Stratified Response Characteristics of Near-Surface Wind Pressure Gradient to Gravel Coverage over Gobi
-
摘要: 戈壁荒漠是沙尘跨境传输的重要策源区,其地表砾石覆盖度与近地表风压梯度的相互作用对沙尘释放机制具有重要影响.通过两相流风洞实验,模拟戈壁近地表风场特征,采用非线性回归模型及双因素分析揭示其调控机制.(1)风压增幅呈分层变化,风压梯度随高度上升呈线性或指数衰减;(2)砾石覆盖度显著调控风压梯度垂直分异;(3)来流风速直接控制风压梯度的强度大小,砾石覆盖度诱导能量吸收和动量传递.戈壁的地表异质性可有效影响风压梯度,近地表粗糙度与风场作用力存在动态博弈机制;地表砾石优先维持40%~50%覆盖度,可为优化沙尘释放模型及戈壁防风固沙措施提供理论依据.Abstract: The Gobi Desert is a critical source area for cross-border dust transport, where the interaction between surface gravel coverage and the near-surface wind pressure gradient exerts a significant influence on the dust emission mechanism. Through two-phase flow wind tunnel experiments, the near-surface wind field characteristics of the Gobi were simulated. Nonlinear regression models and two-factor analysis were employed to reveal the regulatory mechanisms. (1) The wind pressure increase exhibits stratified variation, with the wind pressure gradient decaying linearly or exponentially with increasing height. (2) Gravel coverage significantly regulates the vertical differentiation of the wind pressure gradient. (3) Incoming wind speeds directly controls the intensity of the wind pressure gradient, while gravel coverage induces energy absorption and momentum transfer. Surface heterogeneity in the Gobi Desert dynamically regulates wind pressure gradient through the interplay between near-surface roughness and wind forces. Maintaining optimal gravel coverage (40%-50%) effectively balances aeolian erosion control and momentum transfer, providing a mechanistic foundation for refining dust emission models and developing precision windbreak-sand stabilization strategies in arid ecosystems.
-
Key words:
- Gobi /
- wind pressure gradient /
- gravel coverage /
- dynamic regulation /
- wind erosion /
- wind speed
-
表 1 双因素分析
Table 1. Two-factor analysis
Δh 因素源 SS MS F P值 F crit 剪切层 来流风速 2.48×105 8.28×104 4.95 0.018 3.49 砾石覆盖度 9.12×106 2.28×106 136.20 6.88×10‒10 3.26 过渡层 来流风速 1.65×104 5.51×103 4.91 0.019 3.49 砾石覆盖度 2.02×106 5.06×105 451.82 5.73×10‒13 3.26 惯性层 来流风速 6.29×102 2.10×102 3.85 0.039 3.49 砾石覆盖度 3.35×103 8.36×102 15.35 1.15×10‒4 3.26 -
Balme, M., Metzger, S., Towner, M., et al., 2003. Friction Wind Speeds in Dust Devils: A Field Study. Geophysical Research Letters, 30(16): 1830. https://doi.org/10.1029/2003GL017493 Chen, S. Y., Huang, J. P., Kang, L. T., et al., 2017a. Emission, Transport, and Radiative Effects of Mineral Dust from the Taklimakan and Gobi Deserts: Comparison of Measurements and Model Results. Atmospheric Chemistry and Physics, 17(3): 2401-2421. https://doi.org/10.5194/acp-17-2401-2017 Chen, S. Y., Huang, J. P., Li, J. X., et al., 2017b. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China Earth Sciences, 60(7): 1338-1355. https://doi.org/10.1007/s11430-016-9051-0 Chen, C., Xu, S. F., Wang, G. C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038 (in Chinese with English abstract). Clarke, R. H., Hess, G. D., 1975. On the Relation between Surface Wind and Pressure Gradient, Especially in Lower Latitudes. Boundary-Layer Meteorology, 9(3): 325-339. https://doi.org/10.1007/BF00230774 Dai, C. C., Zhong, C. T., Liu, X. D., et al., 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223 (in Chinese with English abstract). Fonseca, R., Francis, D., Nelli, N., et al., 2022. Climatology of the Heat Low and the Intertropical Discontinuity in the Arabian Peninsula. International Journal of Climatology, 42(2): 1092-1117. https://doi.org/10.1002/joc.7291 Francis, D., Chaboureau, J. P., Nelli, N., et al., 2021. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmospheric Research, 250: 105364. https://doi.org/10.1016/j.atmosres.2020.105364 Francis, D., Fonseca, R., Nelli, N., et al., 2023. On the Middle East's Severe Dust Storms in Spring 2022: Triggers and Impacts. Atmospheric Environment, 296: 119539. https://doi.org/10.1016/j.atmosenv.2022.119539 Francis, D., Nelli, N., Fonseca, R., et al., 2022. The Dust Load and Radiative Impact Associated with the June 2020 Historical Saharan Dust Storm. Atmospheric Environment, 268: 118808. https://doi.org/10.1016/j.atmosenv.2021.118808 Gorchakov, G. I., Chkhetiani, O. G., Karpov, A. V., et al., 2024. Aerosol and Heat Turbulent Fluxes on a Desertified Area Upon the Intermittent Emission of Dust Aerosol. Doklady Earth Sciences, 515(1): 494-501. https://doi.org/10.1134/S1028334X23603024 Heywood, H., 1941. The Physics of Blown Sand and Desert Dunes. Nature, 148: 480-481. https://doi.org/10.1038/148480a0 Klose, M., Shao, Y. P., Li, X. L., et al., 2014. Further Development of a Parameterization for Convective Turbulent Dust Emission and Evaluation Based on Field Observations. Journal of Geophysical Research: Atmospheres, 119(17): 10441-10457. https://doi.org/10.1002/2014JD021688 Kok, J. F., Parteli, E. J. R., Michaels, T. I., et al., 2012. The Physics of Wind-Blown Sand and Dust. Reports on Progress in Physics Physical Society, 75(10): 106901. https://doi.org/10.1088/0034-4885/75/10/106901 Liang, L. H., Ma, S. X., Zhang, W. M., et al., 2025. Turbulent Structures at the Bottom of the Gobi Desert Boundary Layer and Their Impact on Aeolian Sand Transport and Dust Emission. Geomorphology, 472: 109593. https://doi.org/10.1016/j.geomorph.2025.109593 Liu, J., Wu, D. Y., Wang, T. S., et al., 2021. Interannual Variability of Dust Height and the Dynamics of Its Formation over East Asia. Science of the Total Environment, 751: 142288. https://doi.org/10.1016/j.scitotenv.2020.142288 Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2023. Key Geological Issues and Innovation Directions in Deep-Time Source-to-Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612 (in Chinese with English abstract). Nelli, N. R., Francis, D., Fonseca, R., et al., 2021. The Atmospheric Controls of Extreme Convective Events over the Southern Arabian Peninsula during the Spring Season. Atmospheric Research, 262: 105788. https://doi.org/10.1016/j.atmosres.2021.105788 Shao, Y. P., 2009. Physics and Modelling of Wind Erosion. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-8895-7 Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001 Shao, Y. P., Zhang, J., Ishizuka, M., et al., 2020. Dependency of Particle Size Distribution at Dust Emission on Friction Velocity and Atmospheric Boundary-Layer Stability. Atmospheric Chemistry and Physics, 20(21): 12939-12953. https://doi.org/10.5194/acp-20-12939-2020 Shen, Y. C., Wang, X. H., Cong, R. C., et al., 2013. Eco-Geographical Zoning of Deserts and Gobi in China. Journal of Arid Land Resources and Environment, 27(1): 1-13 (in Chinese with English abstract). Tan, L. H., Qu, J. J., Wang, T., et al., 2021. Field Observation Evidence for Kink Points in the Vertical Kinetic Energy Flux Profiles of Wind-Blown Sand over Gobi and Its Significance. Geophysical Research Letters, 48(3): e2020GL091224. https://doi.org/10.1029/2020GL091224 Tan, L. H., Zhang, W. M., An, Z. S., et al., 2012. Response of Wind Velocity Gradient at Boundary Layer to Gravel Coverage. Journal of Desert Research, 32(6): 1522-1527 (in Chinese with English abstract). Tan, L. H., Zhang, W. M., Qu, J. J., et al., 2013. Aeolian Sand Transport over Gobi with Different Gravel Coverages under Limited Sand Supply: A Mobile Wind Tunnel Investigation. Aeolian Research, 11: 67-74. https://doi.org/10.1016/j.aeolia.2013.10.003 Tan, S. C., Li, J. W., Che, H. Z., et al., 2017. Transport of East Asian Dust Storms to the Marginal Seas of China and the Southern North Pacific in Spring 2010. Atmospheric Environment, 148: 316-328. https://doi.org/10.1016/j.atmosenv.2016.10.054 Wang, X. M., Cai, D. W., Zhu, B. Q., et al., 2020. Dust-Sized Fractions from Dustfall and Physical Weathering in the Gobi Desert. Aeolian Research, 43: 100565. https://doi.org/10.1016/j.aeolia.2020.100565 Wang, X. M., Lang, L. L., Hua, T., et al., 2013. Gravel Cover of Gobi Desert and Its Significance for Wind Erosion: An Experimental Study. Journal of Desert Research, 33(2): 313-319 (in Chinese with English abstract). Weston, M. J., Temimi, M., Nelli, N. R., et al., 2021. On the Analysis of the Low-Level Double Temperature Inversion over the United Arab Emirates: A Case Study during April 2019. IEEE Geoscience and Remote Sensing Letters, 18(2): 346-350. https://doi.org/10.1109/LGRS.2020.2972597 Wu, S. H., Dai, G. Y., Long, W. R., et al., 2024. Observation Simulation and Metrics Demonstration of FY Third-Generation Polar-Orbiting Spaceborne Wind Measurement Lidar (Invited). Acta Optica Sinica, 44(18): 51-63 (in Chinese with English abstract). Xing, Y., Liu, B. L., Ma, T., et al., 2024. Wind Erosion and Dust Emission in the Core Area of Hexi Corridor-Taklimakan Desert Edge in 2000-2023. Journal of Desert Research, 44(6): 330-341 (in Chinese with English abstract). Yizhaq, H., Xu, Z. W., Ashkenazy, Y., 2020. The Effect of Wind Speed Averaging Time on the Calculation of Sand Drift Potential: New Scaling Laws. Earth and Planetary Science Letters, 544: 116373. https://doi.org/10.1016/j.epsl.2020.116373 Zhang, Z. C., Pan, K. J., Zhang, Y., et al., 2023. Sand Transport Characteristics above Gobi Surface during a Dust Storm in Northern China. Journal of Desert Research, 43(2): 130-138 (in Chinese with English abstract). 陈超, 许顺芳, 王国灿, 等, 2021. 戈壁荒漠覆盖区地质调查中综合地球物理方法与实践. 地球科学, 46(8): 3028-3038. doi: 10.3799/dqkx.2020.386 戴朝成, 钟炽涛, 刘晓东, 等, 2024. 内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式. 地球科学, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447 刘强虎, 李志垚, 陈贺贺, 等, 2023. 陆相裂陷盆地深时源-汇系统关键地质问题及革新方向. 地球科学, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194 申元村, 王秀红, 丛日春, 等, 2013. 中国沙漠、戈壁生态地理区划研究. 干旱区资源与环境, 27(1): 1-13. 谭立海, 张伟民, 安志山, 等, 2012. 砾石覆盖对边界层风速梯度的影响. 中国沙漠, 32(6): 1522-1527. 王训明, 郎丽丽, 花婷, 等, 2013. 戈壁砾石覆盖度与风蚀强度关系实验研究. 中国沙漠, 33(2): 313-319. 吴松华, 戴光耀, 龙文睿, 等, 2024. 风云第三代极轨卫星测风激光雷达仿真与指标分析(特邀). 光学学报, 44(18): 51-63. 邢瑜, 柳本立, 马涛, 等, 2024. 2000—2023年河西走廊-塔克拉玛干沙漠边缘阻击战核心区风蚀起尘量变化. 中国沙漠, 44(6): 330-341. 张正偲, 潘凯佳, 张焱, 等, 2023. 中国西北戈壁区沙尘暴过程中近地层风沙运动特征. 中国沙漠, 43(2): 130-138. -