Characteristics and Drivers of Clustered Landslides Induced by Extreme Rainstorm on June 16 in Fujian-Guangdong-Jiangxi Junction Area
- 
					    摘要: 2024年6月16日,闽粤赣边区发生极端强降雨事件诱发数以万计的滑坡灾害,造成大量人员伤亡和财产损失.快速查明滑坡特征与驱动因素可为灾害预报预警和风险防控提供数据支撑.利用灾后光学影像进行智能识别,结合现场抽检复核,分析滑坡的空间分布和发育特征,并结合气候生态因素、地质条件和地形地貌探讨驱动因素.结果显示,共解译滑坡35 407处,总面积约41.27 km2;以小规模为主,集中分布在雨量超240 mm的山区;自然滑坡形状较规则、流动性强,工程滑坡形态复杂、流动性较弱.滑坡分布受气候生态因素、地质条件和地形地貌特征显著影响;自然滑坡受地形主导,而工程滑坡则随机性更强.本研究深化了对群发滑坡特征和驱动机制的理解,为防灾减灾救灾提供科学依据.Abstract: On June 16, 2024, an extreme rainfall event occurred in the Fujian-Guangdong-Jiangxi junction area, triggering tens of thousands of landslides and causing significant casualties and property losses. This study aims to rapidly identify the characteristics and driving factors of landslides to provide data support for disaster forecasting, early warning, and risk management. Post-disaster optical imagery was used for intelligent landslide identification, supplemented by on-site validation, to analyze the spatial distribution and developmental characteristics of the landslides. The study further investigated the driving factors by integrating the meteorological, ecological factors, geological conditions topographic features. The results reveal a total of 35 407 landslides, covering an area of approximately 41.27 km2, predominantly small-scale and concentrated in mountainous areas where rainfall exceeded 250 mm. Natural landslides exhibited relatively regular shapes and higher mobility, while landslides induced by engineering activities showed more complex shapes and lower mobility. The distribution of landslides was significantly influenced by the meteorological, ecological factors, geological conditions and topographic characteristics. Natural landslides were primarily controlled by topography, whereas engineering-induced landslides displayed greater randomness. This study deepens the understanding of the characteristics and driving mechanisms of clustered landslides, providing valuable scientific guidance for disaster prevention, mitigation, and relief efforts.
 - 
						
    
表 1 不同变量的描述与公式定义
Table 1. Descriptive statistics for selected explanatory variables
变量 定义 公式 地形粗糙度指数 地形粗糙度指数是地形表面粗糙度的指标,用于量化局部地形单元内高程变化的幅度.具有较高地形粗糙度指数值的区域通常表现出更复杂的地形 $ TRI=\frac{1}{\mathrm{c}\mathrm{o}\mathrm{s}\beta } $,其中$ \beta $表示坡度(弧度制) 地形位置指数 地形位置指数通过计算某点与其邻域平均海拔之间的高程差异,表征该点在地貌中的相对位置.地形位置指数计算可用于区分山谷、坡地和山脊,从而揭示滑坡易发区的地形特征 $ TPI={z}_{0}-\frac{1}{n}\sum\nolimits_{i=1}^{n}{z}_{i} $,其中z0表示中心点高程,zi表示邻域第i个点高程、n表示邻域中点数量 地形湿度指数 地形湿度指数是衡量地貌积水能力的指标,结合了汇水面积和坡度对水分积聚的影响.较高的地形湿度指数值表明该区域更容易积聚水分,从而增加滑坡的潜在风险 $ TWI=\mathrm{l}\mathrm{n}\left({A}_{s}/\mathrm{t}\mathrm{a}\mathrm{n}\beta \right) $,其中$ {A}_{\mathrm{s}} $表示汇水面积(m2)、β表示坡度(弧度制) 溪流动力指数 溪流动力指数评估水流的侵蚀能力.较高的溪流动力指数值表明该区域的水流侵蚀能力更强,可能加剧地表的不稳定性 $ SPI={A}_{\mathrm{s}}· \mathrm{t}\mathrm{a}\mathrm{n}\beta $,其中$ {A}_{\mathrm{s}} $表示汇水面积(m2)、$ \beta $表示坡度(弧度制)  - 
						
Bai, H. L., Feng, W. K., Yi, X. Y., et al., 2021. Group-Occurring Landslides and Debris Flows Caused by the Continuous Heavy Rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3): 3181-3201. https://doi.org/10.1007/s11069-021-04819-1 Chen, B., Zhang, C. C., Li, Z. H., et al., 2024. Developmental Characteristics and Controlling Factors of Landslides Triggered by Extreme Rainfalls on 16 June 2024 in Longyan, Fujian Province. Geomatics and Information Science of Wuhan University, 49(11): 2145-2155(in Chinese with English abstract). Chen, W. H., Yu, B., Ye, P., et al., 2024. Regional Prediction of Gully-Type Debris Flow Caused by Shallow Landslides in Fujian. Journal of Natural Disasters, 33(5): 12-22(in Chinese with English abstract). Feng, H. J., Zhou, A. G., Tang, X. M., et al., 2016. Development and Distribution Characteristics of Debris Flow in Zhejiang Province and Its Regional Forecast. Earth Science, 41(12): 2088-2099(in Chinese with English abstract). Feng, W. K., Bai, H. L., Lan, B., et al., 2022. Spatial–Temporal Distribution and Failure Mechanism of Group-Occurring Landslides in Mibei Village, Longchuan County, Guangdong, China. Landslides, 19(8): 1957-1970. https://doi.org/10.1007/s10346-022-01904-9 Feng, W. K., Jia, B. Z., Wu, Y. Y., et al., 2022. Characteristics and Mechanism of Landslide-Debris Flow Chain Disaster in Low Mountain and Hilly Terrain. The Chinese Journal of Geological Hazard and Control, 33(1): 35-44(in Chinese with English abstract). Guo, J., Wang, J., Li, Y., et al., 2021. Discussions on the Transformation Conditions of Wangcang Landslide-Induced Debris Flow. Landslides, 18(5): 1833-1843. https://doi.org/10.1007/s10346-021-01650-4 Hu, Y. M., Du, Y. D., Luo, X. L., 2013. Precipitation Patterns during the "Dragon Boat Water" in South China for the Recent 49 Years. Meteorological Monthly, 39(8): 1031-1041(in Chinese with English abstract). Huang, L. X., Chen, J. Q., Li, H. W., et al., 2024. Excellent Tomato Detector Based on Pruning and Distillation to Balance Accuracy and Lightweight. Computers and Electronics in Agriculture, 227: 109520. https://doi.org/10.1016/j.compag.2024.109520 Jain, S., Khosa, R., Gosain, A. K., 2022. Impact of Landslide Size and Settings on Landslide Scaling Relationship: A Study from the Himalayan Regions of India. Landslides, 19(2): 373-385. https://doi.org/10.1007/s10346-021-01794-3 Li, T., Xie, C. C., Xu, C., et al., 2024. Automated Machine Learning for Rainfall-Induced Landslide Hazard Mapping in Luhe County of Guangdong Province, China. China Geology, 7(2): 315-329. https://doi.org/10.31035/cg2024064 Liu, X. P., Yin, K. L., Xiao, C. G., et al., 2024. Meteorological Early Warning of Landslide Based on I-D-R Threshold Model. Earth Science, 49(3): 1039-1051(in Chinese with English abstract). Luo, Y., He, S. M., He, J. C., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide. Earth Science, 39(9): 1357-1363(in Chinese with English abstract). Ma, S. Y., Shao, X. Y., Xu, C., 2023. Landslides Triggered by the 2016 Heavy Rainfall Event in Sanming, Fujian Province: Distribution Pattern Analysis and Spatio-Temporal Susceptibility Assessment. Remote Sensing, 15(11): 2738. https://doi.org/10.3390/rs15112738 Qiu, H. J., Su, L. L., Tang, B. Z., et al., 2024. The Effect of Location and Geometric Properties of Landslides Caused by Rainstorms and Earthquakes. Earth Surface Processes and Landforms, 49(7): 2067-2079. https://doi.org/10.1002/esp.5816 Rana, K., Ozturk, U., Malik, N., 2021. Landslide Geometry Reveals Its Trigger. Geophysical Research Letters, 48(4): e2020GL090848. https://doi.org/10.1029/2020gl090848 Sheng, L., 2015. Spatio-Temporal Analysis and Comprehensive Evaluation of Rainfall-Type Regional Landslide (Dissertation). Fuzhou University, Fuzhou (in Chinese with English abstract). Talaat, F. M., Zain Eldin, H., 2023. An Improved Fire Detection Approach Based on YOLO-V8 for Smart Cities. Neural Computing and Applications, 35(28): 20939-20954. https://doi.org/10.1007/s00521-023-08809-1 Wang, J. H., Yang, S. M., Wei, Z. J., et al., 2018. Characteristics of the Variation of Precipitation during "Dragon-Boat Racing" Season of Guangdong under the Background of Global Climate Warming. Guangdong Meteorology, 40(1): 4-8(in Chinese with English abstract). Xiao, T., Liu, Q. L., Deng, M., et al., 2025. Evolution Patterns of Landslide Susceptibility in Three Gorges Reservoir Areas. Earth Science, 50(4): 1625-1637(in Chinese with English abstract). Xu, Q., Xu, F. S., Pu, C. H., et al., 2024. Preliminary Analysis of Extreme Rainfall-Induced Cluster Landslides in Jiangwan Township, Shaoguan, Guangdong, April 2024. Geomatics and Information Science of Wuhan University, 49(8): 1264-1274 (in Chinese with English abstract). Yu, B., Chen, W. H., Feng, W. K., et al., 2023. A Case Study of Shallow Landslides Triggered by Rainfall in Sanming, Fujian Province, China. Environmental Earth Sciences, 82(18): 426. https://doi.org/10.1007/s12665-023-11118-4 Zhang, Z. J., Zou, Y. L., Tan, Y. F., et al., 2024. YOLOv8-Seg-CP: A Lightweight Instance Segmentation Algorithm for Chip Pad Based on Improved YOLOv8-Seg Model. Scientific Reports, 14: 27716. https://doi.org/10.1038/s41598-024-78578-x Zhao, B., Liao, H. J., Su, L. J., 2021. Landslides Triggered by the 2018 Lombok Earthquake Sequence, Indonesia. CATENA, 207: 105676. https://doi.org/10.1016/j.catena.2021.105676 Zhu, J., Kang, Y. H., Liu, M., et al., 2023. Study on the Development Feature and Rainfall Threshold of "Dragon Boat Water" Geological Hazards in Qingyuan from 2011 to 2022. Mineral Exploration, 14(12): 2480-2491(in Chinese with English abstract). 陈博, 张灿灿, 李振洪, 等, 2024. 福建龙岩市2024年"6·16" 特大暴雨诱发滑坡发育特征及其调控因子分析. 武汉大学学报(信息科学版), 49(11): 2145-2155. 陈文鸿, 余斌, 叶鹏, 等, 2024. 福建区域浅层滑坡诱发沟谷型泥石流灾害预测. 自然灾害学报, 33(5): 12-22. 冯杭建, 周爱国, 唐小明, 等, 2016. 浙江省泥石流灾害发育分布规律及区域预报. 地球科学, 41(12): 2088-2099. doi: 10.3799/dqkx.2016.514 冯文凯, 贾邦中, 吴义鹰, 等, 2022. 低山丘陵区典型滑坡-泥石流链生灾害特征与成灾机理. 中国地质灾害与防治学报, 33(1): 35-44. 胡娅敏, 杜尧东, 罗晓玲, 2013. 近49年华南"龙舟水" 的降水分型. 气象, 39(8): 1031-1041. 刘谢攀, 殷坤龙, 肖常贵, 等, 2024. 基于I-D-R阈值模型的滑坡气象预警. 地球科学, 49(3): 1039-1051. doi: 10.3799/dqkx.2022.233 罗渝, 何思明, 何尽川, 2014. 降雨类型对浅层滑坡稳定性的影响. 地球科学, 39(9): 1357-1363. doi: 10.3799/dqkx.2014.118 盛玲, 2015. 降雨型区域滑坡时空分析及综合评价研究(硕士学位论文). 福州: 福州大学. 王娟怀, 杨守懋, 韦智嘉, 等, 2018. 全球气候变暖背景下广东"龙舟水" 的变化特征. 广东气象, 40(1): 4-8. 肖婷, 刘庆丽, 邓敏, 等, 2025. 三峡库区万州区滑坡易发性演化规律. 地球科学, 50(4): 1625-1637. doi: 10.3799/dqkx.2024.038 许强, 徐繁树, 蒲川豪, 等, 2024.2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析. 武汉大学学报(信息科学版), 49(8): 1264-1274. 朱江, 亢亚惠, 刘曼, 等, 2023. 清远市2011—2022年"龙舟水" 地质灾害发育特征与降雨阈值研究. 矿产勘查, 14(12): 2480-2491.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: