• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    白格滑坡构造混杂岩的空间结构和强度特性对滑动带形成和远程运动的影响

    彭星亮 汪发武 陈也 赵子昕

    彭星亮, 汪发武, 陈也, 赵子昕, 2025. 白格滑坡构造混杂岩的空间结构和强度特性对滑动带形成和远程运动的影响. 地球科学, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079
    引用本文: 彭星亮, 汪发武, 陈也, 赵子昕, 2025. 白格滑坡构造混杂岩的空间结构和强度特性对滑动带形成和远程运动的影响. 地球科学, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079
    Peng Xingliang, Wang Fawu, Chen Ye, Zhao Zixin, 2025. Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement. Earth Science, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079
    Citation: Peng Xingliang, Wang Fawu, Chen Ye, Zhao Zixin, 2025. Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement. Earth Science, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079

    白格滑坡构造混杂岩的空间结构和强度特性对滑动带形成和远程运动的影响

    doi: 10.3799/dqkx.2025.079
    基金项目: 

    国家自然科学基金资助项目 42230715

    详细信息
      作者简介:

      彭星亮(1993-),男,博士生,主要从事应用地球物理,地质灾害方面的研究工作.ORCID:0000-0002-1132-5703. E-mail:jackliang@tongji.edu.cn

      通讯作者:

      汪发武(1965-),男,博士,教授,博士生导师,主要从事工程地质,地质灾害方面的研究工作.ORCID: 0000-0002-5912-7095. E-mail: wangfw@tongji.edu.cn

    • 中图分类号: P642

    Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement

    • 摘要:

      2018年10月和11月在金沙江构造混杂岩带中段相继发生两次大型高位远程滑坡,并引发滑坡-堰塞湖灾害链,滑坡源区位于西藏自治区昌都市江达县白格村.针对白格滑坡的远程运动特性,通过室内微观特性测试分析滑坡处构造混杂岩的岩性特征,运用环境噪声频散测量探明物源区构造混杂岩的空间结构,结合不排水环剪试验剖析滑动带物质的剪切行为.研究发现,(1)滑坡物源区的构造混杂岩主要由绿泥石化变质粉砂岩和伊利石化变质板岩组成,均含有较高比例粘土矿物成分,遇水易发生风化作用导致强度降低;(2)坡体内构造混杂岩块体的分布结构显著影响滑动带的形成和形状,滑动带沿着块体和基质之间的薄弱区域扩展,在岩体内呈现“绕块体发育”模式;(3)饱和滑动带试样在长距离不排水剪切过程中产生高孔隙水压力,导致强度显著弱化,其峰值抗剪强度和残余强度降低为干燥状态下的67%和60%.结果表明,构造混杂岩的强度劣化特性和块体分布结构对滑动带的形成有显著影响,其剪切强度特性对滑坡的远程运移具有控制作用.此研究可为白格滑坡坡体后续可能的变形破坏分析提供依据,还可进一步为构造混杂岩地区边坡稳定性评价和同类型滑坡灾害防治提供参考.

       

    • 图  1  白格滑坡区域地质图

      修改自王国生等,1992,白玉县幅H-47-9雄松区幅H-47-15 1/20万区域地质调查报告;底图为吉林一号卫星地图

      Fig.  1.  Geological map of the Baige landslide area

      图  2  白格滑坡地形图

      由2023年4月10日滑坡现场无人机航测数据生成. a.滑坡三维点云地形图;b.滑坡地形等高线图;c.滑坡纵剖面L-L’(滑前地形源自谷歌地球)

      Fig.  2.  Topographic map of the Baige landslide

      图  3  白格滑坡现场调查情况

      a.白格滑坡物源区环境噪声频散测量BG05与BG06测线位置(修改自吉林一号卫星影像);b.白格滑坡全貌;c.滑坡后壁渐进式破坏(b~c均由无人机拍摄);d.滑坡后缘平台发生变形破坏后形成的张拉裂缝及倾倒的监测设备;e.滑坡后缘测试现场露头

      Fig.  3.  On-site investigation of the Baige landslide

      图  4  滑坡物源区露头岩石样品偏光显微镜照片

      a.绿泥石化变质粉砂岩BG-A;b. 高岭石化变质粉砂岩(方解石化)BG-B;c. 伊利石化变质板岩(含细砂粉砂)BG-C;d. 绿泥石化变质粉砂岩BG-D.Pl. 斜长石;Chl. 绿泥石;Ser. 绢云母;Lm. 褐铁矿

      Fig.  4.  Photographs of rock samples from the source area of the landslide under optical microscope

      图  5  白格滑坡物源区岩样X射线衍射粘土矿物测试图谱

      a.未经处理的自然样品;b.饱和乙二醇处理样品;c.450 ℃高温处理后样品

      Fig.  5.  X-ray diffraction patterns of clay mineral components in rock samples from the source area of the Baige landslide

      图  6  白格滑坡物源区环境噪声频散测量结果

      a. 测线BG05;b. 测线BG06

      Fig.  6.  Results of ambient noise dispersion measurements in the source area of the Baige landslide

      图  7  ICL-2不排水环剪试验情况

      a. 滑动带试验样品(砾石土);b. 筛分后试样;c. 干燥条件下环剪后;d. 饱和条件下环剪后

      Fig.  7.  Conditions of ICL-2 undrained ring shear test

      图  8  干燥试样在排水条件下进行速度控制时环剪测试的结果(剪切速率为2 mm/s)

      a. 剪切阻力随剪切位移的变化(正应力控制在600 kPa);b. 应力路径与破坏线

      Fig.  8.  Results of speed-controlled ring shear test on dry samples (shear rate = 2 mm/s)

      图  9  饱和不排水条件下滑动带物质速度控制下环形剪切试验结果(剪切速率为2 mm/s, BD=0.95)

      a. 剪切阻力与孔隙水压力随剪切位移的变化;b. 应力路径与破坏线

      Fig.  9.  Results of speed-controlled ring shear test on sliding zone materials under saturated undrained conditions (shear rate=2 mm/s, BD=0.95)

      表  1  白格滑坡物源区岩样X射线衍射粘土矿物定量分析结果

      Table  1.   X-ray diffraction quantitative analysis results of claymineral components in rock samples from the source area of the Baige landslide

      样品编号 粘土质组分形成的变质矿物占比 粘土矿物主要矿物及相对质量百分比(%)
      伊利石(It) 高岭石(Kao) 绿泥石(C)
      BG-A 25% 5 / 95
      BG-B 20%~30% 41 50 9
      BG-C 25%~30% 95 / 5
      BG-D 20%~25% 5 / 95
      下载: 导出CSV
    • Asten, M. W., Hayashi, K., 2018. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise. Surveys in Geophysics, 39(4): 633-659. https://doi.org/10.1007/s10712-018-9474-2
      Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409 (in Chinese with English abstract).
      Chen, F., Wang, S., Gao, Y. J., et al., 2020. Evolution of the Cracking Zones at the Site of the Baige Landslides and Their Future Development. Advanced Engineering Sciences, 52(5): 71-78 (in Chinese with English abstract).
      Chen, Y., Wang, F. W., Feng, Y. Q., et al., 2024. Localised Fluidisation in a Giant Loess Landslide. Engineering Geology, 344: 107854. https://doi.org/10.1016/j.enggeo.2024.1078544
      Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5
      Fang, J. R., Song, J., Li, X., 2021. Quantitative Analysis of Clay Minerals' Influence on Bound Water Characteristics and Mechanical Properties of Soft Soils. Journal of Engineering Geology, 29(5): 1303-1311 (in Chinese with English abstract).
      Feng, W. K., Zhang, G. Q., Bai, H. L., et al., 2019. A Preliminary Analysis of the Formation Mechanism and Development Tendency of the Huge Baige Landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 27(2): 415-425 (in Chinese with English abstract).
      Festa, A., Dilek, Y., Pini, G. A., et al., 2012. Mechanisms and Processes of Stratal Disruption and Mixing in the Development of Mélanges and Broken Formations: Redefining and Classifying Mélanges. Tectonophysics, 568: 7-24. https://doi.org/10.1016/j.tecto.2012.05.021
      Festa, A., Pini, G. A., Ogata, K., et al., 2019. Diagnostic Features and Field-Criteria in Recognition of Tectonic, Sedimentary and Diapiric Mélanges in Orogenic Belts and Exhumed Subduction-Accretion Complexes. Gondwana Research, 74: 7-30. https://doi.org/10.1016/j.gr.2019.01.003
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract).
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700 (in Chinese with English abstract).
      Kimura, G., Yamaguchi, A., Hojo, M., et al., 2012. Tectonic Mélange as Fault Rock of Subduction Plate Boundary. Tectonophysics, 568: 25-38. https://doi.org/10.1016/j.tecto.2011.08.025
      Li, J. Q., Zhang, Y. S., Ren, S. S., et al., 2024. Catastrophic Mechanical Behavior of Clay-Altered Rock in the Baige Landslide Upstream of the Jinsha River. Advanced Engineering Sciences, 56(3): 72-82 (in Chinese with English abstract).
      Lin, S., Wang, W., Deng, X. H., et al., 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146 (in Chinese with English abstract).
      Montoya-Araque, E. A., Suarez-Burgoa, L. O., 2019. Automatic Generation of Tortuous Failure Surfaces in Block-in-Matrix Materials for 2D Slope Stability Assessments. Computers and Geotechnics, 112: 17-22. https://doi.org/10.1016/j.compgeo.2019.04.002
      National Energy Administration, 2018. X-Ray Diffraction Analysis Methods for Clay Minerals and Common Non-Clay Minerals in Sedimentary Rocks. Petroleum Industry Press, Beijing (in Chinese).
      Ogata, K., Festa, A., Pini, G. A., et al., 2021. Mélanges in Flysch-Type Formations: Reviewing Geological Constraints for a Better Understanding of Complex Formations with Block-in-Matrix Fabric. Engineering Geology, 293: 106289. https://doi.org/10.1016/j.enggeo.2021.106289
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract).
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract).
      Sassa, K., Dang, K., He, B., et al., 2014. A New High-Stress Undrained Ring-Shear Apparatus and Its Application to the 1792 Unzen-Mayuyama Megaslide in Japan. Landslides, 11(5): 827-842. https://doi.org/10.1007/s10346-014-0501-1
      Tang, Y., Qin, Y. D., Gong, X. D., et al., 2022. Determination of Material Composition of Jinshajiang Tectonic Mélange Belt in Gonjo-Baiyu Area, Eastern Tibet. Sedimentary Geology and Tethyan Geology, 42(2): 260-278 (in Chinese with English abstract).
      Tian, S. F., Chen, N. S., Wu, H., et al., 2020. New Insights into the Occurrence of the Baige Landslide along the Jinsha River in Tibet. Landslides, 17(5): 1207-1216. https://doi.org/10.1007/s10346-020-01351-4
      Wang, F. W., 1999. An Experimental Study on Grain Crushing and Excess Pore Pressure Generation during Shearing of Sandy Soils: A Key Factor for Rapid Landslide Motion (Dissertation). Kyoto University, Kyoto.
      Wang, F. W., 2019. Liquefactions Caused by Structure Collapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes. Journal of Engineering Geology, 27(1): 98-107 (in Chinese with English abstract).
      Wang, F. W., Chen, Y., Liu, W. C., et al., 2022. Characteristics and Challenges to Dynamics of Long-Runout Landslides with High-Altitude in Southeast Tibet. Journal of Engineering Geology, 30(6): 1831-1841 (in Chinese with English abstract).
      Wang, F. W., Okeke, A. C., Kogure, T., et al., 2018. Assessing the Internal Structure of Landslide Dams Subject to Possible Piping Erosion by Means of Microtremor Chain Array and Self-Potential Surveys. Engineering Geology, 234: 11-26. https://doi.org/10.1016/j.enggeo.2017.12.023
      Wang, L. C., Wen, M. S., Feng, Z., et al., 2019. Researches on the Baige Landslide at Jinshajiang River, Tibet, China. The Chinese Journal of Geological Hazard and Control, 30(1): 1-9 (in Chinese with English abstract).
      Weaver, R. L., 2005. Information from Seismic Noise. Science, 307(5715): 1568-1569. https://doi.org/10.1126/science.1109834
      Yan, Y. Q., Guo, C. B., Zhang, Y. S., et al., 2021. Study of the Deformation Characteristics of the Xiongba Ancient Landslide Based on SBAS-InSAR Method, Tibet, China. Acta Geologica Sinica, 95(11): 3556-3570 (in Chinese with English abstract).
      Yan, Z., Wang, Z. Q., Fu, C. L., et al., 2018. Characteristics and Thematic Geological Mapping of Mélanges. Geological Bulletin of China, 37(S1): 167-191 (in Chinese with English abstract).
      Yuan, H., Guo, C. B., Wu, R. A., et al., 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672 (in Chinese with English abstract).
      Zhang, S. L., Yin, Y. P., Hu, X. W., et al., 2020. Initiation Mechanism of the Baige Landslide on the Upper Reaches of the Jinsha River, China. Landslides, 17(12): 2865-2877. https://doi.org/10.1007/s10346-020-01495-3
      Zhang, Y. S., Li, J. Q., Ren, S. S., et al., 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956 (in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Li, J. Q., et al., 2023. Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt. Earth Science, 48(12): 4668-4679 (in Chinese with English abstract).
      Zhang, Y. S., Wang, D. B., Li, X., et al., 2024. Research on Hazard Prone Geological Genes and Major Engineering Geological Problems in Tectonic Mélange Belts of Tibetan Plateau. Acta Geologica Sinica, 98(3): 992-1005 (in Chinese with English abstract).
      Zhang, Z., He, S. M., Liu, W., et al., 2019. Source Characteristics and Dynamics of the October 2018 Baige Landslide Revealed by Broadband Seismograms. Landslides, 16(4): 777-785. https://doi.org/10.1007/s10346-019-01145-3
      Zhao, Z. X., Wang, F. W., Zhu, G. L., et al., 2023. A Review of Forming Mechanisms and Inhomogeneous Mechanical Properties of Mélange. Journal of Engineering Geology, 31(3): 796-814(in Chinese with English abstract).
      Zhu, D. M., Li, P. Y., Hu, X. H., et al., 2021. Stability Analysis and Prevention Countermeasures for Residual Bodies of Baige Landslide in Jinsha River. Geoscience, 35(1): 56-63 (in Chinese with English abstract).
      曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      陈菲, 王塞, 高云建, 等, 2020. 白格滑坡裂缝区演变过程及其发展趋势分析. 工程科学与技术, 52(5): 71-78.
      方敬锐, 宋晶, 李学, 2021. 黏土矿物对软土结合水特征及力学性质影响的定量分析. 工程地质学报, 29(5): 1303-1311.
      冯文凯, 张国强, 白慧林, 等, 2019. 金沙江"10·11"白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 27(2): 415-425.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700.
      国家能源局, 2018. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T5163-2018. 北京: 石油工业出版社.
      李金秋, 张永双, 任三绍, 等, 2024. 金沙江上游白格滑坡黏土化蚀变岩的灾变力学行为研究. 工程科学与技术, 56(3): 72-82.
      林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304.
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      唐渊, 秦雅东, 巩小栋, 等, 2022. 藏东贡觉-白玉地区金沙江构造混杂岩带物质组成的厘定. 沉积与特提斯地质, 42(2): 260-278.
      汪发武, 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理. 工程地质学报, 27(1): 98-107.
      汪发武, 陈也, 刘伟超, 等, 2022. 藏东南高位远程滑坡动力学特征及研究难点. 工程地质学报, 30(6): 1831-1841.
      王立朝, 温铭生, 冯振, 等, 2019. 中国西藏金沙江白格滑坡灾害研究. 中国地质灾害与防治学报, 30(1): 1-9.
      闫怡秋, 郭长宝, 张永双, 等, 2021. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征. 地质学报, 95(11): 3556-3570.
      闫臻, 王宗起, 付长垒, 等, 2018. 混杂岩基本特征与专题地质填图. 地质通报, 37(增刊1): 167-191.
      张永双, 王冬兵, 李雪, 等, 2024. 青藏高原构造混杂岩带的孕灾地质基因与重大工程地质问题研究. 地质学报, 98(3): 992-1005.
      赵子昕, 汪发武, 朱国龙, 等, 2023. 混杂岩形成机制及非均质力学特性研究进展. 工程地质学报, 31(3): 796-814.
      朱德明, 李鹏岳, 胡孝洪, 等, 2021. 金沙江白格滑坡残留体稳定性分析与防治对策. 现代地质, 35(1): 56-63.
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  352
    • HTML全文浏览量:  5
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-01-04
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回