• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    戈壁近地表风压梯度对砾石覆盖度的分层响应

    廖承贤 王海兵 杨皓钦 郭晓敏 张雪

    廖承贤, 王海兵, 杨皓钦, 郭晓敏, 张雪, 2025. 戈壁近地表风压梯度对砾石覆盖度的分层响应. 地球科学, 50(9): 3521-3529. doi: 10.3799/dqkx.2025.080
    引用本文: 廖承贤, 王海兵, 杨皓钦, 郭晓敏, 张雪, 2025. 戈壁近地表风压梯度对砾石覆盖度的分层响应. 地球科学, 50(9): 3521-3529. doi: 10.3799/dqkx.2025.080
    Liao Chengxian, Wang Haibing, Yang Haoqin, Guo Xiaomin, Zhang Xue, 2025. Stratified Response Characteristics of Near-Surface Wind Pressure Gradient to Gravel Coverage over Gobi. Earth Science, 50(9): 3521-3529. doi: 10.3799/dqkx.2025.080
    Citation: Liao Chengxian, Wang Haibing, Yang Haoqin, Guo Xiaomin, Zhang Xue, 2025. Stratified Response Characteristics of Near-Surface Wind Pressure Gradient to Gravel Coverage over Gobi. Earth Science, 50(9): 3521-3529. doi: 10.3799/dqkx.2025.080

    戈壁近地表风压梯度对砾石覆盖度的分层响应

    doi: 10.3799/dqkx.2025.080
    基金项目: 

    国家自然科学基金项目 42261002

    国家自然科学基金项目 41861001

    高校青年科技英才项目 NJYT22039

    详细信息
      作者简介:

      廖承贤(1998-),男,博士研究生,主要从事荒漠化防治与风沙物理等方面的研究. ORCID:0009-0009-6555-5377. E-mail:nhlcx@outlook.com

      通讯作者:

      王海兵,E-mail:hbwang@imau.edu.cn

    • 中图分类号: P69

    Stratified Response Characteristics of Near-Surface Wind Pressure Gradient to Gravel Coverage over Gobi

    • 摘要: 戈壁荒漠是沙尘跨境传输的重要策源区,其地表砾石覆盖度与近地表风压梯度的相互作用对沙尘释放机制具有重要影响.通过两相流风洞实验,模拟戈壁近地表风场特征,采用非线性回归模型及双因素分析揭示其调控机制.(1)风压增幅呈分层变化,风压梯度随高度上升呈线性或指数衰减;(2)砾石覆盖度显著调控风压梯度垂直分异;(3)来流风速直接控制风压梯度的强度大小,砾石覆盖度诱导能量吸收和动量传递.戈壁的地表异质性可有效影响风压梯度,近地表粗糙度与风场作用力存在动态博弈机制;地表砾石优先维持40%~50%覆盖度,可为优化沙尘释放模型及戈壁防风固沙措施提供理论依据.

       

    • 图  1  实验布置

      Fig.  1.  Experiment layout

      图  2  不同风速及砾石覆盖度下的垂直风压结构

      Fig.  2.  Vertical wind pressure profile under different wind speeds and gravel coverage

      图  3  风压梯度及梯度相对贡献率

      a. 砾石覆盖度30%;b. 砾石覆盖度40%;c. 砾石覆盖度50%;d. 砾石覆盖度60%

      Fig.  3.  Wind pressure gradient and relative contribution rate of the gradient

      图  4  砾石覆盖度对风压梯度的影响

      a. 来流风速6 m/s;b. 来流风速10 m/s;c. 来流风速14 m/s;d. 来流风速18 m/s;e. 来流风速22 m/s

      Fig.  4.  Effect of gravel coverage on wind pressure gradient

      图  5  来流风速及砾石覆盖度对风压梯度的三维映射模型

      a. 剪切层;b. 过渡层;c. 惯性层

      Fig.  5.  3D mapping model of wind pressure gradient influenced by incoming wind speed and gravel coverage

      表  1  双因素分析

      Table  1.   Two-factor analysis

      Δh 因素源 SS MS F P F crit
      剪切层 来流风速 2.48×105 8.28×104 4.95 0.018 3.49
      砾石覆盖度 9.12×106 2.28×106 136.20 6.88×10‒10 3.26
      过渡层 来流风速 1.65×104 5.51×103 4.91 0.019 3.49
      砾石覆盖度 2.02×106 5.06×105 451.82 5.73×10‒13 3.26
      惯性层 来流风速 6.29×102 2.10×102 3.85 0.039 3.49
      砾石覆盖度 3.35×103 8.36×102 15.35 1.15×10‒4 3.26
      下载: 导出CSV
    • Balme, M., Metzger, S., Towner, M., et al., 2003. Friction Wind Speeds in Dust Devils: A Field Study. Geophysical Research Letters, 30(16): 1830. https://doi.org/10.1029/2003GL017493
      Chen, S. Y., Huang, J. P., Kang, L. T., et al., 2017a. Emission, Transport, and Radiative Effects of Mineral Dust from the Taklimakan and Gobi Deserts: Comparison of Measurements and Model Results. Atmospheric Chemistry and Physics, 17(3): 2401-2421. https://doi.org/10.5194/acp-17-2401-2017
      Chen, S. Y., Huang, J. P., Li, J. X., et al., 2017b. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China Earth Sciences, 60(7): 1338-1355. https://doi.org/10.1007/s11430-016-9051-0
      Chen, C., Xu, S. F., Wang, G. C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038 (in Chinese with English abstract).
      Clarke, R. H., Hess, G. D., 1975. On the Relation between Surface Wind and Pressure Gradient, Especially in Lower Latitudes. Boundary-Layer Meteorology, 9(3): 325-339. https://doi.org/10.1007/BF00230774
      Dai, C. C., Zhong, C. T., Liu, X. D., et al., 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223 (in Chinese with English abstract).
      Fonseca, R., Francis, D., Nelli, N., et al., 2022. Climatology of the Heat Low and the Intertropical Discontinuity in the Arabian Peninsula. International Journal of Climatology, 42(2): 1092-1117. https://doi.org/10.1002/joc.7291
      Francis, D., Chaboureau, J. P., Nelli, N., et al., 2021. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmospheric Research, 250: 105364. https://doi.org/10.1016/j.atmosres.2020.105364
      Francis, D., Fonseca, R., Nelli, N., et al., 2023. On the Middle East's Severe Dust Storms in Spring 2022: Triggers and Impacts. Atmospheric Environment, 296: 119539. https://doi.org/10.1016/j.atmosenv.2022.119539
      Francis, D., Nelli, N., Fonseca, R., et al., 2022. The Dust Load and Radiative Impact Associated with the June 2020 Historical Saharan Dust Storm. Atmospheric Environment, 268: 118808. https://doi.org/10.1016/j.atmosenv.2021.118808
      Gorchakov, G. I., Chkhetiani, O. G., Karpov, A. V., et al., 2024. Aerosol and Heat Turbulent Fluxes on a Desertified Area Upon the Intermittent Emission of Dust Aerosol. Doklady Earth Sciences, 515(1): 494-501. https://doi.org/10.1134/S1028334X23603024
      Heywood, H., 1941. The Physics of Blown Sand and Desert Dunes. Nature, 148: 480-481. https://doi.org/10.1038/148480a0
      Klose, M., Shao, Y. P., Li, X. L., et al., 2014. Further Development of a Parameterization for Convective Turbulent Dust Emission and Evaluation Based on Field Observations. Journal of Geophysical Research: Atmospheres, 119(17): 10441-10457. https://doi.org/10.1002/2014JD021688
      Kok, J. F., Parteli, E. J. R., Michaels, T. I., et al., 2012. The Physics of Wind-Blown Sand and Dust. Reports on Progress in Physics Physical Society, 75(10): 106901. https://doi.org/10.1088/0034-4885/75/10/106901
      Liang, L. H., Ma, S. X., Zhang, W. M., et al., 2025. Turbulent Structures at the Bottom of the Gobi Desert Boundary Layer and Their Impact on Aeolian Sand Transport and Dust Emission. Geomorphology, 472: 109593. https://doi.org/10.1016/j.geomorph.2025.109593
      Liu, J., Wu, D. Y., Wang, T. S., et al., 2021. Interannual Variability of Dust Height and the Dynamics of Its Formation over East Asia. Science of the Total Environment, 751: 142288. https://doi.org/10.1016/j.scitotenv.2020.142288
      Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2023. Key Geological Issues and Innovation Directions in Deep-Time Source-to-Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612 (in Chinese with English abstract).
      Nelli, N. R., Francis, D., Fonseca, R., et al., 2021. The Atmospheric Controls of Extreme Convective Events over the Southern Arabian Peninsula during the Spring Season. Atmospheric Research, 262: 105788. https://doi.org/10.1016/j.atmosres.2021.105788
      Shao, Y. P., 2009. Physics and Modelling of Wind Erosion. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-8895-7
      Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001
      Shao, Y. P., Zhang, J., Ishizuka, M., et al., 2020. Dependency of Particle Size Distribution at Dust Emission on Friction Velocity and Atmospheric Boundary-Layer Stability. Atmospheric Chemistry and Physics, 20(21): 12939-12953. https://doi.org/10.5194/acp-20-12939-2020
      Shen, Y. C., Wang, X. H., Cong, R. C., et al., 2013. Eco-Geographical Zoning of Deserts and Gobi in China. Journal of Arid Land Resources and Environment, 27(1): 1-13 (in Chinese with English abstract).
      Tan, L. H., Qu, J. J., Wang, T., et al., 2021. Field Observation Evidence for Kink Points in the Vertical Kinetic Energy Flux Profiles of Wind-Blown Sand over Gobi and Its Significance. Geophysical Research Letters, 48(3): e2020GL091224. https://doi.org/10.1029/2020GL091224
      Tan, L. H., Zhang, W. M., An, Z. S., et al., 2012. Response of Wind Velocity Gradient at Boundary Layer to Gravel Coverage. Journal of Desert Research, 32(6): 1522-1527 (in Chinese with English abstract).
      Tan, L. H., Zhang, W. M., Qu, J. J., et al., 2013. Aeolian Sand Transport over Gobi with Different Gravel Coverages under Limited Sand Supply: A Mobile Wind Tunnel Investigation. Aeolian Research, 11: 67-74. https://doi.org/10.1016/j.aeolia.2013.10.003
      Tan, S. C., Li, J. W., Che, H. Z., et al., 2017. Transport of East Asian Dust Storms to the Marginal Seas of China and the Southern North Pacific in Spring 2010. Atmospheric Environment, 148: 316-328. https://doi.org/10.1016/j.atmosenv.2016.10.054
      Wang, X. M., Cai, D. W., Zhu, B. Q., et al., 2020. Dust-Sized Fractions from Dustfall and Physical Weathering in the Gobi Desert. Aeolian Research, 43: 100565. https://doi.org/10.1016/j.aeolia.2020.100565
      Wang, X. M., Lang, L. L., Hua, T., et al., 2013. Gravel Cover of Gobi Desert and Its Significance for Wind Erosion: An Experimental Study. Journal of Desert Research, 33(2): 313-319 (in Chinese with English abstract).
      Weston, M. J., Temimi, M., Nelli, N. R., et al., 2021. On the Analysis of the Low-Level Double Temperature Inversion over the United Arab Emirates: A Case Study during April 2019. IEEE Geoscience and Remote Sensing Letters, 18(2): 346-350. https://doi.org/10.1109/LGRS.2020.2972597
      Wu, S. H., Dai, G. Y., Long, W. R., et al., 2024. Observation Simulation and Metrics Demonstration of FY Third-Generation Polar-Orbiting Spaceborne Wind Measurement Lidar (Invited). Acta Optica Sinica, 44(18): 51-63 (in Chinese with English abstract).
      Xing, Y., Liu, B. L., Ma, T., et al., 2024. Wind Erosion and Dust Emission in the Core Area of Hexi Corridor-Taklimakan Desert Edge in 2000-2023. Journal of Desert Research, 44(6): 330-341 (in Chinese with English abstract).
      Yizhaq, H., Xu, Z. W., Ashkenazy, Y., 2020. The Effect of Wind Speed Averaging Time on the Calculation of Sand Drift Potential: New Scaling Laws. Earth and Planetary Science Letters, 544: 116373. https://doi.org/10.1016/j.epsl.2020.116373
      Zhang, Z. C., Pan, K. J., Zhang, Y., et al., 2023. Sand Transport Characteristics above Gobi Surface during a Dust Storm in Northern China. Journal of Desert Research, 43(2): 130-138 (in Chinese with English abstract).
      陈超, 许顺芳, 王国灿, 等, 2021. 戈壁荒漠覆盖区地质调查中综合地球物理方法与实践. 地球科学, 46(8): 3028-3038. doi: 10.3799/dqkx.2020.386
      戴朝成, 钟炽涛, 刘晓东, 等, 2024. 内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式. 地球科学, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447
      刘强虎, 李志垚, 陈贺贺, 等, 2023. 陆相裂陷盆地深时源-汇系统关键地质问题及革新方向. 地球科学, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194
      申元村, 王秀红, 丛日春, 等, 2013. 中国沙漠、戈壁生态地理区划研究. 干旱区资源与环境, 27(1): 1-13.
      谭立海, 张伟民, 安志山, 等, 2012. 砾石覆盖对边界层风速梯度的影响. 中国沙漠, 32(6): 1522-1527.
      王训明, 郎丽丽, 花婷, 等, 2013. 戈壁砾石覆盖度与风蚀强度关系实验研究. 中国沙漠, 33(2): 313-319.
      吴松华, 戴光耀, 龙文睿, 等, 2024. 风云第三代极轨卫星测风激光雷达仿真与指标分析(特邀). 光学学报, 44(18): 51-63.
      邢瑜, 柳本立, 马涛, 等, 2024. 2000—2023年河西走廊-塔克拉玛干沙漠边缘阻击战核心区风蚀起尘量变化. 中国沙漠, 44(6): 330-341.
      张正偲, 潘凯佳, 张焱, 等, 2023. 中国西北戈壁区沙尘暴过程中近地层风沙运动特征. 中国沙漠, 43(2): 130-138.
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  106
    • HTML全文浏览量:  2
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-25
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回