Lithofacies Types and Distribution of High-Quality Shale Driven by Sedimentary Environments: A Case Study of the Qiongzhusi Formation Shale
-
摘要: 四川盆地筇竹寺组页岩的沉积受德阳-安岳裂陷槽构造-沉积分异控制,其岩相类型及分布与沉积环境密切相关.在前人对筇竹寺组研究的基础上,综合运用岩心观察、薄片鉴定和地球化学测试分析对裂陷槽中段筇竹寺组页岩进行岩相类型划分,并讨论了沉积环境控制下的优质页岩岩相类型及分布.结果表明:(1)裂陷槽内沉积环境具显著分异特征,槽内中心以生物成因高硅质沉积为主导,形成强还原环境双阈值边界,古生产力与水体滞留程度达峰值;槽缘则以陆源碎屑输入为主.平面上呈现“槽缘氧化-槽内缺氧”的递变模式,纵向上表现为“底部缺氧-中部贫氧-上部氧化”的沉积环境变化;(2)建立了“TOC-矿物组成-粒度特征”耦合岩相分类体系,划分出36种岩相类型,明确裂陷槽中段发育富有机质长英质页岩(H-F-S)、富有机质混合质粉砂质页岩(H-M-SS)等16种岩相类型,系统揭示了页岩非均质性特征,为深层页岩气甜点预测提供新思路;(3)优质岩相主要为富有机质长英质页岩(H-F-S)、富有机质混合质页岩(H-M-S)、富有机质长英质粉砂质页岩(H-F-SS)、富有机质黏土质粉砂质页岩(H-A-SS)和富有机质混合质粉砂质页岩(H-M-SS),集中分布于筇竹寺组1、3、5、7小层深水陆棚相,深水贫氧-缺氧环境促进有机质富集与保存,高含量长英质矿物提供了优质储集空间.研究成果可为四川盆地深层页岩气资源评价与开发提供关键地质依据.Abstract: The sedimentation of the Qiongzhusi Formation shale in the Sichuan Basin is controlled by the tectonic-sedimentary differentiation of the Deyang-Anyue Rift Trough. Its lithofacies types and distribution are closely related to sedimentary environments. Based on previous studies of the Qiongzhusi Formation, this research comprehensively uses core observation, thin-section identification, and geochemical testing and analysis to classify the lithofacies types of the Qiongzhusi Formation shale in the middle segment of the rift trough, and discusses the high quality shale lithofacies types and their distribution controlled by sedimentary environments. The results show that: (1) The sedimentary environment within the rift depression exhibits distinct differentiation characteristics. The central part of the depression is dominated by biogenic high-silica deposits, forming a strong reducing environment with a dual-threshold boundary, where ancient productivity and water retention reach their peak; the trough margin is dominated by terrigenous clastic input. Horizontally, it shows a gradational pattern of "oxidizing margin-anoxic trough, " while vertically, it exhibits a cyclic evolution of " anoxic at the bottom-dysoxic in the middle-oxidizing at the top." (2) "TOC-mineral-grain size" coupling lithofacies classification system is established, with 36 lithofacies types divided. It is clarified that 16 lithofacies types develop in the middle segment of the rift trough, such as organic-rich felsic shale (H-F-S) and organic-rich mixed silty shale (H-M-SS), systematically revealing the heterogeneity characteristics of shale and providing new ideas for predicting deep shale gas sweet spots. (3) The high-quality lithofacies are mainly organic-rich felsic shale (H-F-S), organic-rich mixed shale (H-M-S), organic-rich felsic silty shale (H-F-SS), organic-rich argillaceous silty shale (H-A-SS), and organic-rich mixed silty shale (H-M-SS), which are concentrated in the deep-water shelf facies of the 1st, 3rd, 5th, and 7th sub-layers of the Qiongzhusi Formation. The deep-water dysoxic-anoxic environments promote organic matter enrichment and preservation, and high felsic mineral content provides high-quality reservoir spaces. The research results provide key geological bases for the evaluation and development of deep shale gas resources in the Sichuan Basin.
-
图 1 四川盆地沉积相平面分布及连井剖面
沉积相底图修改自文献何骁等(2024a)、雍锐等(2024b)
Fig. 1. Plane distribution of sedimentary facies and connecting well section in Sichuan basin
图 4 筇竹寺组页岩典型岩性特征及薄片照片
a. W207井,3 051.03 m,筇一2亚段6小层,砂质页岩,25% < 砂质(62.5~2 500 μm) < 50%,TOC=0.3%;b. W207井,3 117.98 m,筇一2亚段5小层,页岩,泥质(8 μm) > 50%,TOC=3.31%;c. WY1井,4 291.59 m,筇一2亚段6小层,粉砂质页岩,25% < 粉砂质(8~62.5 μm) < 50%,TOC=1.24%;d. WY1井,4 321.37 m,筇一2亚段5小层,页岩,泥质(8 μm) > 50%,TOC=2.14%;e. Z201井,4 502.89 m,筇一2亚段6小层,粉砂质页岩,25% < 粉砂质(8~62.5 μm) < 50%,TOC=1.29%;f. Z201井,4 607.27 m,筇一2亚段5小层,页岩,泥质(8 μm) > 50%,TOC=1.89%
Fig. 4. Shale lithology characteristics and thin section photos of Qiongzhusi Formation
图 8 筇竹寺组裂陷槽不同部位水体滞留程度
图版修改自文献Algeo and Lyons(2006)、Tribovillard et al.(2012)
Fig. 8. The water retention degree in different parts of the rift trough of Qiongzhusi Formation
表 1 裂陷槽中段W207、WY1和Z201井主量元素(%)和微量元素(10‒6)分析结果
Table 1. Analysis results of major elements (%) and trace elements (10‒6) in wells W207, WY1 and Z201 in the middle part of rift trough
元素 W207井 WY1井 Z201井 筇二段 筇一2亚段 筇一1亚段 筇二段 筇一2亚段 筇一1亚段 筇二段 筇一2亚段 筇一1亚段 SiO2 53.88~62.95 (58.4) 53.26~58.98 (56.2) 53.81~64.89 (59.1) 46.31~67.72 (59.8) 42.73~69.48 (58.3) 47.52~66.51 (60.7) 43.28~62.85 (57.1) 56.07~64.94 (60.5) 52.56~67.68 (61.2) Al 6.67~8.20 (7.5) 5.50~7.92 (6.8) 6.71~7.57 (7.3) 5.21~7.53 (6.6) 4.03~7.96 (6.4) 5.42~7.54 (6.7) 4.61~8.13 (6.9) 4.03~7.76 (6.6) 2.07~8.11 (6.3) Fe 3.12~4.39 (3.8) 2.75~4.61 (3.9) 3.23~5.84 (4.1) 1.56~4.43 (3.2) 1.86~6.66 (3.7) 2.35~5.11 (3.6) 1.45~5.13 (3.7) 1.86~5.03 (3.6) 1.00~4.47 (3.1) P 0.09~0.14 (0.11) 0.088~0.279 (0.13) 0.076~0.103 (0.09) 0.07~0.20 (0.12) 0.078~0.279 (0.14) 0.079~0.134 (0.10) 0.06~0.13 (0.09) 0.086~0.186 (0.12) 0.034~0.138 (0.09) Mn 0.031~0.060 (0.04) 0.049~0.181 (0.09) 0.045~0.068 (0.06) 0.029~0.213 (0.06) 0.049~0.163 (0.08) 0.037~0.094 (0.06) 0.023~0.280 (0.07) 0.038~0.163 (0.08) 0.031~0.124 (0.07) Zn 74~237 (155) 54~502 (227) 55~180 (132) 20~299 (121) 25~610 (198) 31~3 370 (512) 27~881 (208) 54~1 680 (289) 31~6 240 (942) V 44~304 (198) 83~448 (211) 137~230 (168) 91~455 (215) 54~448 (198) 78~218 (148) 89~895 (312) 54~443 (193) 78~2 610 (567) Ba 859~1 945 (1 376) 865~1 565 (1 280) 1 190~
1 570 (1 402)743~1 627 (1 145) 519~1 505 (1 103) 911~4 220 (1 589) 689~2 418 (1 221) 519~3 140 (1 327) 1 190~
9 123 (2 345)Mo 2.48~15.90 (8.9) 2.89~32.00 (12.6) 3.5~37.4 (18.2) 1.16~35.50 (14.2) 2.44~85.30 (18.7) 1.34~54.40 (21.9) 1.34~60.10 (23.6) 2.44~55.30 (18.3) 1.34~88.20 (28.7) Ni 30.3~81.5 (56.2) 24.1~137.0 (67.8) 46.5~96.6 (67.3) 14.49~154.30 (68.7) 17.0~172.5 (70.2) 14.6~197.5 (91.3) 14.6~209.5 (87.6) 17.0~172.5 (72.8) 14.6~238.0 (95.2) Cu 21.3~69.6 (43.7) 15.8~90.8 (46.2) 29.2~54.7 (41.2) 10.89~59.40 (35.1) 10.3~66.1 (34.5) 12.5~464.0 (58.4) 10.3~59.4 (38.7) 10.3~66.1 (35.1) 12.5~475.0 (78.3) Cr 69~120 (95) 80~180 (123) 120~150 (133) 31.9~112.0 (72) 80~180 (130) 110~1 180 (286) 31.9~119.0 (76) 80~200 (135) 110~650 (245) Co 10.0~20.5 (15.8) 8.1~23.9 (16.2) 12.6~20.5 (15.0) 5.31~21.30 (13.5) 6.2~19.1 (14.3) 5.2~22.0 (13.8) 5.2~21.3 (14.2) 6.2~21.3 (14.5) 3.3~22.0 (12.6) Th 7.31~12.90 (10.5) 7.70~14.35 (11.1) 10.15~13.20 (11.8) 4.93~12.90 (9.9) 6.90~14.45 (10.9) 6.50~15.35 (10.6) 4.93~12.90 (10.1) 6.90~14.45 (10.8) 6.50~15.35 (10.5) U 4.54~23.80 (12.3) 2.43~24.70 (9.8) 4.4~21.8 (12.7) 2.37~30.00 (12.4) 2.43~33.10 (11.6) 2.0~60.6 (18.4) 2.37~30.00 (15.8) 2.43~33.10 (12.4) 2~54 (19.2) 注:表中数据53.88~62.95(58.4)为最小值~最大值(平均值). 表 2 海相页岩筇竹寺组页岩岩相划分方案
Table 2. Marine shale Qiongzhusi Formation shale lithofacies division scheme
岩相 岩相亚类 长英质矿物(%) 碳酸盐矿物(%) 黏土矿物(%) 粒径(μm) 长英质页岩(F-S) 长英质页岩 > 50 < 25 < 25 < 8 (> 50%,泥级) 长英质粉砂质页岩 > 50 < 25 < 25 8~62.5 (25%~50%,粉砂级) 长英质砂质页岩 > 50 < 25 < 25 > 62.5 (25%~50%,砂级) 钙质页岩(C-S) 钙质页岩 < 25 > 50 < 25 < 8 (> 50%,泥级) 钙质粉砂质页岩 < 25 > 50 < 25 8~62.5 (25%~50%,粉砂级) 钙质砂质页岩 < 25 > 50 < 25 > 62.5 (25%~50%,砂级) 黏土质页岩(A-S) 黏土质页岩 < 25 < 25 > 50 < 8 (> 50%,泥级) 黏土质粉砂质页岩 < 25 < 25 > 50 8~62.5 (25%~50%,粉砂级) 黏土质砂质页岩 < 25 < 25 > 50 > 62.5 (25%~50%,砂级) 混合页岩(M-S) 混合页岩 25~50 25~50 25~50 < 8 (> 50%,泥级) 混合质粉砂质页岩 25~50 25~50 25~50 8~62.5(25%~50%,粉砂级) 混合质砂质页岩 25~50 25~50 25~50 > 62.5(25%~50%,砂级) -
Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055 Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004PA001112 Cai, Q. S., Hu, M. Y., Kane, O. I., et al., 2023. Petrological and Geochemical Characteristics of the Ordovician-Silurian Black Shale in Eastern Sichuan and Western Hubei, South China: Differential Sedimentary Responses to Tectonism and Glaciation. Journal of Palaeogeography, 12(1): 129-152. https://doi.org/10.1016/j.jop.2022.09.003 Cai, Q. S., Hu, M. Y., Yang, Z., et al., 2024. Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng-Longmaxi Formations in Foreland Depression, Western Hunan Province: An Example from Well TD2 in Changde Area. Earth Science, 49(7): 2330-2345 (in Chinese with English abstract). Fan, H. J., Deng, H. C., Fu, M. Y., et al., 2021. Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction. Acta Sedimentologica Sinica, 39(4): 1004-1019 (in Chinese with English abstract). Fu, X. L., Meng, Q. A., Zheng, Q., et al., 2022. Cyclicity of Organic Matter Abundance and Lithofacies Paleogeography of Gulong Shale in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 41(3): 38-52 (in Chinese with English abstract). He, X., Liang, F., Li, H., et al., 2024a. Breakthrough and Enrichment Mode of Marine Shale Gas in the Lower Cambrian Qiongzhusi Formation in High-Yield Wells in Sichuan Basin. China Petroleum Exploration, 29(1): 142-155 (in Chinese with English abstract). He, X., Zheng, M. J., Liu, Y., et al., 2024b. Characteristics and Differential Origin of Qiongzhusi Formation Shale Reservoirs under the "Aulacogen-Uplift" Tectonic Setting, Sichuan Basin. Oil & Gas Geology, 45(2): 420-439 (in Chinese with English abstract). Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract). Lazar, O. R., 2007. Redefinition of the New Albany Shale of the Illinois Basin: An Integrated, Stratigraphic, Sedimentologic, and Geochemical Study (Dissertation). Indiana University, Bloomington. Li, D. L., Fu, M. Y., Deng, H. C., et al., 2023. Analysis of Lithofacies and Sedimentary Environment of Shale Deposited Shelf Facies: A Case Study of the Wenshuicun Section in Guizhou Province, South China. Natural Gas Geoscience, 34(3): 445-459 (in Chinese with English abstract). Li, R., Wang, Y. X., Wang, Z. C., et al., 2023. Geological Characteristics of the Southern Segment of the Late Sinian-Early Cambrian Deyang-Anyue Rift Trough in Sichuan Basin, SW China. Petroleum Exploration and Development, 50(2): 321-333. https://doi.org/10.1016/S1876-3804(23)60390-8 Li, Y. F., Wei, X. J., Fan, T. L., 2021. A Review on Sedimentary Processes of Marine Mudstones and Shales. Acta Sedimentologica Sinica, 39(1): 73-87 (in Chinese with English abstract). Li, Z., Jiang, Z. X., Tang, X. L., et al., 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123 (in Chinese with English abstract). Liang, F., Wu, W., Zhang, Q., et al., 2024. Shale Pore Structure Characteristics and Shale Gas Occurrence Pattern of the Lower Cambrian Qiongzhusi Formation in the Southern Sichuan Basin. Natural Gas Industry, 44(3): 131-142 (in Chinese with English abstract). Liang, X., Ma, S. G., Li, G. Q., et al., 2022. Sedimentary Environment and Shale Gas Exploration Potential of Qiongzhusi Formation in the Upslope Area: A Case Study on Well W-207, Weiyuan Area, Sichuan Basin. Bulletin of Geological Science and Technology, 41(5): 68-82 (in Chinese with English abstract). Liu, R. Y., Zhou, W., Xu, H., et al., 2023. Control of the Pattern of Tectonic-Depositional Differentiation on Shale Gas Reservoir Characteristics Within a Sequence Stratigraphic Framework: A Case Study from the Qiongzhusi Formation in the Southwestern Sichuan Basin. Acta Sedimentologica Sinica, 41(5): 1478-1494 (in Chinese with English abstract). Liu, S. G., Zeng, X. L., Huang, W. M., et al., 2009. Basic Characteristics of Shale and Continuous-Discontinuous Transition Gas Reservoirs in Sichuan Basin China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 578-592 (in Chinese with English abstract). Miao, H., Jiang, Z. X., Tang, X. L., et al., 2023. Hydrocarbon Generation Potential and Organic Matter Accumulation Patterns in Organic-Rich Shale during the Mesoproterozoic Oxygenation Event: Evidence from the Xiamaling Formation Shale. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1): 134. https://doi.org/10.1007/s40948-023-00668-3 Ning, S. T., Xia, P., Hao, F., et al., 2021. Shale Facies and Its Relationship with Sedimentary Environment and Organic Matter of Niutitang Black Shale, Guizhou Province. Natural Gas Geoscience, 32(9): 1297-1307 (in Chinese with English abstract). Paytan, A., Griffith, E. M., 2007. Marine Barite: Recorder of Variations in Ocean Export Productivity. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(5-7): 687-705. https://doi.org/10.1016/j.dsr2.2007.01.007 Qiu, Y. C., Luo, B., Xia, M. L., et al., 2019. Discovery and Geological Significance of Sinian-Cambrian Rift Trough, Changning Area, Sichuan Basin. Natural Gas Exploration and Development, 42(2): 22-28 (in Chinese with English abstract). Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001 Schoepfer, S. D., Shen, J., Wei, H. Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149: 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017 Sweere, T., van den Boorn, S., Dickson, A. J., et al., 2016. Definition of New Trace-Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn, Co, Mo and Cd Concentrations. Chemical Geology, 441: 235-245. https://doi.org/10.1016/j.chemgeo.2016.08.028 Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. The Journal of Geology, 94(4): 57-72. Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation: Applications to Mesozoic Paleoceanography. Chemical Geology, 324: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009 Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Wang, J., Xiao, S., Du, Q. D., et al., 2023. Paleomarine Environment and Organic Matter Enrichment Mechanism of Doushantuo Black Shale in the Northeastern Sichuan Basin. Natural Gas Industry, 43(4): 76-92 (in Chinese with English abstract). Wang, Y. M., Wang, S. F., Dong, D. Z., et al., 2016. Lithofacies Characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan. Earth Science Frontiers, 23(1): 119-133 (in Chinese with English abstract). Wu, D., Deng, H. C., Xiong, L., et al., 2023. Sequence Filling and Evolutionary Model of the Lower Cambrian MaidipingQiongzhusi Formations in Sichuan Basin and on Its Periphery. Oil & Gas Geology, 44(3): 764-777 (in Chinese with English abstract). Wu, J. F., Zhang, C. L., Zhao, S. X., et al., 2023. Typical Types of Shale Gas Reservoirs in Southern Sichuan Basin and Enlightenment of Exploration and Development. Natural Gas Geoscience, 34(8): 1385-1400 (in Chinese with English abstract). Wu, Y. H., Jiang, Z. X., Wu, J. F., et al., 2024. Characteristics, Formation Mechanism and Geological Implications of High Water-Cut Shale Gas Reservoirs in Western Chongqing Area. Natural Gas Industry, 44(8): 58-71 (in Chinese with English abstract). Xie, G. L., Jiao, K., Liu, R. Y., et al., 2024. Comparison of Pore Structures between Qiongzhusi Formation and Wufeng-Longmaxi Formation in Sichuan Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 51(5): 813-832 (in Chinese with English abstract). Yan, B., Zhu, X. K., Zhang, F. F., et al., 2014. The Ediacaran Trace Elements and Fe Isotopes of Black Shale in the Three Gorges Area: Implications for Paleooceanography. Acta Geologica Sinica, 88(8): 1603-1615 (in Chinese with English abstract). Yang, M. H., Zuo, Y. H., Duan, X. G., et al., 2023. Hydrocarbon Kitchen Evolution of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Enlightenment to Hydrocarbon Accumulation. Earth Science, 48(2): 582-595 (in Chinese with English abstract). Yang, X. F., Zhang, C. L., Zhao, S. X., et al., 2025. Characteristics of Shale Gas Reservoir and Enlightenment of Exploration in Qiongzhusi Formation in Southern Sichuan Basin. Natural Gas Geoscience, 36(1): 13-24 (in Chinese with English abstract). Yang, Y., Wen, L., Song, Z. Z., et al., 2022. Breakthrough and Potential of Natural Gas Exploration in Multi-Layer System of Penglai Gas Area in the North of Central Sichuan Paleo-Uplift. Acta Petrolei Sinica, 43(10): 1351-1368, 1394 (in Chinese with English abstract). Yang, Y. R., Shi, X. W., Li, Y. Y., et al., 2024. Paleogeomorphology, Sedimentary Pattern and Exploration Orientation of Qiongzhusi Formation in Deyang-Anyue Rift Trough, Sichuan Basin. China Petroleum Exploration, 29(6): 67-81 (in Chinese with English abstract). Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9 Yong, R., Shi, X. W., Luo, C., et al., 2024. Aulacogen-Uplift Enrichment Pattern and Exploration Prospect of Cambrian Qiongzhusi Formation Shale Gas in Sichuan Basin, SW China. Petroleum Exploration and Development, 51(6): 1211-1226 (in Chinese with English abstract). Yong, R., Wu, J. F., Wu, W., et al., 2024. Exploration Discovery of Shale Gas in the Cambrian Qiongzhusi Formation of Sichuan Basin and Its Significance. Acta Petrolei Sinica, 45(9): 1309-1323 (in Chinese with English abstract). Yuan, Y. X., Li, Y. F., Fan, T. L., et al., 2023. High-Resolution Sequence-Stratigraphic Characteristics and Filling Evolution Model of Lower Cambrian Fine-Grained Sedimentary Rocks in Southwestern Sichuan. Earth Science Frontiers, 30(6): 162-180 (in Chinese with English abstract). Zhang, M. H., Wei, X. F., Gao, B., et al., 2024. Developmental Models of Organic-Rich Shales in the Cambrian Qiongzhusi Formation in the Piedmont Zone of Northern Sichuan Basin. Oil & Gas Geology, 45(4): 992-1006 (in Chinese with English abstract) Zhang, T. Y., Huang, S. P., Li, X. Q., et al., 2024. Sedimentary Geochemical Characteristics and Organic Matter Enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin. Natural Gas Geoscience, 35(4): 688-703 (in Chinese with English abstract). Zheng, M. J., Guo, X. W., Wu, Y., et al., 2024. Cultivation Practice and Exploration Breakthrough of Geology and Engineering Integrated High-Yield Wells of Ultra-Deep Shale Gas in the Cambrian Qiongzhusi Formation in Deyang-Anyue Aulacogen, Sichuan Basin. China Petroleum Exploration, 29(3): 58-68 (in Chinese with English abstract). Zou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293 (in Chinese with English abstract). Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8 蔡全升, 胡明毅, 杨智, 等, 2024. 湘西前陆坳陷区五峰-龙马溪组黑色岩系沉积环境与有机质富集机制: 以TD2井为例. 地球科学, 49(7): 2330-2345. doi: 10.3799/dqkx.2023.098 范海经, 邓虎成, 伏美燕, 等, 2021. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应. 沉积学报, 39(4): 1004-1019. 付秀丽, 蒙启安, 郑强, 等, 2022. 松辽盆地古龙页岩有机质丰度旋回性与岩相古地理. 大庆石油地质与开发, 41(3): 38-52. 何骁, 梁峰, 李海, 等, 2024a. 四川盆地下寒武统筇竹寺组海相页岩气高产井突破与富集模式. 中国石油勘探, 29(1): 142-155. 何骁, 郑马嘉, 刘勇, 等, 2024b. 四川盆地"槽-隆"控制下的寒武系筇竹寺组页岩储层特征及其差异性成因. 石油与天然气地质, 45(2): 420-439. 金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. 李丹龙, 伏美燕, 邓虎成, 等, 2023. 上扬子地区下寒武统牛蹄塘组富有机质页岩岩相及沉积环境分析——以贵州温水村剖面为例. 天然气地球科学, 34 (3): 445-459. 李一凡, 魏小洁, 樊太亮, 2021. 海相泥页岩沉积过程研究进展. 沉积学报, 39(1): 73-87. 李卓, 姜振学, 唐相路, 等, 2017. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学, 42(7): 1116-1123. 梁峰, 吴伟, 张琴, 等, 2024. 四川盆地南部下寒武统筇竹寺组页岩孔隙结构特征与页岩气赋存模式. 天然气工业, 44(3): 131-142. 梁霄, 马韶光, 李郭琴, 等, 2022. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力: 以四川盆地威远地区威207井为例. 地质科技通报, 41(5): 68-82. 刘瑞崟, 周文, 徐浩, 等, 2023. 层序格架下构造-沉积分异对页岩气储层特征的控制——以四川盆地西南部筇竹寺组为例. 沉积学报, 41(5): 1478-1494. 刘树根, 曾祥亮, 黄文明, 等, 2009. 四川盆地页岩气藏和连续型-非连续型气藏基本特征. 成都理工大学学报(自然科学版), 36(6): 578-592. 宁诗坦, 夏鹏, 郝芳, 等, 2021. 贵州牛蹄塘组黑色页岩岩相划分及岩相-沉积环境-有机质耦合关系. 天然气地球科学, 32(9): 1297-1307. 邱玉超, 罗冰, 夏茂龙, 等, 2019. 四川盆地长宁地区震旦系-寒武系裂陷槽的发现及其地质意义. 天然气勘探与开发, 42(2): 22-28. 王剑, 肖洒, 杜秋定, 等, 2023. 四川盆地东北部地区陡山沱组黑色页岩古海洋环境与有机质富集机制. 天然气工业, 43(4): 76-92. 王玉满, 王淑芳, 董大忠, 等, 2016. 川南下志留统龙马溪组页岩岩相表征. 地学前缘, 23(1): 119-133. 吴冬, 邓虎成, 熊亮, 等, 2023. 四川盆地及其周缘下寒武统麦地坪组-筇竹寺组层序充填和演化模式. 石油与天然气地质, 44(3): 764-777. 吴建发, 张成林, 赵圣贤, 等, 2023. 川南地区典型页岩气藏类型及勘探开发启示. 天然气地球科学, 34(8): 1385-1400. 吴永辉, 姜振学, 吴建发, 等, 2024. 渝西地区高含水页岩气藏特征、形成机理及地质意义. 天然气工业, 44(8): 58-71. 谢国梁, 焦堃, 刘瑞崟, 等, 2024. 四川盆地及周缘筇竹寺组与五峰组-龙马溪组页岩孔隙结构对比. 成都理工大学学报(自然科学版), 51(5): 813-832. 闫斌, 朱祥坤, 张飞飞, 等, 2014. 峡东地区埃迪卡拉系黑色页岩的微量元素和Fe同位素特征及其古环境意义. 地质学报, 88(8): 1603-1615. 杨梅华, 左银辉, 段新国, 等, 2023. 四川盆地下寒武统筇竹寺组烃源岩灶演化及其对成藏的启示. 地球科学, 48(2): 582-595. https://d.wanfangdata.com.cn/periodical/dqkx202302015 杨学锋, 张成林, 赵圣贤, 等, 2025. 川南地区筇竹寺组页岩气藏特征及勘探启示. 天然气地球科学, 36(1): 13-24. 杨雨, 文龙, 宋泽章, 等, 2022. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力. 石油学报, 43(10): 1351-1368, 1394. 杨雨然, 石学文, 李彦佑, 等, 2024. 四川盆地德阳-安岳裂陷槽筇竹寺组古地貌、沉积模式与勘探方向. 中国石油勘探, 29(6): 67-81. 雍锐, 石学文, 罗超, 等, 2024a. 四川盆地寒武系筇竹寺组页岩气"槽-隆"富集规律及勘探前景. 石油勘探与开发 51(6): 1211-1226. 雍锐, 吴建发, 吴伟, 等, 2024b. 四川盆地寒武系筇竹寺组页岩气勘探发现及其意义. 石油学报, 45(9): 1309-1323 袁钰轩, 李一凡, 樊太亮, 等, 2023. 川西南地区下寒武统细粒沉积岩高精度层序地层特征及其充填演化模式. 地学前缘, 30(6): 162-180. 张明何, 魏祥峰, 高波, 等, 2024. 川北山前带寒武系筇竹寺组富有机质页岩发育模式. 石油与天然气地质, 45(4): 992-1006. 张天怡, 黄士鹏, 李贤庆, 等, 2024. 四川盆地下寒武统筇竹寺组沉积地球化学特征与有机质富集机制. 天然气地球科学, 35(4): 688-703. 郑马嘉, 郭兴午, 伍亚, 等, 2024. 四川盆地德阳-安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破. 中国石油勘探, 29(3): 58-68. 邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. -