• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型

    周林 陈建峰 朱艳

    周林, 陈建峰, 朱艳, 2025. 基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型. 地球科学, 50(10): 3905-3915. doi: 10.3799/dqkx.2025.097
    引用本文: 周林, 陈建峰, 朱艳, 2025. 基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型. 地球科学, 50(10): 3905-3915. doi: 10.3799/dqkx.2025.097
    Zhou Lin, Chen Jianfeng, Zhu Yan, 2025. Development Model of Excess Pore Pressure for Geogrid Reinforced Coral Sand Based on Strain Characteristics. Earth Science, 50(10): 3905-3915. doi: 10.3799/dqkx.2025.097
    Citation: Zhou Lin, Chen Jianfeng, Zhu Yan, 2025. Development Model of Excess Pore Pressure for Geogrid Reinforced Coral Sand Based on Strain Characteristics. Earth Science, 50(10): 3905-3915. doi: 10.3799/dqkx.2025.097

    基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型

    doi: 10.3799/dqkx.2025.097
    基金项目: 

    国家自然科学基金项目 42477169

    中央高校基本科研业务费专项资金资助项目 22120230302

    详细信息
      作者简介:

      周林(1995-),男,博士研究生,从事土工合成材料加筋土结构动力特性研究. ORCID:0009-0004-4825-3880.E-mail:2111341@tongji.edu.cn

      通讯作者:

      陈建峰,教授,主要从事地质工程方向研究. ORCID: 0000-0001-8266-4705. E-mail: jf_chen@tongji.edu.cn

    • 中图分类号: P642

    Development Model of Excess Pore Pressure for Geogrid Reinforced Coral Sand Based on Strain Characteristics

    • 摘要:

      地震荷载下珊瑚砂中超静孔压增长,直至液化,是导致结构破坏的关键因素.开展了一系列不排水动三轴试验,研究土工格栅层数、相对密实度Dr和循环应力比CSR对加筋珊瑚砂超静孔压和轴向应变发展特性的影响.试验结果表明:土工格栅加筋及增加格栅层数可减小珊瑚砂中超静孔压和轴向应变发展速率,提高珊瑚砂抗液化强度.在相同循环振次比下,加筋珊瑚砂中超静孔压发展远高于硅质砂;随着CSR的增加,加筋珊瑚砂超静孔压发展曲线逐渐由S型过渡到双曲线型,而经典的Seed孔压应力模型难以描述该种孔压发展趋势变化的特性.提出了基于应变特性的加筋珊瑚砂超静孔压发展模型,该模型可较好地预测不同Dr和CSR下加筋珊瑚砂超静孔压发展趋势,可为我国南海珊瑚砂岛礁区基础设施抗震设计和基于有效应力的稳定性分析提供理论依据.

       

    • 图  1  珊瑚砂级配曲线及电镜扫描图

      Fig.  1.  Grain size distribution curve and scanning electron micrograph image of coral sand

      图  2  土工格栅布置示意图(H=试样高度)

      Fig.  2.  Schematic diagram of geogrid arrangement (H=sample height)

      图  3  超静孔压、轴向应变与循环振次关系曲线

      Fig.  3.  Relationship curves of excess pore pressure and axial strain-number of cycles

      图  4  加筋珊瑚砂超静孔压比-循环振次比关系曲线

      Fig.  4.  Relationship curves of excess pore pressure ratio-number of cycle ratio of reinforced coral sand

      图  5  超静孔压比曲线拟合分析

      Fig.  5.  Excess pore pressure ratio curve fitting analysis

      图  6  偏应力和超孔压比-循环振次关系曲线

      Fig.  6.  Relationship curves of deviator stress and excess pore pressure ratio-number of cycles

      图  7  加筋珊瑚砂超静孔压比-双幅轴向应变关系曲线

      Fig.  7.  Relationship curves of excess pore pressure ratio-double-amplitude axial strain of reinforced coral sand

      图  8  不同循环应力比和相对密实度下加筋珊瑚砂超静孔压比-双幅轴向应变关系曲线

      Fig.  8.  Relationship curves of excess pore pressure ratio-double-amplitude axial strain for reinforced coral sand under various CSRs and relative densities

      图  9  Dr=85%时加筋珊瑚砂超静孔压比实测发展模式和不同模型拟合结果对比

      Fig.  9.  Comparison of the measured development pattern of excess pore pressure ratio and the fitting results of different models for reinforced coral sand at Dr=85%

      图  10  超静孔压模型拟合结果

      Fig.  10.  Excess pore pressure model fitting results

      图  11  参数A×DrB-循环应力比关系曲线

      Fig.  11.  Relationship curves of parameter A×Dr and B-cyclic stress ratio

      图  12  超静孔压比-双幅轴向应变关系试验数据和预测趋势对比

      Fig.  12.  Comparison of test data and predicted trend of excess pore pressure ratio-double-amplitude axial strain relationship

      表  1  固结不排水动三轴试验工况

      Table  1.   Consolidated undrained dynamic triaxial test conditions

      编号 格栅层数 相对密实度Dr (%) 循环应力比CSR
      #1 0 70 0.24
      #2 1 70 0.24
      #3 2 70 0.24
      #4 3 70 0.21、0.24、0.27、0.30
      #5 3 50 0.15、0.18、0.21、0.24
      #6 3 85 0.24、0.27、0.30、0.33
      下载: 导出CSV
    • Akosah, S., Zhou, L., Chen, J. F., et al., 2024. Experimental Investigation on Cyclic Behavior of Geogrid-Reinforced Coral Sand from the South China Sea. Marine Georesources & Geotechnology, 42(6): 707-720. https://doi.org/10.1080/1064119x.2023.2214933
      Asadi, M. S., Asadi, M. B., Orense, R. P., et al., 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8): 04018045. https://doi.org/10.1061/(asce)gt.1943-5606.0001912
      Chen, G. X., Ma, W. J., Qin, Y., et al., 2021. Liquefaction Susceptibility of Saturated Coral Sand Subjected to Various Patterns of Principal Stress Rotation. Journal of Geotechnical and Geoenvironmental Engineering, 147(9): 04021093. https://doi.org/10.1061/(asce)gt.1943-5606.0002590
      Chen, G. X., Wu, Q., Zhou, Z. L., et al., 2020. Undrained Anisotropy and Cyclic Resistance of Saturated Silt Subjected to Various Patterns of Principal Stress Rotation. Géotechnique, 70(4): 317-331. https://doi.org/10.1680/jgeot.18.p.180
      Chen, J. F., Akosah, S., Ma, C., et al., 2023. Large-Scale Triaxial Tests of Reinforced Coral Sand with Different Grain Size Distributions. Marine Georesources & Geotechnology, 41(5): 544-554. https://doi.org/10.1080/1064119x.2022.2068462
      Ding, X. M., Luo, Z. G., Ou, Q., 2022. Mechanical Property and Deformation Behavior of Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 50(4): 618-631. https://doi.org/10.1016/j.geotexmem.2022.03.002
      Fang, Y., Ikuo, T., Ghalandarzadeh, A., et al., 2001. Mechanism of Deformation and Failure of Gravity-Type Quay Walls under Earthquake Liquefaction. Earth Science, 26(4): 415-418 (in Chinese with English abstract).
      Gao, R., Ye, J. H., 2019. Experimental Investigation on the Dynamic Characteristics of Calcareous Sand from the Reclaimed Coral Reef Islands in the South China Sea. Rock and Soil Mechanics, 40(10): 3897-3908, 3919(in Chinese with English abstract).
      Goodarzi, S., Shahnazari, H., 2018. Strength Enhancement of Geotextile-Reinforced Carbonate Sand. Geotextiles and Geomembranes, 47(2): 128-139. https://doi.org/10.1016/j.geotexmem.2018.12.004
      Hussain, M., Sachan, A., 2019. Dynamic Characteristics of Natural Kutch Sandy Soils. Soil Dynamics and Earthquake Engineering, 125: 105717. https://doi.org/10.1016/j.soildyn.2019.105717
      Lee, K. L., Albaisa, A., 1974. Earthquake Induced Settlements in Saturated Sands. Journal of the Geotechnical Engineering Division, 100(4): 387-406. https://doi.org/10.1061/ajgeb6.0000034
      Li, W. Y., Huang, Y., 2023. Model Tests on the Effect of Dip Angles on Flow Behavior of Liquefied Sand. Journal of Earth Science, 34(2): 381-385. https://doi.org/10.1007/s12583-021-1498-8
      Li, X., Liu, J. K., Nan, J. Y., 2022. Prediction of Dynamic Pore Water Pressure for Calcareous Sand Mixed with Fine-Grained Soil under Cyclic Loading. Soil Dynamics and Earthquake Engineering, 157: 107276. https://doi.org/10.1016/j.soildyn.2022.107276
      Liu, H. L., Zhang, Y., Guo, W., et al., 2021. A Prediction Model of Dynamic Pore Water Pressure for MICP-Treated Calcareous Sand. Chinese Journal of Rock Mechanics and Engineering, 40(4): 790-801(in Chinese with English abstract).
      Ma, W. J., Chen, G. X., Li, L., et al., 2019. Experimental Study on Liquefaction Characteristics of Saturated Coral Sand in Nansha Islands under Cyclic Loading. Chinese Journal of Geotechnical Engineering, 41(5): 981-988(in Chinese with English abstract).
      Ma, W. J., Chen, G. X., Qin, Y., et al., 2020. Experimental Studies on Effects of Initial Major Stress Direction Angles on Liquefaction Characteristics of Saturated Coral Sand. Chinese Journal of Geotechnical Engineering, 42(3): 592-600 (in Chinese with English abstract).
      Maheshwari, B. K., Singh, H. P., Saran, S., 2012. Effects of Reinforcement on Liquefaction Resistance of Solani Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(7): 831-840. https://doi.org/10.1061/(asce)gt.1943-5606.0000645
      Mao, W. W., Li, W., Rasouli, R., et al., 2023. Numerical Simulation of Liquefaction-Induced Settlement of Existing Structures. Journal of Earth Science, 34(2): 339-346. https://doi.org/10.1007/s12583-021-1531-y
      Olson, S. M., Green, R. A., Lasley, S., et al., 2012. Documenting Liquefaction and Lateral Spreading Triggered by the 12 January 2010 Haiti Earthquake. Earthquake Spectra, 27(1_suppl1): 93-116. https://doi.org/10.1193/1.3639270
      Rui, S. J., Guo, Z., Si, T. L., et al., 2020. Effect of Particle Shape on the Liquefaction Resistance of Calcareous Sands. Soil Dynamics and Earthquake Engineering, 137: 106302. https://doi.org/10.1016/j.soildyn.2020.106302
      Seed, H. B., Martin, P. P., Lysmer, J., 1976. Pore-Water Pressure Changes during Soil Liquefaction. Journal of the Geotechnical Engineering Division, 102(4): 323-346. https://doi.org/10.1061/ajgeb6.0000258
      Shen, Y., Ma, Y. H., Rui, X. X., 2023. Experimental Study on Pore Water Pressure Characteristics and Accumulated Loss Energy of Saturated Calcareous Sand under Wave Loading. Rock and Soil Mechanics, 44(8): 2195-2204(in Chinese with English abstract).
      Wang, L., Wang, Y. L., Yuan, X. M., et al., 2021. Experimental Study on Liquefaction Resistance of Hydraulic Fill Coralline Soils at Artificial Sites Based on Large-Scale Dynamic Triaxial Apparatus. Rock and Soil Mechanics, 42(10): 2819-2829(in Chinese with English abstract).
      Wu, Q., Wang, L. Y., Liu, Q. F., et al., 2023. Experimental Study on Development Model of Excess Pore Pressure for Saturated Coral Sand Based on Shear Strain Characteristics. Chinese Journal of Geotechnical Engineering, 45(10): 2091-2099(in Chinese with English abstract).
      Wu, Y., Cui, J., Li, C., et al., 2022. Experimental Study on the Effect of Fines on the Maximum Dynamic Shear Modulus of Coral Sand in a Hydraulic Fill Island-Reef. Chinese Journal of Rock Mechanics and Engineering, 41(1): 205-216 (in Chinese with English abstract).
      Wu, Y., Wu, Y. H., Ma, L. J., et al., 2024. Experimental Study on Dynamic Characteristics of Calcareous Sand-Gravel Mixtures from Islands in the South China Sea. Chinese Journal of Geotechnical Engineering, 46(1): 63-71 (in Chinese with English abstract).
      Xiao, P., Liu, H. L., Stuedlein, A. W., et al., 2019. Effect of Relative Density and Biocementation on Cyclic Response of Calcareous Sand. Canadian Geotechnical Journal, 56(12): 1849-1862. https://doi.org/10.1139/cgj-2018-0573
      Yu, H. Z., Wang, R., Zhao, W. G., et al., 2006. Experimental Research on Development Pattern of Pore Water Pressure of Carbonate Sand under Wave Loads. Journal of Wuhan University of Technology, 28(11): 86-89(in Chinese with English abstract).
      Zhou, L., Chen, J. F., Peng, M., et al., 2022. Liquefaction Behavior of Fiber-Reinforced Calcareous Sands in Unidirectional and Multidirectional Simple Shear Tests. Geotextiles and Geomembranes, 50(4): 794-806. https://doi.org/10.1016/j.geotexmem.2022.04.003
      Zhou, L., Chen, J. F., Zhu, Y., et al., 2024. Liquefaction and Post-Liquefaction Behaviors of Unreinforced and Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 52(3): 286-303. https://doi.org/10.1016/j.geotexmem.2023.11.002
      Zhou, L., Chen, J. F., Zhuang, X. Y., 2023. Undrained Cyclic Behaviors of Fiber-Reinforced Calcareous Sand under Multidirectional Simple Shear Stress Path. Acta Geotechnica, 18(6): 2929-2943. https://doi.org/10.1007/s11440-022-01780-6
      方云, 东烟郁生, Ghalandarzadeh, A., 等, 2001. 地震液化条件下重力式码头的变形破坏机理. 地球科学, 26(4): 415-418. http://www.earth-science.net/article/id/865
      高冉, 叶剑红, 2019. 中国南海吹填岛礁钙质砂动力特性试验研究. 岩土力学, 40(10): 3897-3908, 3919.
      刘汉龙, 张宇, 郭伟, 等, 2021. 微生物加固钙质砂动孔压模型研究. 岩石力学与工程学报, 40(4): 790-801.
      马维嘉, 陈国兴, 李磊, 等, 2019. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究. 岩土工程学报, 41(5): 981-988.
      马维嘉, 陈国兴, 秦悠, 等, 2020. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验. 岩土工程学报, 42(3): 592-600.
      沈扬, 马英豪, 芮笑曦, 2023. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究. 岩土力学, 44(8): 2195-2204.
      王鸾, 汪云龙, 袁晓铭, 等, 2021. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究. 岩土力学, 42(10): 2819-2829.
      吴琪, 王路阳, 刘启菲, 等, 2023. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报, 45(10): 2091-2099.
      吴杨, 崔杰, 李晨, 等, 2022. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报, 41(1): 205-216.
      吴杨, 吴毅航, 马林建, 等, 2024. 南海岛礁珊瑚砂砾混合料动力特性试验研究. 岩土工程学报, 46(1): 63-71.
      虞海珍, 汪稔, 赵文光, 等, 2006. 波浪荷载下钙质砂孔压增长特性的试验研究. 武汉理工大学学报, 28(11): 86-89.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  80
    • HTML全文浏览量:  6
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-02-16
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回