• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展

    刘文博 陶霓 彭建兵 杨钊 申艳军 李振洪 梁探星 王琛

    刘文博, 陶霓, 彭建兵, 杨钊, 申艳军, 李振洪, 梁探星, 王琛, 2025. 基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展. 地球科学, 50(10): 4155-4176. doi: 10.3799/dqkx.2025.070
    引用本文: 刘文博, 陶霓, 彭建兵, 杨钊, 申艳军, 李振洪, 梁探星, 王琛, 2025. 基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展. 地球科学, 50(10): 4155-4176. doi: 10.3799/dqkx.2025.070
    Liu Wenbo, Tao Ni, Peng Jianbing, Yang Zhao, Shen Yanjun, Li Zhenhong, Liang Tanxing, Wang Chen, 2025. Progress of Tectonic Uplift Process in Northern Foothill of Qinling Mountains Based on Constraints of Low-Temperature Thermochronology. Earth Science, 50(10): 4155-4176. doi: 10.3799/dqkx.2025.070
    Citation: Liu Wenbo, Tao Ni, Peng Jianbing, Yang Zhao, Shen Yanjun, Li Zhenhong, Liang Tanxing, Wang Chen, 2025. Progress of Tectonic Uplift Process in Northern Foothill of Qinling Mountains Based on Constraints of Low-Temperature Thermochronology. Earth Science, 50(10): 4155-4176. doi: 10.3799/dqkx.2025.070

    基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展

    doi: 10.3799/dqkx.2025.070
    基金项目: 

    国家自然科学基金项目 42341101

    国家自然科学基金项目 42473027

    陕西省自然科学基础研究计划项目 2025JCQYCX-033

    详细信息
      作者简介:

      刘文博(1999-),男,硕士研究生,研究方向为构造地质学. ORCID: 0009-0007-7690-1154. E-mail: 2023127088@chd.edu.cn

      通讯作者:

      陶霓(1989-),女,副教授,研究方向为低温热年代学方法与应用. E-mail: ni.tao@chd.edu.cn

    • 中图分类号: P542

    Progress of Tectonic Uplift Process in Northern Foothill of Qinling Mountains Based on Constraints of Low-Temperature Thermochronology

    • 摘要: 秦岭北麓的构造抬升过程对理解区域地质与生态演化具有重要意义.随着地质勘探技术的进步和区域地质研究的深入,秦岭北麓的构造抬升过程逐渐揭示出更多的细节.根据已报道的低温热年代学数据,该区域晚白垩世以来至少发生了3次主要的冷却-隆升事件:晚白垩世(95~75 Ma)的缓慢冷却,冷却速率约2.8 °C/Ma,剥露速率约0.12 km/Ma;始新世-渐新世(47~27 Ma)的快速冷却,冷却速率约6.1 ˚C/Ma,剥露速率约0.24 km/Ma以及晚新生代(10 Ma)以来的持续冷却,冷却速率约 2.1 ˚C/Ma,剥露速率约0.083 km/Ma,剥露抬升的方向呈现出从西南向东北逐渐迁移的趋势.这一迁移趋势与青藏高原东北缘约10~8 Ma的构造扩展密切相关,特别是毗邻的渭河盆地自晚中新世约7.3 Ma以来持续快速沉积、沉降,与秦岭北麓的隆升形成鲜明的构造响应,进一步印证了青藏高原东北缘扩展背景下区域构造活动的联动性与协同演化特征.这些结果表明,新生代以来秦岭北麓构造抬升及相邻渭河盆地沉积演化,均受到青藏高原东北向扩展的影响.这些结果不仅为区域构造动力学研究提供了关键的热年代学约束,也为进一步探讨秦岭北麓地区的地质演化及其与其他区域的构造关系提供依据.

       

    • 图  1  秦岭北麓及周边地区数字高程

      (改自王斌等,2017A-A’代表图6中的剖面;B-B’代表图7中的剖面)

      Fig.  1.  Digital elevation of the Northern foothill of the Qinling Mountains and surrounding areas

      图  2  秦岭北麓及周边地区部分已发表的低温热年代学数据分布

      数据来源于附表1,图中年龄峰值由DensityPlotter软件计算;Vermeesch,2012

      Fig.  2.  Some published distribution of low-temperature thermochronological data in the northern foothill of the Qinling Mountains and surrounding areas

      图  3  太白山与华山磷灰石裂变径迹及终南山磷灰石(U-Th)/He年龄分布

      数据来源:太白山与华山磷灰石裂变径迹数据来自杨鹏等(2018);终南山磷灰石(U-Th)/He数据来自Wang et al.2023

      Fig.  3.  Apatite fission tracks in Taibai Mountain and Huashan Mountain and (U-Th)/He age distribution of Zhongnan Mountain

      图  4  秦岭地区热史反演模拟

      热史模拟曲线(a)据万景林等(2005),(b)据杨鹏等(2018),(c)(d)据Wang et al.2022),(e)据雷万杉等(2025);PAZ指磷灰石裂变径迹部分退火区间60~120 ℃,参考Fitzgerald et al.1995);PRZ指磷灰石(U-Th)/He部分保留区间40~80 ℃,参考Farley(2000

      Fig.  4.  Inverse simulation of the thermal history of the Qinling region

      图  5  秦岭地区低温热年代学数据年龄-海拔散点图

      a.东秦岭地区低温热年代学AFT数据;b.西秦岭地区低温热年代学AFT数据;c.西秦岭地区低温热年代学AHe数据;R2.趋势线拟合程度的指标

      Fig.  5.  Age-altitude scatter plot of low-temperature thermochronological data

      图  6  秦岭北麓、渭河盆地及渭北隆起地质演化剖面

      改自王建强等,2015;剖面位置参见图1剖面A-A

      Fig.  6.  Geological evolutionary profiles of the northern foothill of the Qinling Mountains, Weihe River Basin and the northern Weihe rise

      图  7  秦岭北麓与渭河盆地构造过程示意图

      改自Liu et al. 2013;剖面位置参见图1剖面B-B

      Fig.  7.  Schematic diagrams of the tectonic processes in the northern foothill of the Qinling Mountains and Weihe basins

      图  8  秦岭北麓晚新生代隆升与青藏高原东北缘迁移耦合示意图

      地壳、地幔厚度模型引用孟文等,2022;班公湖断裂(56~43 Ma;高天扬, 2023);金沙江断裂(45~20 Ma45~20 Ma;Zhao et al., 19932011Kind et al., 2002Wang et al., 2013);鄂拉山断裂(15 Ma;Yuan et al., 2011Lu et al., 2012Zhang et al., 2012);龙首山断裂(10~5 Ma;Tao et al., 2025);秦岭北缘断裂(10~5 Ma;杨鹏等, 2018Yu et al., 2022);渭河盆地沉积(7.3 Ma;Liu et al., 2013Yu et al., 2013

      Fig.  8.  Late Cenozoic uplift of the northern foothill of the Qinling Mountains coupled with the migration of the northeastern margin of the Tibetan Plateau

      表  1  秦岭北麓及周边地区构造抬升期次汇总

      Table  1.   Summary of tectonic uplift periods in the northern foothill of the Qinling Mountains and surrounding areas

      阶段 时期 区域 年代(Ma) 冷却速率(℃/Ma) 剥露速率(km/Ma) 抬升幅度(km) 引用文献
      阶段一 白垩纪 华山 120~80 4* 0.16 6.4 李齐等(2001)
      120~70 2.5 0.1* 5* 吴中海等(2003)
      125~115 4 0.16 1.6 Wang et al.(2022)
      太白山 100~80 3 0.12 2.4 万景林等(2005)
      渭河盆地 140~110 1.4* 0.06 1.68 王晓悦(2021)
      终南山 130~120 4 0.16 1.6 Wang et al.(2022)
      熊耳山 94.1~74 5.6* 0.159* 3.18* 雷万杉等(2025)
      阶段二 早新生代 华山 29.26~25.05 4.8 0.183* 0.8* 万景林等(2000)
      48~45 4.5* 0.18* 0.54* 尹功明等(2001)
      30.5~17.8 2.5 0.1* 1.27* 尹功明等(2001)
      32~22 5 0.2* 2* 吴中海等(2003)
      65~45 2.5 0.1 2 Wang et al.(2022)
      太白山 40~20 2 0.08 1.6 万景林等(2005)
      45~35 4 0.16 1.6 Liu et al.(2013)
      56~49 7.1 0.28 2 Yu et al.(2022)
      25~20 7.5 0.3 1.5 Yu et al.(2022)
      渭北隆起 45~32 3.1 0.12 1.61 杨鹏等(2018)
      终南山 50~40 6 0.24 2.4 Wang et al.(2022)
      熊耳山 57~40 1.2* 0.034* 0.571* 雷万杉等(2025)
      40~30 4.5* 0.129* 1.286* 雷万杉等(2025)
      阶段三 晚新生代 华山 17.8~0 4.7 0.19* 3.34* 尹功明等(2001)
      8~0 4.8 0.19* 1.52 吴中海等(2003)
      太白山 10~0 5 0.2 2 Liu et al.(2013)
      渭北隆起 7.3~0 2.7 0.12 0.8 杨鹏等(2018)
      渭河盆地 20~0 3* 0.12 2.4 王晓悦(2021)
      终南山 20~10 4 0.16 1.6 Wang et al.(2022)
      熊耳山 30~0 0.17* 0.005* 0.143* 雷万杉等(2025)
      天水盆地 23.7~14.1 8.5* 0.34* 3.3* 王修喜等(2006)
      14.1~0 26.2 1.05* 14.8 王修喜等(2006)
      注:*代表原始数据,未标注的为本文计算所得数据.
      下载: 导出CSV
    • Boyce, J. W. , Hodges, K. V. , Olszewski, W. J. , et al. , 2006. Laser Microprobe (U-Th)/He Geochronology. Geochimica et Cosmochimica Acta, 70(12): 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019
      Chang, J. , Qiu, N. S. , Zuo, Y. H. , et al. , 2011. The New Evidence on Tectonic Uplift in Kepingtage Area, Tarim, China: Constraints from (U-Th)/He Ages. Chinese Journal of Geophysics, 54(1): 163-172(in Chinese with English abstract).
      Chen, H. , Hu, J. M. , Wu, G. L. , et al. , 2015. Apatite Fission-Track Thermochronological Constraints on the Pattern of Late Mesozoic–Cenozoic Uplift and Exhumation of the Qinling Orogen, Central China. Journal of Asian Earth Sciences, 114: 649-673. https://doi.org/10.1016/j.jseaes.2014.10.004
      Chew, D. M. , Spikings, R. A. , 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189
      Ding, R. X. , Chen, G. N. , Zhou, Z. Y. , et al. , 2012. The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data. Journal of Jilin University (Earth Science Edition), 42(S1): 247-253(in Chinese with English abstract).
      Ding, R. X. , Wang, L. , Xu, C. H. , et al. , 2009. Quantitative Contrast of Dabie Orogenic Erosion and Adjacent Sedimentary Basins Deposition through Thermal History Modelling of Fission Track. Advances in Earth Science, 24(8): 942-946(in Chinese with English abstract).
      Donelick, R. A. , O’sullivan, P. B. , Ketcham, R. A. , 2005. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. https://doi.org/10.2138/rmg.2005.58.3
      Dong, Y. P. , Safonova, I. , Wang, T. , 2016. Tectonic Evolution of the Qinling Orogen and Adjacent Orogenic Belts. Gondwana Research, 30: 1-5. https://doi.org/10.1016/j.gr.2015.12.001
      Dong, Y. P. , Yang, Z. , Sun, S. S. , et al. , 2022. Qinling Uplift Process and How to Control the Climate Environment. Earth Science, 47(10): 3834-3836(in Chinese).
      Dong, Y. P. , Zhang, G. W. , Neubauer, F. , et al. , 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Enkelmann, E. , Ratschbacher, L. , Jonckheere, R. , et al. , 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin?Geological Society of America Bulletin, 118(5-6): 651-671. https://doi.org/10.1130/b25805.1
      Farley, K. A. , 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999JB900348
      Farley, K. A. , 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18
      Farley, K. A. , Wolf, R. A. , Silver, L. T. , 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7
      Fitzgerald, P. G. , Sorkhabi, R. B. , Redfield, T. F. , et al. , 1995. Uplift and Denudation of the Central Alaska Range: A Case Study in the Use of Apatite Fission Track Thermochronology to Determine Absolute Uplift Parameters. Journal of Geophysical Research: Solid Earth, 100(B10): 20175-20191. https://doi.org/10.1029/95JB02150
      Gao, T. Y. , 2023. The Structure of the Crust beneath Eastern Tibetan Plateau (Dissertation). Institute of Geophysics China Earthquake Administation, Beijing (in Chinese with English abstract).
      Ge, X. , Shen, C. B. , Mei, L. F. , 2016. Low-Temperature Thermochronological Constraints on the Mesozoic-Cenozoic Paleotopograph in the Huangling Massif. Geotectonica et Metallogenia, 40(4): 654-662(in Chinese with English abstract).
      Ge, X. , Shen, C. B. , Yang, Z. , et al. , 2013. Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China. Journal of Earth Science, 24(4): 541-552. https://doi.org/10.1007/s12583-013-0348-8
      Gleadow, A. J. W. , Duddy, I. R. , 1981. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks, 5(1-2): 169-174. https://doi.org/10.1016/0191-278X(81)90039-1
      Han, H. Y. , Mi, F. S. , Liu, H. Y. , 2001. Geomorphological Structure in the Weihe Basin and Neotectonic Movement. Journal of Seismological Research, 24(3): 251-257(in Chinese with English abstract).
      Han, W. , Li, C. F. , Li, W. H. , et al. , 2020. Constraints of Tectonic Evolution of Mesozoic and Cenozoic in Yiyang Area of Western Henan by Fission Track. Chinese Journal of Geology (Scientia Geologica Sinica), 55(4): 1290-1297(in Chinese with English abstract).
      He, C. G. , Li, J. W. , Kontak, D. J. , et al. , 2023. An Early Cretaceous Gold Mineralization Event in the Triassic West Qinling Orogen Revealed from U-Pb Titanite Dating of the Ma’anqiao Gold Deposit. Scientia Sinica (Terrae), 53(2): 300-318(in Chinese). doi: 10.1360/N072022-0168
      Heberer, B. , Anzenbacher, T. , Neubauer, F. , et al. , 2014. Polyphase Exhumation in the Western Qinling Mountains, China: Rapid Early Cretaceous Cooling along a Lithospheric-Scale Tear Fault and Pulsed Cenozoic Uplift. Tectonophysics, 617: 31-43. https://doi.org/10.1016/j.tecto.2014.01.011
      Hendrix, M. S. , Dumitru, T. A. , Graham, S. A. , 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487.https://doi.org/10.1130/0091-7613(1994)0220487:loemui>2.3.co;2 doi: 10.1130/0091-7613(1994)0220487:loemui>2.3.co;2
      Hou, J. J. , Han, M. K. , Zhang, B. Z. , et al. , 1995. Geomorphic Expressions of the Activity along North Qinling Piedmont Fault Zone in the Late Quaternary Period. Acta Geographica Sinica, 50(2): 138-146(in Chinese with English abstract).
      Hu, R. Q. , Wu, L. Y. , 2024. Advances of the (U-Th)/He Thermochronology and Its Applications. Acta Mineralogica Sinica, 44(2): 273-286(in Chinese with English abstract).
      Huang, Y. , Fu, S. L. , Zhao, C. H. , et al. , 2021. Low-Temperature Thermochronology and Its Applications for Studying Ore Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 958-973(in Chinese with English abstract).
      Jiang, C. F. , Wang, Z. Q. , Li, J. Y. , et al. , 2000. Open-Close Structure of Central Orogenic Belt. Geological Publishing House, Beijing (in Chinese).
      Ketcham, R. A. , Donelick, R. A. , Carlson, W. D. , 1999. Variability of Apatite Fission-Track Annealing Kinetics; Ⅲ, Extrapolation to Geological Time Scales. American Mineralogist, 84(9): 1235-1255. https://doi.org/10.2138/am-1999-0903
      Kind, R. , Yuan, X. , Saul, J. , et al. , 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219-1221. https://doi.org/10.1126/science.1078115
      Lei, W. S. , Zhang, R. , Li, S. Z. , et al. , 2025. Exhumation Processes of the Metamorphic Basement of the Taihua Group in the Southern Margin of the North China Craton: Evidence from (U-Th)/He Thermochronology. Acta Geologica Sinica, 99(6): 1964-1978(in Chinese with English abstract).
      Li, D. W. , Xia, Y. P. , Xu, L. G. , 2009. Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen—Examples from the Qinghai-Tibet Plateau and Adjacent Basins. Earth Science Frontiers, 16(3): 110-119(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60097-4
      Li, H. B. , Franck, V. , Nicolas, A. , et al. , 2008. Rapid Uplifting in the Process of Strike-Slip along the Karakorum Fault Zone in Western Tibet: Evidence from 40Ar/39Ar Thermochronology. Acta Petrologica Sinica, 24(7): 1552-1566(in Chinese with English abstract).
      Li, Q. , Wang, Y. , Wan, J. L. , et al. , 2001. Thermochronological Evidence of Tectonic Uplift for the Middle Area of Qinling in Meso-Cenozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 263-265(in Chinese with English abstract).
      Li, S. G. , Li, Q. L. , Hou, Z. H. , et al. , 2005. Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 21(4): 1117-1124 (in Chinese with English abstract).
      Li, Z. K. , Hu, J. , Zhang, J. , et al. , 2025. Distribution and Resources of Dispersed Metals in Pb-Zn Deposits of Qinling Orogenic Belt. Earth Science, 50(6): 2083-2106(in Chinese with English abstract).
      Liu, D. S. , Ding, M. L. , Gao, F. Q. , 1960. Cenozoic Stratigraphic Profile in Lantian, Xi’an. Chinese Journal of Geology (Scientia Geologica Sinica), 3(4): 199-208(in Chinese).
      Liu, H. J. , Xue, X. X. , 2004. Discussion on the Cenozoic and Its Chronology in the Weihe River Basin. Journal of Earth Sciences and Enivronment, 26(4): 1-5(in Chinese with English abstract).
      Liu, J. H. , Zhang, P. Z. , Lease, R. O. , et al. , 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025
      Liu, J. H. , Zhang, P. Z. , Zheng, D. W. , et al. , 2010. The Cooling History of Cenozoic Exhumation and Uplift of the Taibai Mountain, Qinling, China: Evidence from the Apatite Fission Track (AFT) Analysis. Chinese Journal of Geophysics, 53(10): 2405-2414(in Chinese with English abstract).
      Liu, J. R. , 2023. Late Quaternary Activity and Tectonic Deformation Kinematics of Dextral Strike-Slip Faults in the Northeast Margin of the Tibetan Plateau, China (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Liu, S. F. , 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4): 369-383. https://doi.org/10.1016/S0743-9547(98)00020-8
      Liu, S. F. , Zhang, G. W. , 2005. Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships. Earth Science Frontiers, 12(3): 101-111(in Chinese with English abstract).
      Liu, W. B. , Tao, N. , Sun, J. B. , et al. , 2025. A Review on the Zircon Laser In-Situ Microanalytical U-Th-Pb-He Double Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 44(1): 162-177(in Chinese with English abstract). doi: 10.3724/j.issn.1007-2802.20240104
      Lovera, O. M. , Richter, F. M. , Harrison, T. M. , 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research: Solid Earth, 94(B12): 17917-17935. https://doi.org/10.1029/JB094iB12p17917
      Lu, H. J. , Wang, E. , Shi, X. H. , et al. , 2012. Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses. Tectonophysics, 580: 150-161. https://doi.org/10.1016/j.tecto.2012.09.013
      Lyu, H. H. , Chang, Y. , Wang, W. , et al. , 2013. Early Miocene Rapid Stripping in Tianshan Mountains: Apatite Fission Track and (U-Th)/He Low Temperature Thermochronological Evidence. Scientia Sinica (Terrae), 43(12): 1964-1974(in Chinese). doi: 10.1360/zd-2013-43-12-1964
      Meng, Q. R. , 2017. Origin of the Qinling Mountains. Scientia Sinica (Terrae), 47(4): 412-420(in Chinese). doi: 10.1360/N072016-00422
      Meng, W. , Guo, X. Y. , Li, Y. H. , et al. , 2022. Tectonic Stress Field and Dynamic Characteristics in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 65(9): 3229-3251(in Chinese with English abstract).
      Mercier, J. L. , Vergely, P. , Zhang, Y. Q. , et al. , 2013. Structural Records of the Late Cretaceous-Cenozoic Extension in Eastern China and the Kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi Provinces, PR China). Tectonophysics, 582: 50-75. https://doi.org/10.1016/j.tecto.2012.09.015
      Monteiro, H. S. , Vasconcelos, P. M. P. , Farley, K. A. , et al. , 2018. Age and Evolution of Diachronous Erosion Surfaces in the Amazon: Combining (U-Th)/He and Cosmogenic 3He Records. Geochimica et Cosmochimica Acta, 229: 162-183. https://doi.org/10.1016/j.gca.2018.02.045
      Peng, H. , Wang, J. Q. , Zattin, M. , et al. , 2018. Late Triassic-Early Jurassic Uplifting in Eastern Qilian Mountain and Its Geological Significance: Evidence from Apatite Fission Track Thermochronology. Earth Science, 43(6): 1983-1996(in Chinese with English abstract).
      Peng, J. B. , 1993. Fractile Geometric Features of the Two Margin Active Faults in the Weihe Basin. Journal of Chang’an University Earth Science Edition, 15(1): 52-60(in Chinese with English abstract).
      Peng, J. B. , Li, Z. H. , 2022. Can Geo-Big Data Help Geological Disaster Prediction? Earth Science, 47(10): 3900-3901(in Chinese).
      Peng, J. B. , Shen, Y. J. , Jin, Z. , et al. , 2023a. Key Thoughts on the Study of Eco-Geological Environment System in Qinling Mountains. Acta Ecologica Sinica, 43(11): 4344-4358(in Chinese with English abstract).
      Peng, J. B. , Zhang, Y. S. , Huang, D. , et al. , 2023b. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Rao, S. , Jiang, G. Z. , Gao, Y. J. , et al. , 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190(in Chinese with English abstract).
      Ratschbacher, L. , Hacker, B. R. , Calvert, A. , et al. , 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1-2): 1-53. https://doi.org/10.1016/S0040-1951(03)00053-2
      Reiners, P. W. , 2005. Zircon (U-Th)/He Thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151-179. https://doi.org/10.2138/rmg.2005.58.6
      Reiners, P. W. , Brandon, M. T. , 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
      Reiners, P. W. , Zhou, Z. Y. , Ehlers, T. A. , 2003. Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489
      Ren, Z. L. , Cui, J. P. , Guo, K. , et al. , 2015. Fission-Track Analysis of Uplift Times and Processes of the Weibei Uplift in the Ordos Basin. Chinese Science Bulletin, 60(14): 1298-1309(in Chinese).
      Ren, Z. L. , Cui, J. P. , Li, J. B. , et al. , 2014. Tectonic-Thermal History Reconstruction of Ordovician in the Weibei Uplift of Ordos Basin. Acta Geologica Sinica, 88(11): 2044-2056(in Chinese with English abstract).
      Shen, C. B. , Ge, X. , Wu, Y. , et al. , 2023. Progress and Development Trends of Fault Activities Dating Technologies in Basins. Earth Science, 48(2): 735-748(in Chinese with English abstract).
      Shen, C. B. , Hu, D. , Min, K. , et al. , 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2
      Shen, X. M. , Tian, Y. T. , Li, D. W. , et al. , 2016. Oligocene-Early Miocene River Incision near the First Bend of the Yangze River: Insights from Apatite (U-Th-Sm)/He Thermochronology. Tectonophysics, 687: 223-231. https://doi.org/10.1016/j.tecto.2016.08.006
      Shen, Y. J. , Chen, X. , Peng, J. B. , et al. , 2024. Background Characteristics of Ecological Geological Environment System in Qinling Mountains and Assumption of Its Theoretical System. Earth Science, 49(6): 2103-2119(in Chinese with English abstract).
      Shi, X. H. , Yang, Z. , Dong, Y. P. , et al. , 2018. Transient Geomorphic Characteristics of the Upper Jialing River Basin, West Qinling, Northeastern Tibetan Plateau. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 819-834(in Chinese with English abstract).
      Stockli, D. F. , 2005. Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings. Reviews in Mineralogy and Geochemistry, 58(1): 411-448. https://doi.org/10.2138/rmg.2005.58.16
      Sun, J. M. , 2005. Long-Term Fluvial Archives in the Fen Wei Graben, Central China, and Their Bearing on the Tectonic History of the India-Asia Collision System during the Quaternary. Quaternary Science Reviews, 24(10-11): 1279-1286. https://doi.org/10.1016/j.quascirev.2004.08.018
      Tao, N. , Duan, J. , Danišík, M. , et al. , 2023. Paleozoic Tectonothermal Evolution of the Jinchuan Ni-Cu Sulfide Deposit, NW China: New Constraints from 40Ar/39Ar and (U-Th)/He Thermochronology. Journal of Asian Earth Sciences, 250: 105622. https://doi.org/10.1016/j.jseaes.2023.105622
      Tao, N. , Jiao, R. H. , Liu, Y. D. , et al. , 2025. Thermotectonic History of the Longshou Shan: From Paleozoic Tethys Subduction to Cenozoic Tibetan Plateau Growth. Tectonophysics, 895: 230560. https://doi.org/10.1016/j.tecto.2024.230560
      Tao, N. , Li, Z. X. , Danišík, M. , et al. , 2017. Thermochronological Record of Middle–Late Jurassic Magmatic Reheating to Eocene Rift-Related Rapid Cooling in the SE South China Block. Gondwana Research, 46: 191-203. https://doi.org/10.1016/j.gr.2017.03.003
      Tao, N. , Li, Z. X. , Danišík, M. , et al. , 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019
      Teng, Z. H. , Wang, X. H. , 1996. Studies of the Tectonic Uplift at the Cenozoic Era and the Regionally Environmental Effects in the Qinling Orogenic Belt. Geology of Shaanxi, 14(2): 33-42(in Chinese with English abstract).
      Vermeesch, P. , 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021
      Wan, J. L. , Li, Q. , Wang, Y. , 2000. The Fission Track Evidence of Huashan Batholith Uplifting in Mesozoic-Cenozoic. Seismology and Geology, 22(1): 53-58(in Chinese with English abstract).
      Wan, J. L. , Wang, Y. , Li, Q. , et al. , 2005. Apatite Fission Track Study of Taibai Mountain Uplift in the Mesozoic-Cenozoic. Nuclear Techniques, 28(9): 712-716(in Chinese with English abstract).
      Wang, B. , Chang, H. , Duan, K. Q. , 2017. The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era: Progress and Problems. Advances in Earth Science, 32(7): 707-715(in Chinese with English abstract).
      Wang, J. M. , 1987. The Fenwei Rift and Its Recent Periodic Activity. Tectonophysics, 133(3-4): 257-275. https://doi.org/10.1016/0040-1951(87)90269-1
      Wang, J. Q. , Liu, C. Y. , Gao, F. , et al. , 2015. Pre-Cenozoic Geological Characteristics and Oil-Gas Significance in Weihe Basin, Shaanxi Province. Geological Bulletin of China, 34(10): 1981-1991(in Chinese with English abstract).
      Wang, Q. Q. , Pei, X. Z. , 1990. The Structural Features and the Evolution of the Weihe Rift Basin. Journal of Chang’an University Earth Science Edition, 12(1): 40-49(in Chinese with English abstract).
      Wang, T. Y. , Zeng, Z. C. , Yang, T. , et al. , 2019. Time Limit of Lishan Uplift and Its Geological Significance. Geology of Shaanxi, 37(1): 42-48(in Chinese with English abstract).
      Wang, W. T. , Huang, R. , Wu, Y. , et al. , 2023. Cenozoic Clockwise Rotation of the Northeastern Tibetan Plateau: Paleomagnetic Evidence from Volcanic Sequences in the West Qinling Mountain. Global and Planetary Change, 224: 104097. https://doi.org/10.1016/j.gloplacha.2023.104097
      Wang, W. T. , Zhang, P. Z. , Liu, C. C. , et al. , 2016. Pulsed Growth of the West Qinling at ~30 Ma in Northeastern Tibet: Evidence from Lanzhou Basin Magnetostratigraphy and Provenance. Journal of Geophysical Research: Solid Earth, 121(11): 7754-7774. https://doi.org/10.1002/2016JB013279
      Wang, X. X. , Li, J. J. , Song, C. H. , et al. , 2006. Cenozoic Uplift of West Qinling, Northeast Margin of Tibetan Plateau: The Record of Detrital Apatite Fission Track Data in Tianshui Basin. Acta Sedimentologica Sinica, 24(6): 783-789(in Chinese with English abstract).
      Wang, X. X. , Zattin, M. , Li, J. J. , et al. , 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491-505. https://doi.org/10.1007/s12583-013-0345-y
      Wang, X. Y. , 2021. The Cooling and Denudation History of Mesozoic and Cenozoic in the Western Qinling Mountains: Constraints from Low-Temperature Chronology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Wang, Y. Z. , Li, C. P. , Hao, Y. Q. , et al. , 2022. Multi-Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by Both Low-Temperature Thermochronology and River Profile Inversion. Tectonics, 41(4): e2021TC007029. https://doi.org/10.1029/2021TC007029
      Wang, Z. C. , Zhang, P. Z. , Garzione, C. N. , et al. , 2012. Magnetostratigraphy and Depositional History of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for Middle Miocene Tectonics of the West Qinling Fault Zone. Journal of Asian Earth Sciences, 44: 189-202. https://doi.org/10.1016/j.jseaes.2011.06.009
      Wu, Z. H. , Wu, Z. H. , Wan, J. L. , et al. , 2003. Cenezoic Uplift and Denudation History of Huashan Mountains: Evidence from Fission Track Thermo-Chronology of Huashan Granite. Geological Science and Technology Information, 22(3): 27-32(in Chinese with English abstract).
      Xiao, H. , Li, J. X. , Han, W. , et al. , 2013. The Tectonic Uplift Time and Evolution Characteristics of Weibei Uplift in the South Edge of Ordos Basin. Journal of Xi’an University of Science and Technology, 33(5): 576-582, 593(in Chinese with English abstract).
      Xiao, L. , 2018. U-Th/He Thermochronology: Methods and Their Application to Cenozoic Uplift in the Qinling Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Xing, Z. Y. , Zhao, B. , Tu, M. Y. , et al. , 2005. Study on the Coupling Relationship between Fenwei Rift System and Orogenic Belt and Its Formation Mechanism. Earth Science Frontiers, 12(2): 247-262(in Chinese with English abstract).
      Xu, C. H. , Zhou, Z. Y. , Chang, Y. , et al. , 2010. Relationship between the Formation of Daba Mountain Arc Tectonic Belt and the Uplift on Both Sides: FT and (U-Th)/He Low-Temperature Thermal Age Constraints. Scientia Sinica (Terrae), 40(12): 1684-1696(in Chinese). doi: 10.1360/zd2010-40-12-1684
      Xu, M. Q. , Zheng, W. J. , Duan, L. , et al. , 2024. Magnetic Fabric Characteristic of Cenozoic Sediments from Lulehe Section in the Northern Qaidam Basin, China and Its Tectonic Implications. Journal of Earth Sciences and Environment, 46(3): 364-383(in Chinese with English abstract).
      Xu, P. P. , Shen, Y. J. , Peng, J. B. , et al. , 2024. Typed Architecture of Valley Road in Northern Foothills of Qinling Mountains Based on Concept of Ecological-Economic-Social Collaborative Development. Earth Science, 49(12): 4564-4575(in Chinese with English abstract).
      Yang, L. , Yuan, W. M. , Hong, S. J. , et al. , 2022. Fission Track Technology and Its Geological Applications. Geological Survey of China, 9(3): 104-112(in Chinese with English abstract).
      Yang, P. , Ren, Z. L. , Zhang, J. G. , et al. , 2018. Discussion of the Coupling Relationships between the Cenozoic Sedimentary-Tectonic Migration of the Weihe Basin and the Uplift of the Weibei and East Qinling Areas. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 876-892(in Chinese with English abstract).
      Yang, Z. , Dong, Y. P. , Liu, X. M. , et al. , 2006. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Guanzizhen Ophiolite, Tianshui, West Qinling, China. Geological Bulletin of China, 25(11): 1321-1325(in Chinese with English abstract).
      Yang, Z. , Dong, Y. P. , Zhou, D. W. , et al. , 2008. Geochemistry and Geologic Significance of Basic Rocks in the Xiaomoling Complex in the Zhashui Area, South Qinling, China. Geological Bulletin of China, 27(5): 611-617(in Chinese with English abstract).
      Yang, Z. , Shen, C. B. , Ratschbacher, L. , et al. , 2017. Sichuan Basin and beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. https://doi.org/10.1002/2016JB013751
      Yin, G. M. , Lu, Y. C. , Zhao, H. , et al. , 2001. Cenozoic Tectonic Uplift of Huashan Mountain. Chinese Science Bulletin, 46(13): 1121-1123(in Chinese). doi: 10.1360/csb2001-46-13-1121
      Yu, J. X. , Zheng, D. W. , Pang, J. Z. , et al. , 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859-863. https://doi.org/10.1130/g49917.1
      Yu, Q. , Ren, Z. l. , Li, R. X. , et al. , 2023. Different Burial-Cooling History of Triassic Strata between the Western Weibei Uplift and the Northwestern Weihe Basin in North-west China. Journal of Earth Science, 34(5): 1543-1555. https://doi.org/10.1007/s12583-021-1432-0
      Yu, X. Q. , Liu, J. L. , Zhang, D. H. , et al. , 2013. Uprising Period and Elevation of the Wenyu Granitic Pluton in the Xiaoqinling District, Central China. Chinese Science Bulletin, 58(35): 4459-4471. https://doi.org/10.1007/s11434-013-5830-2
      Yu, X. L. , Li, J. W. , Jin, X. Y. , et al. , 2024. Monazite U-Th-Pb and Sericite Rb-Sr Dating of the Xiajiadian Black Shale-Hosted Gold Deposit in the Qinling Orogen, Central China: Implications for Regional Gold Metallogeny. Scientia Sinica (Terrae), 54(8): 2515-2533(in Chinese). doi: 10.1360/N072023-0177
      Yuan, D. Y. , Champagnac, J. D. , Ge, W. P. , et al. , 2011. Late Quaternary Right-Lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau. Geological Society of America Bulletin, 123(9-10): 2016-2030. https://doi.org/10.1130/b30315.1
      Zhang, G. W. , Guo, A. L. , Dong, Y. P. , et al. , 2019. Rethinking of the Qinling Orogen. Journal of Geomechanics, 25(5): 746-768(in Chinese with English abstract).
      Zhang, G. W. , Meng, Q. R. , Lai, S. C. , 1995. Structure of Qinling Orogenic Belt. Science in China (Ser. B), 25(9): 994-1003(in Chinese).
      Zhang, G. W. , Zhang, B. R. , Yuan X. C. , et al. , 2001. Qinling Orogenic Beit and Continental Dynamics. Science Press, Beijing (in Chinese).
      Zhang, H. P. , Craddock, W. H. , Lease, R. O. , et al. , 2012. Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau. Basin Research, 24(1): 31-50. https://doi.org/10.1111/j.1365-2117.2011.00512.x
      Zhang, H. , 2008. U-Pb Chronology of Modern Fluvial Detrital Zircons in the Northern Foot of Qinling Mountains and Its Geological Significance (Dissertation). Northwest University, Xi’an (in Chinese with English abstract).
      Zhang, P. Z. , Zheng, D. W. , Yin, G. M. , et al. , 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13(in Chinese with English abstract).
      Zhang, Y. P. , 1978. Cenozoic in Lantian Area of Shaanxi Province. Science Press, Beijing (in Chinese).
      Zhang, Y. P. , Zhang, P. Z. , Lease, R. O. , et al. , 2023. Oligocene–Miocene Northward Growth of the Tibetan Plateau: Insights from Intermontane Basins in the West Qinling Belt, NW China. Geological Society of America Bulletin, 136(1-2): 131-157. https://doi.org/10.1130/b36722.1
      Zhao, W. J. , Kumar, P. , Mechie, J. , et al. , 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4(12): 870-873. https://doi.org/10.1038/ngeo1309
      Zhao, W. J. , Nelson, K. D. , Che, J. , et al. , 1993. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 366(6455): 557-559. https://doi.org/10.1038/366557a0
      Zheng, D. W. , Wang, F. , Zhang, P. Z. , et al. , 2000. Apatite U-Th/He Dating Method: A Low Temperature Thermochronometer. Seismology and Geology, 22(4): 427-435(in Chinese with English abstract).
      常健, 邱楠生, 左银辉, 等, 2011. 塔里木柯坪塔格地区构造抬升的新证据: 来自(U-Th)/He年龄的约束. 地球物理学报, 54(1): 163-172.
      丁汝鑫, 陈国能, 周祖翼, 等, 2012. 利用低温热史恢复大别造山带晚白垩世以来的古高度. 吉林大学学报(地球科学版), 42(增刊1): 247-253.
      丁汝鑫, 王利, 许长海, 等, 2009. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比. 地球科学进展, 24(8): 942-946.
      董云鹏, 杨钊, 孙圣思, 等, 2022. 秦岭隆升过程及其如何控制气候环境?. 地球科学, 47(10): 3834-3836.
      高天扬, 2023. 青藏高原东部地区地壳精细结构研究(博士学位论文). 北京: 中国地震局地球物理研究所.
      葛翔, 沈传波, 梅廉夫, 2016. 低温热年代对黄陵隆起中新生代古地形的约束. 大地构造与成矿学, 40(4): 654-662.
      韩恒悦, 米丰收, 刘海云, 2001. 渭河盆地带地貌结构与新构造运动. 地震研究, 24(3): 251-257.
      韩伟, 李成福, 李文厚, 等, 2020. 裂变径迹对豫西宜阳地区中新生代构造演化过程的约束. 地质科学, 55(4): 1290-1297.
      何重果, 李建威, Daniel J. KONTAK, 等, 2023. 西秦岭造山带早白垩世金成矿事件: 来自马鞍桥金矿床榍石U-Pb定年的证据. 中国科学: 地球科学, 53(2): 300-318.
      侯建军, 韩慕康, 张保增, 等, 1995. 秦岭北麓断裂带晚第四纪活动的地貌表现. 地理学报, 50(2): 138-146.
      胡儒权, 武丽艳, 2024. (U-Th)/He热年代学方法研究进展及其应用. 矿物学报, 44(2): 273-286.
      黄勇, 付山岭, 赵成海, 等, 2021. 低温热年代学方法及其在矿床学研究中的应用. 矿物岩石地球化学通报, 40(4): 958-973.
      姜春发, 王宗起, 李锦轶, 等, 2000. 中央造山带开合构造. 北京: 地质出版社.
      雷万杉, 张瑞, 李三忠, 等, 2025. 华北克拉通南缘太华群变质基底剥露过程: (U-Th)/He热年代学的证据. 地质学报, 99(6): 1964-1978.
      李德威, 夏义平, 徐礼贵, 2009. 大陆板内盆山耦合及盆山成因: 以青藏高原及周边盆地为例. 地学前缘, 16(3): 110-119.
      李海兵, VALLI Franck, ARNAUD Nicolas, 等, 2008. 喀喇昆仑断裂带走滑过程中伴随的快速隆升作用: 热年代学证据. 岩石学报, 24(7): 1552-1566.
      李齐, 王瑜, 万景林, 等, 2001. 秦岭造山带中段中新生代构造抬升的热年代学证据. 矿物岩石地球化学通报, 20(4): 263-265.
      李曙光, 李秋立, 侯振辉, 等, 2005. 大别山超高压变质岩的冷却史及折返机制. 岩石学报, 21(4): 1117-1124.
      李占轲, 胡佳, 张君, 等, 2025. 秦岭造山带铅锌矿床中稀散金属分布规律与资源评价. 地球科学, 50(6): 2083-2106.
      刘东生, 丁梦麟, 高福清, 1960. 西安蓝田间新生界地层剖面. 地质科学, 3(4): 199-208.
      刘护军, 薛祥煦, 2004. 对渭河盆地新生界及其年代的讨论. 地球科学与环境学报, 26(4): 1-5.
      刘建辉, 张培震, 郑德文, 等, 2010. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析. 地球物理学报, 53(10): 2405-2414.
      刘金瑞, 2023. 青藏高原东北缘右旋走滑断裂晚第四纪运动特征及其构造变形模式(博士学位论文). 北京: 中国地震局地质研究所.
      刘少峰, 张国伟, 2005. 盆山关系研究的基本思路、内容和方法. 地学前缘, 12(3): 101-111.
      刘文博, 陶霓, 孙敬博, 等, 2025. 锆石激光原位微区U-Th-Pb-He双定年分析方法进展. 矿物岩石地球化学通报, 44(1): 162-177.
      吕红华, 常远, 王玮, 等, 2013. 天山中新世早期快速剥露: 磷灰石裂变径迹与(U-Th)/He低温热年代学证据. 中国科学: 地球科学, 43(12): 1964-1974.
      孟庆任, 2017. 秦岭的由来. 中国科学: 地球科学, 47(4): 412-420.
      孟文, 郭祥云, 李永华, 等, 2022. 青藏高原东北缘构造应力场及动力学特征. 地球物理学报, 65(9): 3229-3251.
      彭恒, 王建强, Massimiliano Zattin, 等, 2018. 晚三叠世-早侏罗世祁连山东部隆升的裂变径迹年代学证据及地质意义. 地球科学, 43(6): 1983-1996. doi: 10.3799/dqkx.2018.608
      彭建兵, 1993. 渭河盆地边界活动断裂的分形几何特征. 长安大学学报(地球科学版), 15(1): 52-60.
      彭建兵, 李振洪, 2022. 地学大数据可否助力地质灾害预报? 地球科学, 47(10): 3900-3901.
      彭建兵, 申艳军, 金钊, 等, 2023a. 秦岭生态地质环境系统研究关键思考. 生态学报, 43(11): 4344-4358.
      彭建兵, 张永双, 黄达, 等, 2023b. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      饶松, 姜光政, 高雅洁, 等, 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176-2190.
      任战利, 崔军平, 郭科, 等, 2015. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析. 科学通报, 60(14): 1298-1309.
      任战利, 崔军平, 李进步, 等, 2014. 鄂尔多斯盆地渭北隆起奥陶系构造-热演化史恢复. 地质学报, 88(11): 2044-2056.
      沈传波, 葛翔, 吴阳, 等, 2023. 盆地断层活动定年技术进展及发展趋势. 地球科学, 48(2): 735-748.
      申艳军, 陈兴, 彭建兵, 等, 2024. 秦岭生态地质环境系统本底特征及研究体系初步构想. 地球科学, 49(6): 2103-2119. doi: 10.3799/dqkx.2023.210
      史小辉, 杨钊, 董云鹏, 等, 2018. 西秦岭嘉陵江上游瞬时地貌发育特征. 地质科学, 53(3): 819-834.
      滕志宏, 王晓红, 1996. 秦岭造山带新生代构造隆升与区域环境效应研究. 陕西地质, 14(2): 33-42.
      万景林, 李齐, 王瑜, 2000. 华山岩体中、新生代抬升的裂变径迹证据. 地震地质, 22(1): 53-58.
      万景林, 王瑜, 李齐, 等, 2005. 太白山中新生代抬升的裂变径迹年代学研究. 核技术, 28(9): 712-716.
      王斌, 常宏, 段克勤, 2017. 秦岭新生代构造隆升与环境效应: 进展与问题. 地球科学进展, 32(7): 707-715.
      王建强, 刘池洋, 高飞, 等, 2015. 陕西渭河盆地前新生界地质特征及其油气意义. 地质通报, 34(10): 1981-1991.
      王全庆, 裴先治, 1990. 渭河裂谷盆地的构造特征分析. 长安大学学报(地球科学版), 12(1): 40-49.
      王天毅, 曾忠诚, 杨涛, 等, 2019. 骊山凸起隆升的时限及其地质意义. 陕西地质, 37(1): 42-48.
      王修喜, 李吉均, 宋春晖, 等, 2006. 青藏高原东北缘西秦岭新生代抬升: 天水盆地碎屑颗粒磷灰石裂变径迹记录. 沉积学报, 24(6): 783-789.
      王晓悦, 2021. 西秦岭中新生代的冷却剥蚀历史: 来自低温年代学的约束(硕士学位论文). 北京: 中国地质大学(北京).
      吴中海, 吴珍汉, 万景林, 等, 2003. 华山新生代隆升—剥蚀历史的裂变径迹热年代学分析. 地质科技情报, 22(3): 27-32.
      肖晖, 李建新, 韩伟, 等, 2013. 鄂尔多斯盆地南缘渭北隆起中新生代构造抬升及演化. 西安科技大学学报, 33(5): 576-582, 593.
      肖霖, 2018. U-Th/He热年代学: 方法及其在秦岭新生代隆升中的应用(硕士学位论文). 北京: 中国地震局地质研究所.
      邢作云, 赵斌, 涂美义, 等, 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究. 地学前缘, 12(2): 247-262.
      许长海, 周祖翼, 常远, 等, 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684-1696.
      许梦强, 郑文俊, 段磊, 等, 2024. 柴达木盆地北缘路乐河新生代地层剖面磁组构特征及其构造意义. 地球科学与环境学报, 46(3): 364-383.
      徐盼盼, 申艳军, 彭建兵, 等, 2024. 基于生态-经济-社会协同发展理念的秦岭北麓峪道类型化架构思考. 地球科学, 49(12): 4564-4575.
      杨莉, 袁万明, 洪树炯, 等, 2022. 裂变径迹技术及其地质应用. 中国地质调查, 9(3): 104-112.
      杨鹏, 任战利, 张金功, 等, 2018. 新生代渭河盆地沉积-构造迁移与渭北隆起及东秦岭耦合关系探讨. 地质科学, 53(3): 876-892.
      杨钊, 董云鹏, 柳小明, 等, 2006. 西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MS U-Pb定年. 地质通报, 25(11): 1321-1325.
      杨钊, 董云鹏, 周鼎武, 等, 2008. 南秦岭柞水地区小磨岭杂岩基性岩类的地球化学特征及其地质意义. 地质通报, 27(5): 611-617.
      尹功明, 卢演俦, 赵华, 等, 2001. 华山新生代构造抬升. 科学通报, 46(13): 1121-1123.
      玉雪玲, 李建威, 靳晓野, 等, 2024. 秦岭造山带赋存于黑色页岩中的夏家店金矿床独居石U-Th-Pb和绢云母Rb-Sr定年及其对区域金成矿作用的启示. 中国科学: 地球科学, 54(8): 2515-2533.
      张国伟, 郭安林, 董云鹏, 等, 2019. 关于秦岭造山带. 地质力学学报, 25(5): 746-768.
      张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003.
      张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
      张红, 2008. 秦岭北麓现代河流碎屑锆石U-Pb年代学研究及其地质意义(硕士学位论文). 西安: 西北大学.
      张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5-13.
      张玉萍, 1978. 陕西蓝田地区新生界. 北京: 科学出版社.
      郑德文, 王非, 张培震, 等, 2000. 磷灰石U-Th/He法: 一种低温热年代计. 地震地质, 22(4): 427-435.
    • 刘文博 附表1.xlsx
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  187
    • HTML全文浏览量:  16
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-27
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回