• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Newmark模型的桩锚组合加固边坡动力响应分析

    彭铭 何龙坤 孙蕊 齐辉 崔新壮 毕竞超 杜长城 赵庆新

    彭铭, 何龙坤, 孙蕊, 齐辉, 崔新壮, 毕竞超, 杜长城, 赵庆新, 2025. 基于Newmark模型的桩锚组合加固边坡动力响应分析. 地球科学, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075
    引用本文: 彭铭, 何龙坤, 孙蕊, 齐辉, 崔新壮, 毕竞超, 杜长城, 赵庆新, 2025. 基于Newmark模型的桩锚组合加固边坡动力响应分析. 地球科学, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075
    Peng Ming, He Longkun, Sun Rui, Qi Hui, Cui Xinzhuang, Bi Jingchao, Du Changcheng, Zhao Qingxin, 2025. Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model. Earth Science, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075
    Citation: Peng Ming, He Longkun, Sun Rui, Qi Hui, Cui Xinzhuang, Bi Jingchao, Du Changcheng, Zhao Qingxin, 2025. Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model. Earth Science, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075

    基于Newmark模型的桩锚组合加固边坡动力响应分析

    doi: 10.3799/dqkx.2025.075
    基金项目: 

    国家自然科学基金-联合基金项目 U23A2044

    国家重点研发计划项目 2019YFC1509702

    详细信息
      作者简介:

      彭铭(1981-),男,博士,教授,博士生导师,主要从事地质灾害、大坝安全与溃坝机理分析.E-mail:pengming@tongji.edu.cn

      通讯作者:

      孙蕊(1993-),女,博士,博士后,主要从事加筋土边坡动力响应及可靠度分析.E-mail: sr-tjut@tongji.edu.cn

    • 中图分类号: P642

    Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model

    • 摘要:

      抗滑桩和锚索组合结构可以充分发挥抗滑桩的刚性约束和锚索的主动张拉来控制边坡变形,表现出良好的抗震性能,已被广泛应用于强震区滑坡防治.然而,目前关于桩锚组合结构加固边坡的地震动力响应研究较少,其协同抗震机制尚不明确.基于Newmark模型,提出了一种考虑地震时程特性的桩锚组合结构加固边坡的动力响应分析方法.并将该方法应用于山东高速公路高边坡,分析了不同加固方式下边坡的永久位移、安全系数以及支护结构的内力.结果表明,桩锚组合结构有效减小了边坡永久位移,确保边坡的稳定性;桩锚组合支护相较于仅锚支护和仅桩支护,锚固端的最大锚固拉力、桩身最大剪力和最大弯矩均有所减小;随着黏聚力和内摩擦角的增大,边坡屈服加速度呈正比例增加,而永久位移则从急剧减小过渡到缓慢下降,其中黏聚力的影响更为显著.桩锚组合结构通过形成主动受力体系,增大了边坡的屈服加速度,实现了桩和锚索的协调受力,防止滑面附近应力过度集中,是一种高效的加固方式.

       

    • 图  1  双曲主干曲线(Fkramer, 1995)

      Fig.  1.  Hyperbolic backbone curve(Fkramer, 1995)

      图  2  Newmark位移滑块模型(Jibson and Michael, 2009)

      Fig.  2.  Newmark displacement slider mode(Jibson and Michael, 2009)

      图  3  Newmark位移计算示意图(Wilson and Keefer, 1983)

      Fig.  3.  Newmark displacement calculation diagram(Wilson and Keefer, 1983)

      图  4  基于Newmark模型的桩锚组合加固边坡动力响应分析方法计算流程

      Fig.  4.  Calculation flow chart of dynamic response analysis method of slope reinforced by pile-anchor combination based on Newmark model

      图  5  济南-潍坊高速公路边坡案例现场图和剖面图

      a.施工期间边坡坡顶坍塌现场图; b.设计修改后的边坡现场图; c.修改后的边坡剖面图

      Fig.  5.  On-site and cross-sectional diagrams of the slope case study along the Jinan-Weifang expressway

      图  6  不同工况下边坡的支护设计

      a.未支护; b.仅锚支护; c.仅桩支护; d.桩锚组合支护

      Fig.  6.  Support design diagram of slope under different working conditions

      图  7  峰值加速度为0.15 g的不同地震波时程记录

      a.El Centro波地震时程记录; b.鲁甸波地震时程记录; c.汶川波地震时程记录

      Fig.  7.  Time history records of different seismic waves with peak acceleration of 0.15 g

      图  8  不同工况下边坡竖向位移变化云图

      a.未支护; b.仅锚支护; c.仅桩支护; d.桩锚组合支护

      Fig.  8.  Nephogram of vertical displacement change of slope under different working conditions

      图  9  不同地震波作用下边坡永久位移-时间变化曲线

      a.El Centro波作用下边坡永久位移-时间变化曲线; b.鲁甸波作用下边坡永久位移-时间变化曲线; c.汶川波作用下边坡永久位移-时间变化曲线

      Fig.  9.  Permanent displacement-time curves of slope under different seismic waves

      图  10  El Centro波作用时不同工况边坡平均加速度、速度、累积变形随时间变化曲线

      a.未支护; b.仅锚支护; c, 仅桩支护; d.桩锚组合支护

      Fig.  10.  Curve of average acceleration, velocity and cumulative deformation of slope under different working conditions under the action of EI Centro wave with time

      图  11  不同工况下边坡安全系数随时间变化曲线

      Fig.  11.  Curves of slope safety factor with time under different working conditions

      图  12  不同地震波下锚固段轴力分布

      a.El Centro波作用下锚固段轴力分布; b.鲁甸波作用下锚固段轴力分布; c.汶川波作用下锚固段轴力分布

      Fig.  12.  Axial force distribution of anchorage section under different seismic waves

      图  13  不同地震波下桩身最大弯矩分布

      a.El Centro波作用下桩身最大弯矩分布; b.鲁甸波作用下桩身最大弯矩分布; c.汶川波作用下桩身最大弯矩分布

      Fig.  13.  Distribution diagrams of maximum bending moment of pile under different seismic waves

      图  14  不同地震波下桩身最大剪力分布

      a.El Centro波作用下桩身最大剪力分布图; b.鲁甸波作用下桩身最大剪力分布图; c.汶川波作用下桩身最大剪力分布图

      Fig.  14.  Distribution diagrams of maximum shear force of pile under different seismic waves

      图  15  黏聚力(a)和内摩擦角(b)对边坡屈服加速度和永久变形的敏感性

      Fig.  15.  Sensitivity of cohesion (a) and internal friction angle (b) to yield acceleration and permanent deformation of slope

      图  16  黏聚力、内摩擦角对边坡屈服加速度(a)和永久位移参数敏感度(b)曲线

      a.黏聚力、内摩擦角对边坡屈服加速度的参数敏感度曲线; b.黏聚力、内摩擦角对永久位移的参数敏感度曲线

      Fig.  16.  Sensitivity curves of cohesion and internal friction angle to yield acceleration (a) and permanent displacement parameters (b) of slope

      表  1  边坡各层物理力学参数

      Table  1.   Physical and mechanical parameters of each rock formation

      层号 岩石名称 重度γ(kN/m3) 黏聚力c(kPa) 内摩擦角φ(°) 阻尼比D 泊松比ν
      1 土层 17.5 13 12 0.1 0.26
      2 土岩界面 18 10 12 0.1 0.25
      3 岩层 21 2 000 32 0.1 0.31
      下载: 导出CSV

      表  2  加固材料参数

      Table  2.   Parameters of reinforcement materials

      加固方式 弹性模量(kPa) 截面积(m2) 截面惯性矩(m4) 轴向预应力(kN) 倾角(°) 长度(m)
      2×108 0.025 45 5×10-4 / / 16
      锚索锚固段 2×108 0.006 36 2.5×10-4 / 20 12
      锚索自由段 2×108 0.006 36 / 500 20 6
      下载: 导出CSV

      表  3  不同地震波作用时不同工况边坡屈服加速度和永久位移表

      Table  3.   Yield acceleration and permanent displacement of slope under different working conditions under different seismic waves

      支护方式 未支护 仅锚
      支护
      仅桩
      支护
      桩锚组合支护
      屈服加速度(m/s2) 0.014 1 0.015 8 0.017 4 0.025 4
      El Centro波永久位移(m) 0.078 6 0.047 0 0.042 6 0.008 4
      鲁甸波永久位移(m) 0.051 1 0.031 8 0.027 8 0.007 0
      汶川波永久位移(m) 0.013 1 0.002 7 0.004 5 0.000 2
      下载: 导出CSV

      表  4  Newmark位移范围与失效概率之间的关系

      Table  4.   Relation between Newmark displacement range and failure probability

      Newmark位移(cm) 滑坡发生的可能性
      0~1 低(0~2%)
      1~5 中等(2%~15%)
      5~15 高(15%~32%)
      > 15 很高(> 32%)
      下载: 导出CSV
    • Chen, J. F., Du, C. C., Chen, S. X., et al., 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372(in Chinese with English abstract).
      Chen, Q. G., Ge, H., Zhou, H. F., 2011. Mapping of Seismic Triggered Landslide through Newmark Method: An Example from Study Area Yingxiu. Coal Geology of China, 23(11): 44-48, 56 (in Chinese with English abstract).
      Du, W. Q., 2018. Effects of Directionality and Vertical Component of Ground Motions on Seismic Slope Displacements in Newmark Sliding-Block Analysis. Engineering Geology, 239: 13-21. https://doi.org/10.1016/j.enggeo.2018.03.012
      Fkramer, S. L., 1995. Geotechnical Earthquake Engineering. Mcgraw Hill Handbooks. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000042
      Franklin, A. G., Chang, F. K., 1977. Earthquake Resistance of Earth and Rock-Fill Dams. Report 5: Permanent Displacements of Earth Embankments by Newmark Sliding Block Analysis. Department of Defense, Department of the Army, Corps of Engineers, Waterways Experiment Station, Soils and Pavements Laboratory.
      Gao, S. F., Feng, Y. F., 2022. Simplified Analysis Method of Bank Slope Seismic Stability Based on Newmark's Sliding Block Method. Port & Waterway Engineering, (6): 40-48 (in Chinese with English abstract).
      Gao, S. F., Gong, J. X., Feng, Y. F., 2015. Estimation of Earthquake-Induced Permanent Slope Deformation Based on Response Spectrum in Code. Hydro-Science and Engineering, (3): 37-44 (in Chinese with English abstract).
      Ge, H., Chen, Q. G., Wang, D. W., 2013. The Assessment and Mapping of Seismic Landslide Hazards: A Case Study of Yingxiu Area, Sichuan Province. Geology in China, 40(2): 644-652 (in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658(in Chinese with English abstract).
      Jibson, R. W., Harp, E. L., Michael, J. A., 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area. US Department of the Interior, US Geological Survey, Washington, D. C., USA.
      Jibson, R. W., Michael, J. A., 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska. Center for Integrated Data Analytics Wisconsin Science Center.
      Jin, K. P., Yao, L. K., Chen, M. D., 2019. Improvement of Newmark Model and Method Study of Risk Zoning for Earthquake Triggered Landslide. Journal of Disaster Prevention and Mitigation Engineering, 39(2): 301-308 (in Chinese with English abstract).
      Kokusho, T., 2019. Energy-Based Newmark Method for Earthquake-Induced Slope Displacements. Soil Dynamics and Earthquake Engineering, 121: 121-134. https://doi.org/10.1016/j.soildyn.2019.02.027
      Lei, Z., Li, L. R., Long, J. F., et al., 2022. Improvement of Newmark Model and Prediction of Seismic Landslide Risk Based on Rainfall Infiltration. China Earthquake Engineering Journal, 44(3): 527-534 (in Chinese with English abstract).
      Li, H. J., Chi, S. C., Lin, G., 2006. Newmark Slider Displacement Method Based on Dynamic Strength Model and Time-History Stress Analysis. Rock and Soil Mechanics, 27(S2): 1063-1068 (in Chinese with English abstract).
      Li, J. F., Su, Y., Sun, Z. B., et al., 2020.3D Seismic Displacement Analysis Method of Stepped Slopes Reinforced with Piles Based on Newmark Principle. Rock and Soil Mechanics, 41(8): 2785-2795 (in Chinese with English abstract).
      Liu, B., Zhang, B. Y., 2019. Analysis of Seismic Permanent Displacement of a High Slope for a Hydropower Plant in Tibet. Journal of China Institute of Water Resources and Hydropower Research, 17(2): 125-131 (in Chinese with English abstract).
      Luo, Q., Li, L., Zhao, L. H., 2010. Quasi-Static Analysis of Seismic Stability of Anchored Rock Slope under Surcharge and Water Pressure Conditions. Rock and Soil Mechanics, 31(11): 3585-3593 (in Chinese with English abstract).
      Ma, X. W., Liang, Q. G., Zhao, T., et al., 2021. Review and Further Consideration on Research of Soil Dynamics. World Earthquake Engineering, 37(4): 217-230 (in Chinese with English abstract).
      Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2014. Technical Code for Building Slope Engineering: GB 50330—2013. China Architecture & Building Press, Beijing (in Chinese).
      Nadukuru, S. S., Michalowski, R. L., 2013. Three-Dimensional Displacement Analysis of Slopes Subjected to Seismic Loads. Canadian Geotechnical Journal, 50(6): 650-661. https://doi.org/10.1139/cgj-2012-0223
      Naylor, D. J., 1982. Finite Elements and Slope Stability. Numerical Methods in Geomechanics. Dordrecht: Springer Netherlands: 229-244. https://doi.org/10.1007/978-94-009-7895-9_10 doi: 10.1007/978-94-009-7895-9_10
      Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Geotechnique, 15(2): 139-160. https://doi.org/10.1680/geot.1965.15.2.139
      Nouri, H., Fakher, A., Jones, C. J. F. P., 2006. Development of Horizontal Slice Method for Seismic Stability Analysis of Reinforced Slopes and Walls. Geotextiles and Geomembranes, 24(3): 175-187. https://doi.org/10.1016/j.geotexmem.2005.11.004
      Poulos, H. G., Davis, E. H., 1980. Pile Foundation Analysis and Design. Rainbow-Bridge Book Co., Wiley, New York. http://worldcat.org/isbn/0471020842
      Veylon, G., Luu, L. H., Mercklé, S., et al., 2017. A Simplified Method for Estimating Newmark Displacements of Mountain Reservoirs. Soil Dynamics and Earthquake Engineering, 100: 518-528. https://doi.org/10.1016/j.soildyn.2017.07.003
      Wilson, R. C., Keefer, D. K., 1983. Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Seismological Society of America, 73(3): 863-877. https://doi.org/10.1785/bssa0730030863
      Wu, J. J., Chen, W. K., Jia, Y. J., et al., 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: A Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781(in Chinese with English abstract).
      Xu, G. X., Yao, L. K., Li, C. H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong-Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131-1136 (in Chinese with English abstract).
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732(in Chinese with English abstract).
      Zhang, B. Y., Wang, C., Li, D. Y., et al., 2018. The Research Progress on Seismic Stability Analysis of Slopes in Water Conservancy and Hydropower Projects. Journal of China Institute of Water Resources and Hydropower Research, 16(3): 168-178 (in Chinese with English abstract).
      Zhang, G., Zhu, W. S., 1993. Parameter Sensitivity Analysis and Optimizing for Test Programs. Rock and Soil Mechanics, 14(1): 51-58(in Chinese with English abstract).
      Zhang, L., Lu, C., Kong, Y. N., 2020. Comparison of Chinese and Foreign Strong Seismic Design Methods for Bank Slope. Port & Waterway Engineering, (5): 218-223 (in Chinese with English abstract).
      Zhou, D. P., Zhang, J. J., Tang, Y., 2010. Seismic Damage Analysis of Road Slopes in Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(3): 565-576 (in Chinese with English abstract).
      陈建峰, 杜长城, 陈思贤, 等, 2022. 地震作用下抗滑桩-预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372.
      陈启国, 葛华, 周洪福, 2011. 利用Newmark方法进行地震滑坡制图: 以映秀研究区为例. 中国煤炭地质, 23(11): 44-48, 56.
      高树飞, 冯云芬, 2022. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程, (6): 40-48.
      高树飞, 贡金鑫, 冯云芬, 2015. 基于规范反应谱的码头岸坡地震永久变形计算. 水利水运工程学报, (3): 37-44.
      葛华, 陈启国, 王德伟, 2013. 地震滑坡危险性评价及编图: 以映秀震中区为例. 中国地质, 40(2): 644-652.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      金凯平, 姚令侃, 陈秒单, 2019. Newmark模型的修正以及地震触发崩塌滑坡危险性区划方法研究. 防灾减灾工程学报, 39(2): 301-308.
      雷真, 李林锐, 隆交凤, 等, 2022. 基于降雨入渗的Newmark模型改进及地震滑坡危险性预测研究. 地震工程学报, 44(3): 527-534.
      李红军, 迟世春, 林皋, 2006. 基于动强度模式和时程应力分析的Newmark滑块位移法. 岩土力学, 27(S2): 1063-1068.
      李见飞, 苏杨, 孙志彬, 等, 2020. 基于Newmark滑块原理的抗滑桩加固三维土坡的地震位移分析方法. 岩土力学, 41(8): 2785-2795.
      刘彪, 张伯艳, 2019. 西藏某水电站高边坡地震永久位移分析. 中国水利水电科学研究院学报, 17(2): 125-131.
      罗强, 李亮, 赵炼恒, 2010. 水力和超载条件下锚固岩石边坡动态稳定性拟静力分析. 岩土力学, 31(11): 3585-3593.
      马晓文, 梁庆国, 赵涛, 等, 2021. 土动力学研究综述及思考. 世界地震工程, 37(4): 217-230.
      吴佳杰, 陈文凯, 贾艺娇, 等, 2025. 基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781.
      徐光兴, 姚令侃, 李朝红, 等, 2012. 基于汶川地震强震动记录的边坡永久位移预测模型. 岩土工程学报, 34(6): 1131-1136.
      杨婷, 王世广, 房立华, 等, 2025.2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
      张伯艳, 王璨, 李德玉, 等, 2018. 地震作用下水利水电工程边坡稳定分析研究进展. 中国水利水电科学研究院学报, 16(3): 168-178.
      章光, 朱维申, 1993. 参数敏感性分析与试验方案优化. 岩土力学, 14(1): 51-58.
      张磊, 陆澄, 孔友南, 2020. 中外岸坡抗强震设计方法对比. 水运工程(5): 218-223.
      中华人民共和国住房和城乡建设部, 2014. 建筑边坡工程技术规范GB 50330—2013[S]. 北京: 中国建筑工业出版社.
      周德培, 张建经, 汤涌, 2010. 汶川地震中道路边坡工程震害分析. 岩石力学与工程学报, 29(3): 565-576.
    • 加载中
    图(16) / 表(4)
    计量
    • 文章访问数:  139
    • HTML全文浏览量:  6
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-03
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回