, 等, 2009. 塔北地区构造和演化特征及其对油气成藏的控制. 大地构造与成矿学, 33(1): 142-147.
      曹自成, 云露, 漆立新, 等, 2024. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义. 石油与天然气地质, 45(2): 341-356.
      陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888.
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126.
      邓尚, 邱华标, 刘大卫, 等, 2024. 克拉通内走滑断裂成因与控藏机制研究进展: 以塔里木盆地北部为例. 石油与天然气地质, 45(5): 1211-1225.
      何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221.
      何松高, 邓尚, 刘雨晴, 等, 2023. 克拉通内走滑断裂空间结构及派生构造新样式: 以塔里木盆地顺北12号断裂为例. 地球科学, 48(6): 2136-2150. doi: 10.3799/dqkx.2022.495
      李映涛, 邓尚, 张继标, 等, 2023. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例. 地学前缘, 30(6): 80-94.
      刘雨晴, 邓尚, 2022. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例. 中国矿业大学学报, 51(1): 124-136.
      刘雨晴, 邓尚, 张继标, 等, 2023. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨. 地学前缘, 30(6): 95-109.
      刘雨晴, 邓尚, 张荣, 等, 2022. 深层火成岩侵入体和相关构造发育特征及其石油地质意义: 以塔里木盆地顺北地区为例. 石油与天然气地质, 43(1): 105-117.
      罗群, 王千军, 杨威, 等, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
      彭威龙, 邓尚, 张继标, 等, 2024. 深层海相凝析油气藏成因机制与富集主控因素: 以塔里木盆地顺北4号断裂带为例. 天然气地球科学, 35(5): 838-850.
      彭威龙, 林会喜, 刘全有, 等, 2023. 塔里木盆地氦气地球化学特征及有利勘探区. 天然气地球科学, 34(4): 576-586.
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111.
      唐大卿, 陈红汉, 耿锋, 等, 2023. 板内小位移走滑断裂特征解析: 以塔里木、四川及鄂尔多斯盆地为例. 地球科学, 48(6): 2067-2086. doi: 10.3799/dqkx.2023.037
      王存武, 2008. 川东北地区碳酸盐岩层系超压发育演化与成因机制(硕士学位论文). 武汉: 中国地质大学.
      王清华, 蔡振忠, 张银涛, 等, 2024. 塔里木盆地超深层走滑断控油气藏研究进展与趋势. 新疆石油地质, 45(4): 379-386.
      王清华, 杨海军, 张银涛, 等, 2023. 塔里木盆地富满油田富东1井奥陶系重大发现及意义. 中国石油勘探, 28(1): 47-58.
      云露, 2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52.
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787.
      云露, 朱秀香, 2022. 一种新型圈闭: 断控缝洞型圈闭. 石油与天然气地质, 43(1): 34-42.
      曾帅, 邱楠生, 李慧莉, 等, 2023. 塔里木盆地顺托果勒地区奥陶系碳酸盐岩超压差异分布研究. 地学前缘, 30(6): 305-315.
      张继标, 邓尚, 韩俊, 等, 2024. 多期构造应力控制走滑断控储层发育机理与差异性研究: 以塔里木盆地顺北地区为例. 石油实验地质, 46(4): 775-785.
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  7
    • HTML全文浏览量:  6
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-05
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回