• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CLM5-FATES模式对中国长白山针阔混交林分布的模拟

    隋月 杨传玉

    隋月, 杨传玉, 2025. CLM5-FATES模式对中国长白山针阔混交林分布的模拟. 地球科学, 50(9): 3357-3368. doi: 10.3799/dqkx.2025.073
    引用本文: 隋月, 杨传玉, 2025. CLM5-FATES模式对中国长白山针阔混交林分布的模拟. 地球科学, 50(9): 3357-3368. doi: 10.3799/dqkx.2025.073
    Sui Yue, Yang Chuanyu, 2025. Simulation of Mixed Needleleaf and Broadleaf Forest Distribution in Changbai Mountain of China Using CLM5-FATES Model. Earth Science, 50(9): 3357-3368. doi: 10.3799/dqkx.2025.073
    Citation: Sui Yue, Yang Chuanyu, 2025. Simulation of Mixed Needleleaf and Broadleaf Forest Distribution in Changbai Mountain of China Using CLM5-FATES Model. Earth Science, 50(9): 3357-3368. doi: 10.3799/dqkx.2025.073

    CLM5-FATES模式对中国长白山针阔混交林分布的模拟

    doi: 10.3799/dqkx.2025.073
    基金项目: 

    国家自然科学基金项目 42305041

    详细信息
      作者简介:

      隋月(1987—),女,讲师,博士,主要从事气候与植被相互作用及数值模拟研究. ORCID:0000-0002-5464-6486. E-mail:suiyue@cug.edu.cn

    • 中图分类号: P46

    Simulation of Mixed Needleleaf and Broadleaf Forest Distribution in Changbai Mountain of China Using CLM5-FATES Model

    • 摘要:

      长白山阔叶红松林是全球为数不多的大面积原始针阔混交林,对其开展模拟研究尤为必要.本研究基于植被功能性状的新一代动态全球植被模式CLM5-FATES(Community Land Model version 5-Functionally Assembled Terrestrial Ecosystem Simulator),选取25 ℃时最大羧化速率、比叶面积和叶寿命三个叶片特性参数,对长白山针阔混交林分布进行模拟,探讨模式中长白山针阔混交林分布的参数敏感性,检验模式对长白山针阔混交林分布的模拟能力.研究表明,不同的性状参数组合显著影响该地区两种植被类型分布的模拟结果,且25 ℃时最大羧化速率和比叶面积的影响大于叶寿命.适当的性状参数组合下,模式能再现观测结果中的长白山针阔混交林分布.本研究验证了该模式在长白山针阔混交林的适用性,可为进一步的气候植被相互作用研究提供重要支持.

       

    • 图  1  基于表 1中0~15组参数,GSWP3v1驱动CLM5-FATES模拟的40年中国东北长白山阔叶红松林永久样地的常绿针叶林和落叶阔叶林每平方米个体数量的逐月变化(单位:株/m2

      Fig.  1.  Monthly variations in the number of individuals per square meter of evergreen needleleaf and deciduous broadleaf forests at the permanent sample plot of the broadleaved Korean pine forest in Northeast China's Changbai Mountain over 40 years, simulated by CLM5-FATES driven by GSWP3v1, based on parameter sets 0 to 15 from Table 1 (units: individuals/m2)

      图  2  GSWP3v1驱动CLM5-FATES模拟的40年中国东北长白山阔叶红松林永久样地的常绿针叶林和落叶阔叶林每平方米个体数量的逐月变化(单位:株/m2

      a. 表 1中第0组参数组合;b. 第6组的$ {V}_{\mathrm{c}, \ \max, \ 25} $替换原始参数;c. 第6组的$ SLA $替换原始参数;d. 第6组的$ {L}_{\mathrm{l}} $替换原始参数;e. 第9组的$ {V}_{\mathrm{c}, \ \max, \ 25} $替换原始参数;f. 第9组的$ SLA $替换原始参数;g. 第9组的$ {L}_{\mathrm{l}} $替换原始参数

      Fig.  2.  Monthly variations in the number of individuals per square meter of evergreen needleleaf and deciduous broadleaf forests at a permanent sample plot of the broadleaved Korean pine forest in Northeast China's Changbai Mountain over 40 years, simulated by CLM5-FATES driven by GSWP3v1 (units: individuals/m2)

      图  3  基于第0(a)、6(b)、7(c)、9(d)和11(e)组参数,使用GSWP3v1和CRUNCEPv7驱动CLM5-FATES模式在长白山阔叶红松林永久样地模拟100年的常绿针叶林和落叶阔叶林的逐年变化(单位:株/m2

      Fig.  3.  Yearly variations in the number of individuals of evergreen needleleaf and deciduous broadleaf forests at the permanent sample plot of broadleaved Korean pine forest in Changbai Mountain over 100 years, simulated by the CLM5-FATES model driven by GSWP3v1 and CRUNCEPv7, based on the parameters from Set 0 (a), 6 (b), 7 (c), 9 (d), and 11 (e) in Table 1 (units: individuals/m2)

      图  4  基于观测资料1991年至2010年平均的长白山地区的常绿针叶林(ENF)和落叶阔叶林(DBF)面积百分比(单位:%)(a).第0、6、7、9和11组参数下,使用GSWP3v1(b~f)和CRUNCEPv7(g~k)驱动CLM5-FATES模式模拟的长白山地区第81~100年平均的常绿针叶林和落叶阔叶林的空间分布(单位:株/m2

      蓝色区域为长白山国家级自然保护区

      Fig.  4.  Percentage of forest area (a) covered by evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF) in the Changbai Mountain region based on observation averaged over the period from 1991 to 2010 (units: %). The simulated spatial distribution of evergreen needleleaf forests and deciduous broadleaf forests in the Changbai Mountain region averaged over years 81 to 100, using CLM5-FATES model driven by GSWP3v1 (b‒f) and CRUNCEPv7 (g‒k) based on parameters from Set 0, 6, 7, 9, and 11 (units: individuals/m2)

      表  1  25 ℃时最大羧化速率($ {V}_{\mathrm{c}, \ \max, \ 25} $)、比叶面积($ SLA $)和叶寿命($ {L}_{\mathrm{l}} $)三个属性的参数组合

      Table  1.   Parameter combinations for the maximum carboxylation rate at 25 ℃($ {V}_{\mathrm{c}, \ \max, \ 25} $), specific leaf area (SLA) and leaf longevity ($ {L}_{\mathrm{l}} $)

      参数组合序号 25 ℃时最大羧化速率($ {V}_{\mathrm{c}, \ \max, \ 25} $)
      ($ \mathtt{μ}\mathrm{m}\mathrm{o}\mathrm{l}\ \mathrm{C}{\mathrm{O}}_{2}{\mathrm{m}}^{-2}\cdot {\mathrm{s}}^{-1} $)
      比叶面积($ SLA $)
      ($ {\mathrm{m}}^{2}\cdot \mathrm{g}\cdot {\mathrm{C}}^{-1} $)
      叶寿命($ {L}_{\mathrm{l}} $)
      (年)
      常绿针叶 落叶阔叶 常绿针叶 落叶阔叶 常绿针叶 落叶阔叶
      0 65 58 0.010 0.030 4.000 0 1.000 0
      1 84 68 0.002 0.010 2.062 6 0.325 8
      2 44 74 0.004 0.008 2.382 4 0.535 7
      3 34 42 0.006 0.014 0.758 5 0.642 7
      4 49 47 0.003 0.017 4.115 5 0.149 8
      5 71 69 0.003 0.010 1.367 8 0.424 1
      6 47 61 0.006 0.021 3.170 4 0.299 4
      7 108 49 0.002 0.017 1.967 1 0.201 9
      8 65 97 0.003 0.006 2.202 5 0.303 5
      9 101 58 0.003 0.021 5.384 2 0.322 2
      10 47 79 0.004 0.010 1.640 3 0.395 2
      11 17 38 0.006 0.024 3.993 2 0.266 6
      12 87 79 0.003 0.010 2.761 3 0.538 4
      13 80 32 0.002 0.013 3.824 9 0.458 6
      14 1 42 0.004 0.018 1.469 7 0.321 4
      15 103 43 0.002 0.016 0.683 9 0.276 1
      注:参数组合序号0为CLM5-FATES模式原始参数,1~15依据Fisher et al.(2015)的参数计算得到.
      下载: 导出CSV

      表  2  仅用表 1的第6组或第9组中的$ {V}_{\mathrm{c}, \ \max, \ 25} $、$ SLA $或$ {L}_{\mathrm{l}} $参数替换CLM5-FATES原始参数的参数组合

      Table  2.   Parameter combinations replacing the original parameters of CLM5-FATES with $ {V}_{\mathrm{c}, \ \max, \ 25} $, SLA or $ {L}_{\mathrm{l}} $ from Set 6 or Set 9 in Table 1

      参数组合序号 $ {V}_{\mathrm{c}, \ \max, \ 25} $($ \mathtt{μ}\mathrm{m}\mathrm{o}\mathrm{l}\ \mathrm{C}{\mathrm{O}}_{2}{\mathrm{m}}^{-2}\cdot {\mathrm{s}}^{-1} $) $ SLA $($ {\mathrm{m}}^{2}\cdot \mathrm{g}\cdot {\mathrm{C}}^{-1} $) $ {L}_{\mathrm{l}} $(年)
      常绿针叶 落叶阔叶 常绿针叶 落叶阔叶 常绿针叶 落叶阔叶
      0 65 58 0.010 0.030 4.000 0 1.000 0
      6 47 61 0.006 0.021 3.170 4 0.299 4
      61 47 61 0.010 0.030 4.000 0 1.000 0
      62 65 58 0.006 0.021 4.000 0 1.000 0
      63 65 58 0.010 0.030 3.170 4 0.299 4
      9 101 58 0.003 0.021 5.384 2 0.322 2
      91 101 58 0.010 0.030 4.000 0 1.000 0
      92 65 58 0.003 0.021 4.000 0 1.000 0
      93 65 58 0.010 0.030 5.384 2 0.322 2
      下载: 导出CSV
    • Aboelyazeed, D., Xu, C. G., Hoffman, F. M., et al., 2023. A Differentiable, Physics-Informed Ecosystem Modeling and Learning Framework for Large-Scale Inverse Problems: Demonstration with Photosynthesis Simulations. Biogeosciences, 20(13): 2671-2692. https://doi.org/10.5194/bg-20-2671-2023
      Argles, A. P. K., Moore, J. R., Cox, P. M., 2022. Dynamic Global Vegetation Models: Searching for the Balance between Demographic Process Representation and Computational Tractability. PLOS Climate, 1(9): e0000068. https://doi.org/10.1371/journal.pclm.0000068
      Bao, Y., Wang, Y. Q., Nan, S. L., et al., 2023. Evaluation of Vegetation Characteristics over Qinghai-Xizang Plateau Simulated by a Vegetation Dynamic Model. Plateau Meteorology, 42(2): 333-343 (in Chinese with English abstract).
      Bonan, G. B., 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882): 1444-1449. https://doi.org/10.1126/science.1155121
      Bonan, G. B., Doney, S. C., 2018. Climate, Ecosystems, and Planetary Futures: The Challenge to Predict Life in Earth System Models. Science, 359(6375): eaam8328. https://doi.org/10.1126/science.aam8328
      Bonan, G. B., Lucier, O., Coen, D. R., et al., 2024. Reimagining Earth in the Earth System. Journal of Advances in Modeling Earth Systems, 16(8): e2023MS004017. https://doi.org/10.1029/2023MS004017
      Cheng, K., Chen, Y. L., Xiang, T. Y., et al., 2024. A 2020 Forest Age Map for China with 30 m Resolution. Earth System Science Data, 16(2): 803-819. https://doi.org/10.5194/essd-16-803-2024
      Cheng, Y. Y., Leung, L. R., Huang, M. Y., et al., 2022. Modeling the Joint Effects of Vegetation Characteristics and Soil Properties on Ecosystem Dynamics in a Panama Tropical Forest. Journal of Advances in Modeling Earth Systems, 14(1): e2021MS002603. https://doi.org/10.1029/2021MS002603
      Dai, Y. J., Zeng, X. B., Dickinson, R. E., et al., 2003. The Common Land Model. Bulletin of the American Meteorological Society, 84(8): 1013-1024. https://doi.org/10.1175/bams-84-8-1013
      Fisher, R. A., Koven, C. D., Anderegg, W. R. L., et al., 2018. Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Global Change Biology, 24(1): 35-54. https://doi.org/10.1111/gcb.13910
      Fisher, R. A., Muszala, S., Verteinstein, M., et al., 2015. Taking off the Training Wheels: The Properties of a Dynamic Vegetation Model without Climate Envelopes, CLM4.5(ED). Geoscientific Model Development, 8(11): 3593-3619. https://doi.org/10.5194/gmd-8-3593-2015
      Han, S. J., 2012. China Ecosystem Location Observation and Research Dataset, Forest Ecosystem Volume: Changbaishan Station from 2001 to 2008, Jilin. China Agriculture Press, Beijing (in Chinese).
      Hao, Z. Q., Li, B. H., Zhang, J., et al., 2008. Broad-Leaved Korean Pine (Pinus Koraiensis) Mixed Forest Plot in Changbaishan (CBS) of China: Community Composition and Structure. Journal of Plant Ecology, 32(2): 238-250 (in Chinese with English abstract).
      Kattge, J., Knorr, W., Raddatz, T., et al., 2009. Quantifying Photosynthetic Capacity and Its Relationship to Leaf Nitrogen Content for Global-Scale Terrestrial Biosphere Models. Global Change Biology, 15(4): 976-991. https://doi.org/10.1111/j.1365-2486.2008.01744.x
      Koven, C. D., Knox, R. G., Fisher, R. A., et al., 2020. Benchmarking and Parameter Sensitivity of Physiological and Vegetation Dynamics Using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences, 17(11): 3017-3044. https://doi.org/10.5194/bg-17-3017-2020
      Lawrence, D. M., Fisher, R. A., Koven, C. D., et al., 2019. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 11(12): 4245-4287. https://doi.org/10.1029/2018MS001583
      Li, S. Q., Zhang, X., Lu, Z. Y., et al., 2024. Progress of Vegetation Modelling and Future Research Prospects. Science China Earth Sciences, 54(9): 2762-2782 (in Chinese).
      Li, X., Ma, H. Q., Ran, Y. H., et al., 2021. Terrestrial Carbon Cycle Model-Data Fusion: Progress and Challenges. Science China Earth Sciences, 51(10): 1650-1663 (in Chinese).
      Liu, C. C., He, N. P., Li, Y., et al., 2024. Current and Future Trends of Plant Functional Traits in Macro-Ecology. Chinese Journal of Plant Ecology, 48(1): 21-40 (in Chinese with English abstract). doi: 10.17521/cjpe.2023.0111
      Liu, K. J., He, N. P., Hou, J. H., 2022. Spatial Patterns and Influencing Factors of Specific Leaf Area in Typical Temperate Forests. Acta Ecologica Sinica, 42(3): 872-883 (in Chinese with English abstract).
      Liu, Y. L., Holm, J. A., Koven, C. D., et al., 2024. Large Divergence of Projected High Latitude Vegetation Composition and Productivity Due to Functional Trait Uncertainty. Earth's Future, 12(8): e2024EF004563. https://doi.org/10.1029/2024EF004563
      Massoud, E. C., Xu, C. G., Fisher, R. A., et al., 2019. Identification of Key Parameters Controlling Demographically Structured Vegetation Dynamics in a Land Surface Model: CLM4.5(FATES). Geoscientific Model Development, 12(9): 4133-4164. https://doi.org/10.5194/gmd-12-4133-2019
      Peng, J. M., Liu, S. F., Dai, Y. J., et al., 2020. Evaluation of Common Land Model Based on International Land Model Benchmarking System. Climatic and Environmental Research, 25(6): 649-666 (in Chinese with English abstract).
      Peng, S. S., Yue, C., Chang, J. F., 2020. Developments and Applications of Terrestrial Biosphere Model. Chinese Journal of Plant Ecology, 44(4): 436-448 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0315
      Piao, S. L., Liu, Q., Chen, A. P., et al., 2019. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Global Change Biology, 25(6): 1922-1940. https://doi.org/10.1111/gcb.14619
      Shi, M. J., Keller, M., Bomfim, B., et al., 2024. Functionally Assembled Terrestrial Ecosystem Simulator (FATES) for Hurricane Disturbance and Recovery. Journal of Advances in Modeling Earth Systems, 16(1): e2023MS003679. https://doi.org/10.1029/2023MS003679
      Sui, Y., Wei, M., Liu, B., 2025. Biophysical Impacts of Global Deforestation on Near-Surface Air Temperature in China: Results from Land Use Model Intercomparison Project Simulations. Advances in Atmospheric Sciences, 42(6): 1141-1155. https://doi.org/10.1007/s00376-024-4149-z
      Viovy, N., 2018. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model. Research data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. https://doi.org/10.5065/PZ8F-F017
      Wang, D. Y., Zeng, X. D., Song, X., 2024. Evaluation of CMIP6 Models in Simulating the Sensitivity of Leaf Area Index to Temperature and Precipitation Changes over China. Chinese Journal of Atmospheric Sciences, 48(5): 1961-1977 (in Chinese with English abstract).
      Wright, I. J., Reich, P. B., Westoby, M., et al., 2004. The Worldwide Leaf Economics Spectrum. Nature, 428(6985): 821-827. https://doi.org/10.1038/nature02403
      Xia, J. Y., Lu, R. L., Zhu, C., et al., 2020. Response and Adaptation of Terrestrial Ecosystem Processes to Climate Warming. Chinese Journal of Plant Ecology, 44(5): 494-514 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0323
      Xie, X. Y., Li, A. N., Jin, H. A., 2018. The Simulation Models of the Forest Carbon Cycle on a Large Scale: A Review. Acta Ecologica Sinica, 38(1): 41-54 (in Chinese with English abstract).
      Yang, Y. Z., Wang, H., Zhu, Q. A., et al., 2018. Research Progresses in Improving Dynamic Global Vegetation Models (DGVMS) with Plant Functional Traits. Chinese Science Bulletin, 63(25): 2599-2611 (in Chinese with English abstract). doi: 10.1360/N972018-00366
      Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract).
      Zhao, D. S., Wang, K., Cui, Y. P., 2023. Feedback Mechanisms and Regulatory Effects of Vegetation Change on Climate. Acta Ecologica Sinica, 43(19): 7830-7840 (in Chinese with English abstract).
      Zhu, Q., Zhou, W. M., Jia, X., et al., 2019. Ecological Vulnerability Assessment on Changbai Mountain National Nature Reserve and Its Surrounding Areas, Northeast China. Chinese Journal of Applied Ecology, 30(5): 1633-1641 (in Chinese with English abstract).
      鲍艳, 王玉琦, 南素兰, 等, 2023. 动态植被模型对青藏高原植被的模拟检验. 高原气象, 42(2): 333-343.
      韩士杰, 2012. 中国生态系统定位观测与研究数据集, 森林生态系统卷: 吉林长白山站(2001-2008). 北京: 中国农业出版社.
      郝占庆, 李步杭, 张健, 等, 2008. 长白山阔叶红松林样地(CBS): 群落组成与结构. 植物生态学报, 32(2): 238-250.
      李思其, 张旭, 陆正遥, 等, 2024. 植被模型研究进展与展望. 中国科学: 地球科学, 54(9): 2762-2782.
      李新, 马瀚青, 冉有华, 等, 2021. 陆地碳循环模型‒数据融合: 前沿与挑战. 中国科学: 地球科学, 51(10): 1650-1663.
      刘聪聪, 何念鹏, 李颖, 等, 2024. 宏观生态学中的植物功能性状研究: 历史与发展趋势. 植物生态学报, 48(1): 21-40.
      刘可佳, 何念鹏, 侯继华, 2022. 中国温带典型森林植物比叶面积的空间格局及其影响因素. 生态学报, 42(3): 872-883.
      彭静漫, 刘少锋, 戴永久, 等, 2020. 基于陆面模式基准平台ILAMB对陆面模式CoLM的评估. 气候与环境研究, 25(6): 649-666.
      彭书时, 岳超, 常锦峰, 2020. 陆地生物圈模型的发展与应用. 植物生态学报, 44(4): 436-448.
      王丹云, 曾晓东, 宋翔, 2024. CMIP6模式关于中国叶面积指数对温度和降水变化敏感性的模拟能力评估. 大气科学, 48(5): 1961-1977.
      夏建阳, 鲁芮伶, 朱辰, 等, 2020. 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44(5): 494-514.
      谢馨瑶, 李爱农, 靳华安, 2018. 大尺度森林碳循环过程模拟模型综述. 生态学报, 38(1): 41-54.
      杨延征, 王焓, 朱求安, 等, 2018. 植物功能性状对动态全球植被模型改进研究进展. 科学通报, 63(25): 2599-2611.
      张仲石, 李双林, 王会军, 等, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. https://d.wanfangdata.com.cn/periodical/dqkx202210007
      赵东升, 王珂, 崔耀平, 2023. 植被变化对气候的反馈机制及调节效应. 生态学报, 43(19): 7830-7840.
      朱琪, 周旺明, 贾翔, 等, 2019. 长白山国家自然保护区及其周边地区生态脆弱性评估. 应用生态学报, 30(5): 1633-1641.
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  149
    • HTML全文浏览量:  4
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-25
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回