Petrogeochemistry, Apatite U-Pb Geochronology of Diabase, and Its Relationship with Uranium Mineralization in Xiazhuang Uranium Ore Field, North Guangdong
-
摘要: 粤北下庄铀矿田发育五组近似等间距展布的北西西向辉绿岩脉,其与铀成矿关系密切.为查明辉绿岩成因及其与铀成矿关系,通过辉绿岩岩石地球化学、磷灰石U-Pb年代学及成矿期石英H-O同位素分析,结合区域构造背景,系统研究了辉绿岩的成岩时代、成因及其对铀成矿的控制机制.结果表明:(1)辉绿岩形成于两期岩浆活动(200~180 Ma和150~ 140 Ma),分别对应早侏罗世和晚侏罗世;(2)辉绿岩富集大离子亲石元素和强不相容元素;稀土元素球粒陨石标准化配分曲线呈右倾型,无明显Eu、Ce负异常,具有板内玄武岩属性,源于地幔部分熔融并受俯冲流体交代;(3)早期辉绿岩(200~180 Ma)可作为有利的赋矿围岩,与其侵位相关的深大断裂为成矿流体提供通道,断裂与辉绿岩交切部位易于形成交点型铀矿化,其成矿流体具壳幔混合来源特征;晚期辉绿岩(150~140 Ma)不仅继承了早期辉绿岩的作用,还为138~122 Ma阶段的铀成矿提供了地幔流体和矿化剂ΣCO2,促进了碎裂蚀变岩型铀矿化的形成,其成矿流体主要来源于地幔流体.Abstract: The Xiazhuang uranium ore field in North Guangdong is characterized by five sets of approximately equidistant NWW-trending diabase dikes, which are closely related to uranium mineralization. To determine the genesis of diabase and its relationship with uranium mineralization. This study systematically investigates the diagenetic age, genesis of diabase, and its controlling mechanisms on uranium mineralization through geochemical analysis of diabase, apatite U-Pb geochronology, and H-O isotopic analysis of ore-forming quartz, combined with regional tectonic background. Results indicate that: (1) The diabase was formed during two magmatic events (200-180 Ma and 150-140 Ma), corresponding to the Early Jurassic and Late Jurassic, respectively. (2) The diabase is enriched in large-ion lithophile elements (LILEs) and highly incompatible elements. The chondrite-normalized rare earth element (REE) patterns exhibit right-leaning trends and no significant Eu or Ce anomalies, indicating an intraplate basalt affinity derived from partial mantle melting with metasomatism by subduction-related fluids. (3) The early-stage diabase (200-180 Ma) served as favorable host rocks for uranium mineralization. The deep-seated faults associated with diabase emplacement provided pathways for ore-forming fluids, and the intersections between faults and diabase facilitated the formation of vein-type uranium deposits with crust-mantle hybrid fluids. The late-stage diabase (150-140 Ma) not only inherited the role of the early-stage diabase but also contributed mantle-derived fluids and mineralizing agents (ΣCO₂) during the 138-122 Ma uranium mineralization stage, promoting the formation of fractured alteration-type uranium deposits dominated by mantle-derived fluids.
-
图 1 贵东矿集区地质简图(a)和下庄铀矿田地质简图(b)
a.据邓平等(2003);b.据张展适(2011)
Fig. 1. Geological sketch of the Guidong region (a) and the Xiazhuang uranium ore field (b)
图 2 下庄铀矿田辉绿岩及铀矿化的空间关系
a. 新鲜辉绿岩(第一组),ZK67-1:245 m;b. 蚀变辉绿岩(第四组),仙人嶂矿床,地表;c. 赤铁矿化辉绿岩(第一组):ZK250-1,孔深:183.95 m;d. 赤铁矿化辉绿岩:ZK250-1,孔深:183.95 m;e. 蚀变辉绿岩(第一组):ZK250-1,孔深:488.72 m;f. 辉绿岩角砾(第五组):泉洞矿点;g. 蚀变辉绿岩(第一组):ZK250-1,孔深:491.35 m;h. 蚀变辉绿岩(第一组):竹山下矿区. Pit.沥青铀矿;Hem.赤铁矿;Py.黄铁矿;Chl.绿泥石;Kfs.钾长石
Fig. 2. Spatial relationship between diabase and uranium mineralization in Xiazhuang uranium ore field
图 6 下庄铀矿田辉绿岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分图(b)
标准化数值、N-MORB、E-MORB和OIB数据引自Sun and McDonough(1989)
Fig. 6. Normalized patterns of trace elements (a) and REE (b) of diabase from the Xiazhuang uranium ore field
图 8 下庄铀矿田辉绿岩(Ta/La)N-(Hf/Sm)N (a)、Th/Zr-Nb/Zr (b)、La-La/Sm (c)图解
a.据La Flèche et al.(1998);b.据Zhao and Zhou(2007);c.据Zhao and Zhou(2007);HIMU.高U/Pb地幔端元;DM.亏损地幔端元
Fig. 8. (Ta/La)N-(Hf/Sm)N diagram (a), Th/Zr-Nb/Zr diagram (b), La-La/Sm diagram (c) of diabase from the Xiazhuang uranium ore field
图 9 下庄铀矿田辉绿岩Zr-Zr/Y图(a)、Ta/Yb-Th/Yb (b)、Zr-TiO2 (c)和2Nb-Zr/4-Y图(d)
WPB. 板内玄武岩;IAB. 岛弧玄武岩;MORB. 洋中脊玄武岩;VAB. 火山弧玄武岩;CAB. 钙碱性玄武岩;OFB. 扩张板块边缘玄武岩;LKT. 汇聚板块边缘玄武岩;IAT. 岛弧拉斑系列;ICA. 岛弧钙碱系列;SHO. 岛弧橄榄玄粗岩系列;TH. 拉斑玄武岩;TR. 过渡玄武岩;ALK. 碱性玄武岩;A1+A2. 板内碱性玄武岩;A2+C. 板内拉斑玄武岩;B. P型MORB;D. N型MORB;C+D. 火山弧玄武岩
Fig. 9. Zr-Zr/Y diagram (a), Ta/Yb-Th/Yb diagram (b), Zr-TiO2 diagram (c) and 2Nb-Zr/4-Y diagram (d) of diabase from the Xiazhuang uranium ore field
表 1 下庄铀矿田辉绿岩主元素分析结果(%)
Table 1. The analytical results of major elements (%) of diabase from the Xiazhuang uranium ore field
辉绿岩 SiO2 Al2O3 FeO Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 LOI Total 来源 第一组 49.52 13.39 9.50 3.89 6.19 9.98 2.84 0.37 0.22 2.19 0.25 0.64 100.02 本文 第一组 49.19 13.67 9.93 3.47 6.14 9.78 2.63 0.41 0.23 2.15 0.24 0.48 98.32 田晓龙,2016 第一组 49.22 13.84 9.61 3.96 6.13 9.97 2.59 0.41 0.22 2.20 0.23 0.67 99.05 田晓龙,2016 第一组 49.97 11.92 9.03 4.82 5.80 6.10 3.01 0.99 0.23 2.17 0.28 3.31 99.65 李子颖等,2010 第二组 48.34 15.49 8.28 3.39 7.19 10.51 1.67 0.67 0.18 1.50 0.35 1.57 100.05 王正其等,2007 第二组 49.80 13.60 10.04 4.75 4.61 7.46 3.14 0.65 0.20 2.00 0.45 1.67 99.48 王正其等,2007 第二组 48.14 13.44 10.09 4.20 5.28 9.62 1.52 1.33 0.20 2.25 0.35 1.51 99.94 王正其等,2007 第二组 48.40 14.37 8.90 4.21 6.52 9.82 2.97 0.46 0.21 2.07 0.15 0.84 99.90 王正其等,2007 第二组 48.22 13.79 10.27 4.32 6.23 9.93 2.71 0.47 0.24 2.05 0.05 0.66 100.10 王正其等,2007 第二组 48.14 14.20 10.60 3.51 5.14 8.15 3.41 0.93 0.21 3.36 0.05 1.00 99.86 王正其等,2007 第二组 44.28 13.45 9.99 4.70 5.99 9.46 3.09 0.50 0.26 2.07 0.05 0.95 99.89 王正其等,2007 第二组 49.72 13.78 9.52 3.99 5.94 9.49 2.97 0.45 0.21 2.20 0.19 0.61 100.10 陆建军等,2006 第二组 48.68 13.78 9.88 4.35 6.46 9.68 2.90 0.41 0.20 2.30 0.19 0.56 100.50 陆建军等,2006 第二组 48.40 15.12 8.05 4.36 6.72 10.17 2.39 0.42 0.19 2.40 0.25 0.46 99.82 陆建军等,2006 第二组 48.18 14.92 8.89 3.87 6.57 10.10 2.83 0.61 0.25 2.30 0.28 0.45 100.20 陆建军等,2006 第二组 48.56 14.13 8.34 3.71 6.76 9.40 2.74 0.92 0.28 2.15 0.29 1.34 100.04 李子颖等,2010 第二组 48.00 18.23 8.16 3.54 6.73 10.11 2.39 0.57 0.21 1.93 0.26 / 100.13 李献华等,1997 第三组 52.59 18.28 7.32 4.17 3.08 6.26 4.14 0.68 0.24 2.58 0.58 / 99.92 李献华等,1997 第三组 44.28 12.94 9.60 7.76 3.94 7.22 2.87 0.19 0.27 4.08 0.57 4.96 99.75 本文 第三组 48.72 14.59 8.96 3.49 6.51 10.01 2.63 0.56 0.21 2.34 0.26 0.62 98.90 田晓龙,2016 第三组 46.60 14.04 9.17 7.37 4.60 8.13 2.39 0.47 0.30 3.46 0.41 1.31 99.45 李子颖等,2010 第四组 49.34 12.38 10.55 5.36 4.02 8.46 2.28 0.45 0.27 3.73 0.57 1.41 99.99 本文 第四组 51.20 12.53 10.90 5.15 3.76 7.35 2.45 0.93 0.26 2.70 0.23 0.81 98.27 田晓龙,2016 第四组 49.28 13.30 8.93 5.15 4.38 7.28 3.41 0.55 0.22 3.17 0.42 2.40 98.49 田晓龙,2016 第四组 49.57 13.19 8.12 6.27 5.00 7.88 2.98 0.61 0.22 2.79 0.38 2.20 100.21 李子颖等,2010 第五组 49.43 13.20 7.55 7.29 4.12 6.46 4.77 0.52 0.23 3.74 0.50 1.60 100.24 本文 第五组 51.75 16.42 8.28 5.03 4.02 7.27 2.58 0.72 0.23 3.18 0.54 / 100.02 李献华等,1997 表 2 下庄铀矿田不同类型矿床H、O同位素组成
Table 2. Hydrogen and oxygen isotopic compositions of different deposits from Xiazhuang ore field
序号 样品号 测试矿物 δ18OH2O(‰)SMOW δDH2O(‰)SMOW 矿床 数据来源 1 XW014 萤石 ‒6.54 ‒85 硅化带型(希望矿床) 刘金辉,1997 2 XW014 石英 ‒1.52 ‒39.2 3 XW026 石英 ‒4.13 ‒33.5 4 203 石英 4.4 ‒34 交点型(仙石矿床) 邓平等,2003 5 204 石英 1.4 ‒41 6 0235‒1 石英 5.5 ‒42 7 0235‒2 石英 6.6 ‒43 8 236 石英 5.9 ‒65 9 2401 石英 7.4 ‒70 碎裂蚀变岩型(石土岭矿床) 本文 10 2402 石英 7.0 ‒76 11 2403 石英 5.8 ‒80.3 12 2404 石英 8.1 ‒82.3 -
Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010 Chen, C. M., Zhou, Y., Feng, Z. H., et al., 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449 (in Chinese with English abstract). Cochrane, R., Spikings, R. A., Chew, D., et al., 2014. High Temperature (> 350 ℃) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochimica et Cosmochimica Acta, 127: 39-56. https://doi.org/10.1016/j.gca.2013.11.028 Deng, P., Shen, W. Z., Ling, H. F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract). He, D. B., 2017. Comparative Study of Different Types of Uranium Deposits in the Xiazhuang Ore Field, North Guangdong, China (Dissertation). Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract). Hu, R. Z., Li, C. Y., Ni, S. J., et al., 1993. Research on ΣCO2 Source in Ore-Forming Hydrothermal Solution of Granite-Type Uranium Deposit, South China. Science in China (Series B), 23(2): 189-196 (in Chinese). Hughes, J. M., Rakovan, J., 2002. The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1-12. https://doi.org/10.2138/rmg.2002.48.1 La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3 Lai, Z. X., 2015. The Geochemical Character of Intermediate-Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field. Uranium Geology, 31(3): 370-376 (in Chinese with English abstract). Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). Li, Z. Y., Huang, Z. Z., Li, X. Z., et al., 2010. Magmatic Rocks and Uranium Mineralization in Guidong, Nanling. Geological Publishing House, Beijing (in Chinese). Liu, H. B., Jin, G. S., Li, J. J., et al., 2013. Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 30(3): 174-179 (in Chinese with English abstract). Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Liu, J. H., 1997. Application of Isotopic Methods in the Study on Xiazhuang Granite Type Hydrothermal Uranium Deposits. Volcanology & Mineral Resources, 18(4): 292-297 (in Chinese with English abstract). Lu, J. J., Wu, L. Q., Ling, H. F., et al., 2006. The Origin of the Huangpi-Zhangguangying Diabase-Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province: Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract). Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. Luo, J. C., Qi, Y. Q., Wang, L. X., et al., 2019. Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.03 Nie, B., Zhang, W. L., 2018. Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province. Mineral Resources and Geology, 32(3): 390-396 (in Chinese with English abstract). Pochon, A., Poujol, M., Gloaguen, E., et al., 2016. U-Pb LA-ICP-MS Dating of Apatite in Mafic Rocks: Evidence for a Major Magmatic Event at the Devonian- Carboniferous Boundary in the Armorican Massif (France). American Mineralogist, 101(11): 2430-2442. https://doi.org/10.2138/am-2016-5736 Sun, L. Q., Wang, K. X., Dai, J. W., et al., 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276 (in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011GC003928 Tian, X. L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Wang, G. C., 2016. Petrogenesis of Mesozoic Intrusive Rocks in Northwest Fujian and South Jiangxi Province and Their Geodynamic Implications (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008 Wang, X. C., Zhang, B. T., Zhang, Z. H., 1991. A Study of the Relationship between the Dark Dyke and the Uranium Mineralization. Mineral Deposits, 10(4): 359-370 (in Chinese with English abstract). Wang, Y. J., Fan, W. M., Cawood, P. A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. https://doi.org/10.1016/j.lithos.2008.07.019 Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract). Wang, Z. Q., Li, Z. Y., Zhang, G. Y., et al., 2007. Geochemical Characteristics and the Provenance of Cretaceous Basic Dikes in Zhongdong Area of Xiazhuang Uranium Ore Field. Uranium Geology, 23(4): 218-225, 248 (in Chinese with English abstract). Wu, L. Q., Tan, Z. Z., Liu, R. Z., et al., 2003. Discussion on Uranium Ore-Formation Age in Xiazhuang Ore-Field, Northern Guandong. Uranium Geology, 19(1): 28-33 (in Chinese with English abstract). Xiang, Y. X., Wu, J. H., 2012. SHRIMP Zircon U-Pb Age of Yutian Group Basalts in Longnan Area of Southern Jiangxi Province and Its Geological Significance. Geological Bulletin of China, 31(5): 716-725 (in Chinese with English abstract). Zhang, D., Zhao, K. D., Chen, W., et al., 2018a. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028 Zhang, F. F., Wang, X. L., Sun, Z. M., et al., 2018b. Geochemistry and Zircon-Apatite U-Pb Geochronology of Mafic Dykes in the Shuangxiwu Area: Constraints on the Initiation of Neoproterozoic Rifting in South China. Precambrian Research, 309: 138-151. https://doi.org/10.1016/j.precamres.2017.04.008 Zhang, X. H., Huang, J. H., Zhang, B., et al., 2024. Sensitive Corresponding to Tectonic Transform of South China Block during Mesozoic: A Case Study on the Wuchuan-Sihui Strike-Slip Fault Zone. Acta Petrologica Sinica, 40(12): 3923-3948 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.12.14 Zhang, Z. S., 2011. Magmatism and Its Relationship with Uranium Mineralization in the Xiazhuang Uranium Ore Field. China Atomic Energy Press, Beijing (in Chinese). Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002 Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract). Zhou, J., Jiang, Y. H., Xing, G. F., et al., 2013. Geochronology and Petrogenesis of Cretaceous A-Type Granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383. https://doi.org/10.1080/00206814.2013.774199 Zhu, B., Ling, H. F., Shen, W. Z., et al., 2006. Isotopic Geochemistry of Shituling Uranium Deposit, Northern Guangdong Province, China. Mineral Deposits, 25(1): 71-82 (in Chinese with English abstract). Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic-Ultramafic Intrusion and A-Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005 陈丛敏, 周云, 冯佐海, 等, 2024. 滇西点苍山新元古代辉长岩的识别及其大地构造意义. 地球科学, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062 邓平, 沈渭洲, 凌洪飞, 等, 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528. 何德宝, 2017. 粤北下庄矿田不同类型铀矿床成矿机制对比研究(博士学位论文). 北京: 核工业北京地质研究院. 胡瑞忠, 李朝阳, 倪师军, 等, 1993. 华南花岗岩型铀矿床成矿热液中∑CO2来源研究. 中国科学(B辑), 23(2): 189-196. 赖中信, 2015. 下庄铀矿田中基性脉岩地球化学特征及其控矿作用. 铀矿地质, 31(3): 370-376. 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. 李子颖, 黄志章, 李秀珍, 等, 2010. 南岭贵东岩浆岩与铀成矿作用. 北京: 地质出版社. 刘汉彬, 金贵善, 李军杰, 等, 2013. 铀矿地质样品的稳定同位素组成测试方法. 世界核地质科学, 30(3): 174-179. 刘金辉, 1997. 同位素方法在下庄花岗岩型铀矿床研究中的应用. 火山地质与矿产, 18(4): 292-297. 陆建军, 吴烈勤, 凌洪飞, 等, 2006. 粤北下庄铀矿田黄陂‒张光营辉绿岩脉的成因: 元素地球化学和Nd-Sr-Pb-O同位素证据. 岩石学报, 22(2): 397-406. 骆金诚, 齐有强, 王连训, 等, 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660-2678. 聂斌, 张万良, 2018. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系. 矿产与地质, 32(3): 390-396. 孙立强, 王凯兴, 戴佳文, 等, 2024. 东昆仑造山带海德乌拉辉绿岩成因及其地质意义. 地球科学, 49(4): 1261-1276. 田晓龙, 2016. 诸广山‒贵东地区基性岩脉的地球化学特征及其与铀矿的关系(硕士学位论文). 北京: 中国地质大学. 王国昌, 2016. 闽西北与赣南地区中生代侵入岩成因及其地球动力学意义研究(博士学位论文). 南京: 南京大学. 王学成, 章邦桐, 张祖还, 1991. 暗色岩脉与铀成矿关系研究. 矿床地质, 10(4): 359-370. 汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. 王正其, 李子颖, 张国玉, 等, 2007. 下庄中洞地区白垩纪基性脉岩地球化学特征及其源区性质. 铀矿地质, 23(4): 218-225, 248. 吴烈勤, 谭正中, 刘汝洲, 等, 2003. 粤北下庄矿田铀矿成矿时代探讨. 铀矿地质, 19(1): 28-33. 项媛馨, 巫建华, 2012. 赣南龙南地区余田群玄武岩SHRIMP锆石U-Pb年龄及其地质意义. 地质通报, 31(5): 716-725. 张献河, 黄建桦, 张波, 等, 2024. 华南板块中生代构造体制转换的最直接响应: 吴川‒四会走滑断裂带宏‒微观构造解析. 岩石学报, 40(12): 3923-3948. 张展适, 2011. 下庄铀矿田岩浆作用及其与铀成矿关系. 北京: 中国原子能出版社. 钟福军, 夏菲, 王玲, 等, 2023. 诸广中部鹿井铀矿田辉绿岩磷灰石U-Pb年龄、地球化学特征及其与铀成矿关系. 地质学报, 97(8): 2593-2608. 朱捌, 凌洪飞, 沈渭洲, 等, 2006. 粤北石土岭铀矿床同位素地球化学研究. 矿床地质, 25(1): 71-82. -
李海东 ES-2023-0554 附表.docx
-




下载: