• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东亚陆缘盆地新生代沉积通量演化及控制因素

    王海芹 丁巍伟 王菲

    王海芹, 丁巍伟, 王菲, 2025. 东亚陆缘盆地新生代沉积通量演化及控制因素. 地球科学, 50(9): 3559-3580. doi: 10.3799/dqkx.2025.099
    引用本文: 王海芹, 丁巍伟, 王菲, 2025. 东亚陆缘盆地新生代沉积通量演化及控制因素. 地球科学, 50(9): 3559-3580. doi: 10.3799/dqkx.2025.099
    Wang Haiqin, Ding Weiwei, Wang Fei, 2025. Evolution and Controlling Factors of Sedimentary Flux of East Asian Continental Margin since the Cenozoic. Earth Science, 50(9): 3559-3580. doi: 10.3799/dqkx.2025.099
    Citation: Wang Haiqin, Ding Weiwei, Wang Fei, 2025. Evolution and Controlling Factors of Sedimentary Flux of East Asian Continental Margin since the Cenozoic. Earth Science, 50(9): 3559-3580. doi: 10.3799/dqkx.2025.099

    东亚陆缘盆地新生代沉积通量演化及控制因素

    doi: 10.3799/dqkx.2025.099
    基金项目: 

    科技部重点研发项目 2023YFF0803401

    详细信息
      作者简介:

      王海芹(1999-),女,博士研究生,主要从事大陆边缘动力学研究. ORCID:0009-0006-9771-1547. E-mail:wanghaiq@zju.edu.cn

      通讯作者:

      丁巍伟,ORCID: 0000-0002-9944-2356. E-mail:wwding@sio.org.cn

    • 中图分类号: P67

    Evolution and Controlling Factors of Sedimentary Flux of East Asian Continental Margin since the Cenozoic

    • 摘要: 东亚大陆边缘位于太平洋板块和欧亚板块的汇聚碰撞边界,是全球构造、气候最活跃的地区,也是新生代以来的沉积“源‒汇”过程的重要载体,但不同纬度海盆沉积动力过程和关键控制因素仍不明确.本文计算并统计了高纬度(鄂霍次克海)、中纬度(日本海、东海)和低纬度(南海)代表性海盆的新生代沉积通量.结果表明东亚陆缘新生代沉积通量演化呈现显著的纬度分异特征:中‒低纬度海盆(南海、东海、日本海)受构造‒季风‒河流耦合控制,晚中新世(11.6~5.3 Ma)因青藏高原隆升引发河流重组及受东亚冬季风控制,沉积通量较中中新世时期减少了约1/3;上新世(5.3~0 Ma)夏季风增强及台湾岛隆升使其沉积通量较晚中新世增加2~3倍,日本海则主要受控于季风及局部构造.高纬度鄂霍次克海受构造‒冰川协同作用,中‒晚中新世(16.0~5.3 Ma)全球降温事件导致通量较早中新世减少了约60%,上新世(5.3~2.5 Ma)沉积通量因黑龙江(阿穆尔河)流域增大及萨哈林岛隆升而增加约2倍.

       

    • 图  1  东亚陆缘盆地区域位置

      黑色线条与红色点代表本文中所使用的多道地震测线与钻井资料,其余颜色为河流流域范围;1.北萨哈林盆地;2.千岛盆地;3.东海陆架盆地;4.冲绳海槽;5.南海海盆;6.南海陆架盆地

      Fig.  1.  The location of the East Asian continental margin basin

      图  2  南海陆缘及深海盆地沉积通量对比

      Fig.  2.  Comparison of sedimentary flux in South China Sea continental margin basin and South China Sea basin

      图  3  日本海盆地的沉积速率变化

      蓝色为IODP钻井的沉积速率,据Tada et al.(2015);黄色据Lee et al.(2001)

      Fig.  3.  Variation of sedimentation rate in Japan Sea basin

      图  4  日本海郁陵海盆沉积等厚图

      Fig.  4.  Isopach map of the Ulleung basin in different geological times

      图  5  东亚陆缘盆地的沉积通量变化

      北萨哈林岛盆地据Nicholsoneral, (2016): 千岛盆地据Prokudin(2015): 日本海盆据Kim et al.(2020)计算: 东海陆架盆地北部据Cukur et al.(2011): 冲绳海槽据Wang et al.(2024a): 南海深海盆地据Wang and Ding(2023): 南海陆缘盆地据Clift(2006)黄维和汪品先(2006)Xie et al.(2013)Lei et al.(2015)

      Fig.  5.  Variation of sedimentary flux of East Asia continental margin basins

      图  6  各海盆沉积通量变化与控制因素

      蓝色条带与粉色条带代表边缘海盆沉积通量发生快速减少和增加的两个时期

      Fig.  6.  Variation of sediment budget and controlling factors of each ocean basin

    • Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low-Relief, High-Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039
      Capella, W., Flecker, R., Hernández-Molina, F. J., et al., 2019. Mediterranean Isolation Preconditioning the Earth System for Late Miocene Climate Cooling. Scientific Reports, 9(1): 3795. https://doi.org/10.1038/s41598-019-40208-2
      Cheng, Y. L., Wan, S. M., 2023. Late Cenozoic Paleo-Productivity Evolution of the Japan Sea: A Review. Acta Sedimentologica Sinica, 41(6): 1714-1738 (in Chinese with English abstract).
      Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): 2002TC1006. https://doi.org/10.1029/2002tc001402
      Clift, P. D., 2006. Controls on the Erosion of Cenozoic Asia and the Flux of Clastic Sediment to the Ocean. Earth and Planetary Science Letters, 241(3-4): 571-580. https://doi.org/10.1016/j.epsl.2005.11.028
      Clift, P. D., Jonell, T. N., 2021. Monsoon Controls on Sediment Generation and Transport: Mass Budget and Provenance Constraints from the Indus River Catchment, Delta and Submarine Fan over Tectonic and Multimillennial Timescales. Earth-Science Reviews, 220: 103682. https://doi.org/10.1016/j.earscirev.2021.103682
      Clift, P. D., Sun, Z., 2006. The Sedimentary and Tectonic Evolution of the Yinggehai-Song Hong Basin and the Southern Hainan Margin, South China Sea: Implications for Tibetan Uplift and Monsoon Intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405. https://doi.org/10.1029/2005JB004048
      Clift, P. D., Wan, S. M., Blusztajn, J., 2014. Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea: A Review of Competing Proxies. Earth-Science Reviews, 130: 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002
      Cui, Y. C., Shao, L., Li, Z. X., et al., 2024. Early Cenozoic Drainage Network and Paleogeographic Evolution within the SE Tibetan Plateau and Its Surrounding Area: Synthetic Constraints from Onshore-Offshore Geological Dataset. Earth-Science Reviews, 258: 104932. https://doi.org/10.1016/j.earscirev.2024.104932
      Cukur, D., Horozal, S., Kim, D. C., et al., 2011. Seismic Stratigraphy and Structural Analysis of the Northern East China Sea Shelf Basin Interpreted from Multi-Channel Seismic Reflection Data and Cross-Section Restoration. Marine and Petroleum Geology, 28(5): 1003-1022. https://doi.org/10.1016/j.marpetgeo.2011.01.002
      Dadson, S. J., Hovius, N., Chen, H., et al., 2003. Links between Erosion, Runoff Variability and Seismicity in the Taiwan Orogen. Nature, 426(6967): 648-651. https://doi.org/10.1038/nature02150
      Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4
      Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      Dou, Y., Yang, S., Liu, Z., et al., 2012. Sr-Nd Isotopic Constraints on Terrigenous Sediment Provenances and Kuroshio Current Variability in the Okinawa Trough during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366: 38-47. https://doi.org/10.1016/j.palaeo.2012.09.003
      Einsels, G., 1992. Sedimentary Basins: Evolution, Facies and Sedimentary Budget. Springer, New York.
      Emel'yanova, T. A., Lelikov, E. P., 2016. Geochemistry and Petrogenesis of the Late Mesozoic-Early Cenozoic Volcanic Rocks of the Okhotsk and Japan Marginal Seas. Geochemistry International, 54(6): 509-521. https://doi.org/10.1134/S0016702916040030
      Fan, D. D., Li, C. X., 2007. Reviews on Researches of Timing of the Yangtze Draining the Tibetan Plateau to the East China Sea. Marine Geology & Quaternary Geology, 27(2): 121-131 (in Chinese with English abstract).
      Fang, X. M., Yan, M. D., Zhang, W. L., et al., 2021. Paleogeography Control of Indian Monsoon Intensification and Expansion at 41 Ma. Science Bulletin, 66(22): 2320-2328. https://doi.org/10.1016/j.scib.2021.07.023
      Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      Fu, X. W., Zhu, W. L., Geng, J. H., et al., 2021. The Present-Day Yangtze River Was Established in the Late Miocene: Evidence from Detrital Zircon Ages. Journal of Asian Earth Sciences, 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600
      Gai, C. C., Liu, Q. S., Roberts, A. P., et al., 2020. East Asian Monsoon Evolution since the Late Miocene from the South China Sea. Earth and Planetary Science Letters, 530: 115960. https://doi.org/10.1016/j.epsl.2019.115960
      Ge, Q., Meng, X. W., Chu, F. Y., et al., 2012. Paleoceanographic Records of Core ZHS-176 from the Northern South China Sea: Oxygen Isotope and Organic Carbon. Marine Geology & Quaternary Geology, 32(5): 73-80 (in Chinese with English abstract).
      Gharsalli, R., Zouaghi, T., Soussi, M., et al., 2013. Seismic Sequence Stratigraphy of Miocene Deposits Related to Eustatic, Tectonic and Climatic Events, Cap Bon Peninsula, Northeastern Tunisia. Comptes Rendus Geoscience, 345(9-10): 401-417. https://doi.org/10.1016/j.crte.2013.07.003
      Godin, L., Grujic, D., Law, R. D., et al., 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones: An Introduction. Geological Society, London, Special Publications, 268(1): 1-23. https://doi.org/10.1144/gsl.sp.2006.268.01.01
      Gorbarenko, S. A, Yanchenko, E. A, Psheneva, O. Y, et al., 2020. Orbital and Millennial-Scale Environmental and Hydrological Changes of the Central Okhotsk Sea over the Last 136 kyr Inferred from Micropaleontological (Radiolarian and Benthic Foraminifera), Geochemical and Lithological Proxies and the Mechanisms Responsible for them. Quaternary Science Reviews, 247: 106569. https://doi.org/10.1016/j.quascirev.2020.106569
      Gungor, A., Lee, G. H., Kim, H. J., et al., 2012. Structural Characteristics of the Northern Okinawa Trough and Adjacent Areas from Regional Seismic Reflection Data: Geologic and Tectonic Implications. Tectonophysics, 522-523: 198-207. https://doi.org/10.1016/j.tecto.2011.11.027
      He, Z. L., Zhang, Z. S., Guo, Z. T., et al., 2021. Middle Miocene (∼14 Ma) and Late Miocene (∼6 Ma) Paleogeographic Boundary Conditions. Paleoceanography and Paleoclimatology, 36(11): e2021PA004298. https://doi.org/10.1029/2021PA004298
      Herbert, R., Jamtvedt, G., Mead, J., et al., 2005. Outcome Measures Measure Outcomes, Not Effects of Intervention. Australian Journal of Physiotherapy, 51(1): 3-4. doi: 10.1016/S0004-9514(05)70047-7
      Herbert, T. D., Lawrence, K. T., Tzanova, A., et al., 2016. Late Miocene Global Cooling and the Rise of Modern Ecosystems. Nature Geoscience, 9: 843-847. https://doi.org/10.1038/ngeo2813
      Hoang, L. V., Wu, F. Y., Clift, P. D., et al., 2009. Evaluating the Evolution of the Red River System Based on in Situ U-Pb Dating and Hf Isotope Analysis of Zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008. https://doi.org/10.1029/2009GC002819
      Holbourn, A. E., Kuhnt, W., Clemens, S. C., et al., 2018. Late Miocene Climate Cooling and Intensification of Southeast Asian Winter Monsoon. Nature Communications, 9(1): 1584. https://doi.org/10.1038/s41467-018-03950-1
      Huang, Q. Y., 2017. Geological Ages of Taiwan Stratigraphy and Tectonic Events. Scientia Sinica (Terrae), 47(4): 394-405 (in Chinese with English abstract). doi: 10.1360/N072017-00023
      Huang, W., Wang, P. X., 2006. Sediment Volume and Distribution in the South China Sea since the Oligocene. Scientia Sinica (Terrae), 36(9): 822-829 (in Chinese with English abstract).
      Huh, C. A., Chen, W., Hsu, F. H., et al., 2011. Modern (< 100 Years) Sedimentation in the Taiwan Strait: Rates and Source-to-Sink Pathways Elucidated from Radionuclides and Particle Size Distribution. Continental Shelf Research, 31(1): 47-63. https://doi.org/10.1016/j.csr.2010.11.002
      Jin, H. L., Wan, S. M., Clift, P. D., et al., 2022. Birth of the Pearl River at 30 Ma: Evidence from Sedimentary Records in the Northern South China Sea. Earth and Planetary Science Letters, 600: 117872. https://doi.org/10.1016/j.epsl.2022.117872
      Jolivet, L., 1992. Neogene Kinematics in the Japan Sea Region and Volcanic Activity of the Northeast Japan Arc. Ocean Drilling Program, College Station.
      Kao, S. J., Dai, M. H., Wei, K. Y., et al., 2008. Enhanced Supply of Fossil Organic Carbon to the Okinawa Trough since the Last Deglaciation. Paleoceanography, 23(2): PA2207. https://doi.org/10.1029/2007PA001440
      Kim, K. J., Yoo, D. G., Kang, N. K., et al., 2020. Tectonostratigraphic Framework and Depositional History of the Deepwater Ulleung Basin, East Sea/Sea of Japan. Basin Research, 32(4): 613-635. https://doi.org/10.1111/bre.12386
      Kimura, G., Tamaki, K., 1986. Collision, Rotation, and Back-Arc Spreading in the Region of the Okhotsk and Japan Seas. Tectonics, 5(3): 389-401. https://doi.org/10.1029/tc005i003p00389
      Kimura, M., 1985. Back-Arc Rifting in the Okinawa Trough. Marine and Petroleum Geology, 2(3): 222-240. https://doi.org/10.1016/0264-8172(85)90012-1
      Kong, P., Jia, J., Zheng, Y., 2014. Time Constraints for the Yellow River Traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. https://doi.org/10.1002/2013GC004912
      Kozaka, Y., Horikawa, K., Asahara, Y., et al., 2018. Late Miocene-Mid-Pliocene Tectonically Induced Formation of the Semi-Closed Japan Sea, Inferred from Seawater Nd Isotopes. Geology, 46(10): 903-906. https://doi.org/10.1130/G45033.1
      Kwon, Y. I., Boggs, S., 2002. Provenance Interpretation of Tertiary Sandstones from the Cheju Basin (NE East China Sea): A Comparison of Conventional Petrographic and Scanning Cathodoluminescence Techniques. Sedimentary Geology, 152(1-2): 29-43. https://doi.org/10.1016/S0037-0738(01)00284-6
      Lee, G. H., Kim, H. J., Han, S. J., et al., 2001. Seismic Stratigraphy of the Deep Ulleung Basin in the East Sea (Japan Sea) Back-Arc Basin. Marine and Petroleum Geology, 18(5): 615-634. https://doi.org/10.1016/ S0264-8172(01)00016-2 doi: 10.1016/S0264-8172(01)00016-2
      Lei, C., Clift, P. D., Ren, J. Y., et al., 2019. A Rapid Shift in the Sediment Routing System of Lower-Upper Oligocene Strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249-258. https://doi.org/10.1016/j.marpetgeo.2019.03.012
      Lei, C., Ren, J. Y., Sternai, P., et al., 2015. Structure and Sediment Budget of Yinggehai-Song Hong Basin, South China Sea: Implications for Cenozoic Tectonics and River Basin Reorganization in Southeast Asia. Tectonophysics, 655: 177-190. https://doi.org/10.1016/j.tecto.2015.05.024
      Letouzey, J., Kimura, M., 1985. Okinawa Trough Genesis: Structure and Evolution of a Backarc Basin Developed in a Continent. Marine and Petroleum Geology, 2(2): 111-130. https://doi.org/10.1016/0264-8172(85)90002-9
      Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015. Proceedings of the International Ocean Discovery Program (IODP), Volume 349, South China Sea Tectonics. IODP, College Station. https://doi.org/10.14379/iodp.proc.349.2015
      Li, F. L., Yang, S. Y., Breecker, D. O., et al., 2022. Responses of Silicate Weathering Intensity to the Pliocene-Quaternary Cooling in East and Southeast Asia. Earth and Planetary Science Letters, 578: 117301. https://doi.org/10.1016/j.epsl.2021.117301
      Li, J. J., Xie, S. Y., Kuang, M. S., 2001. Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation. Geomorphology, 41(2-3): 125-135. https://doi.org/10.1016/S0169-555X(01)00110-6
      Li, Q., Zhang, Q., Li, G., et al., 2019. A New Perspective for the Sediment Provenance Evolution of the Middle Okinawa Trough since the Last Deglaciation Based on Integrated Methods. Earth and Planetary Science Letters, 528: 115839. https://doi.org/10.1016/j.epsl.2019.115839
      Lin, X., Dröllner, M., Barham, M., et al., 2025. The Cenozoic Evolution of the Yellow River. Earth-Science Reviews, 261: 104997. https://doi.org/10.1016/j.earscirev.2024.104997
      Lin, X., Liu, J., Liu, H. J., et al., 2023. Miocene Evolution Reconstruction of the Yellow River Drainage Basin: Constraints from K-Feldspar Pb Isotopes. Acta Geologica Sinica, 97(10): 3438-3455 (in Chinese with English abstract).
      Lin, X., Liu, J., Liu, H. J., et al., 2024. When Was the Yellow River Formed? Earth Science, 49(6): 2158-2185 (in Chinese with English abstract).
      Liu, C., Clift, P. D., Murray, R. W., et al., 2017. Geochemical Evidence for Initiation of the Modern Mekong Delta in the Southwestern South China Sea after 8 Ma. Chemical Geology, 451: 38-54. https://doi.org/10.1016/j.chemgeo.2017.01.008
      Liu, C. Z., Jia, H. L., Chen, X. F., 2001. Sedimentary Texture and Sedimentation in the Minjiang River Estuary. Oceanologia et Limnologia Sinica, 32(2): 177-184 (in Chinese with English abstract).
      Liu, H. Q., Yumul, G. P. Jr, Dimalanta, C. B., et al., 2020. Western Northern Luzon Isotopic Evidence of Transition from Proto-South China Sea to South China Sea Fossil Ridge Subduction. Tectonics, 39(2): e2019TC005639. https://doi.org/10.1029/2019TC005639
      Liu, J. T., Kao, S. J., Huh, C. A., et al., 2013. Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area. Annual Review of Marine Science, 5: 47-68. https://doi.org/10.1146/annurev-marine-121211-172307
      Liu, Y. J., Song, S. R., Lee, T. Q., et al., 2006. Mineralogical and Geochemical Changes in the Sediments of the Okhotsk Sea during Deglacial Periods in the Past 500 kyrs. Global and Planetary Change, 53(1-2): 47-57. https://doi.org/10.1016/j.gloplacha.2006.01.007
      Liu, Z. F., Stattegger, K., 2014. South China Sea Fluvial Sediments: An Introduction. Journal of Asian Earth Sciences, 79: 507-508. https://doi.org/10.1016/j.jseaes.2013.11.003
      Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005
      Luan, X. W., Zhang, L., Peng, X. C., 2012. Dongsha Erosive Channel on Northern South China Sea Shelf and Its Induced Kuroshio South China Sea Branch. Science China Earth Sciences, 55(1): 149-158. https://doi.org/10.1007/s11430-011-4322-y
      Lüdmann, T., Wong, H. K., 1999. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311(1-4): 113-138. https://doi.org/10.1016/S0040-1951(99)00155-9
      Ma, M., Chen, G. J., Lyu, C. F., et al., 2019. The Formation and Evolution of the Paleo-Pearl River and Its Influence on the Source of the Northern South China Sea. Marine and Petroleum Geology, 106: 171-189. https://doi.org/10.1016/j.marpetgeo.2019.04.035
      Ma, X. L., Tian, J., 2015. East Asian Monsoon Evolution and Aridification of Northwest China Viewed from Land and Sea on the Tectonic-Orbital Time Scale since 15 Ma. Quaternary Sciences, 35(6): 1320-1330 (in Chinese with English abstract).
      Matsuzaki, K. M., Suzuki, N., Tada, R., 2020. An Intensified East Asian Winter Monsoon in the Japan Sea between 7.9 and 6.6 Ma. Geology, 48(9): 919-923. https://doi.org/10.1130/g47393.1
      McCann, T., Saintot, A., 2003. Tracing Tectonic Deformation Using the Sedimentary Record: An Overview. Geological Society, London, Special Publications, 208(1): 1-28. https://doi.org/10.1144/gsl.sp.2003.208.01.01
      Métivier, F., Gaudemer, Y., Tapponnier, P., et al., 1999. Mass Accumulation Rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280-318
      Miao, Y. F., Warny, S., Liu, C., et al., 2022. Palynomorph Assemblages Evidence for River Reorganization 8.5 Million Years Ago in Southeast Asia. Global and Planetary Change, 212: 103808. https://doi.org/10.1016/j.gloplacha.2022.103808
      Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511781247
      Nicholson, U., van der Es, B., Clift, P. D., et al., 2016. The Sedimentary and Tectonic Evolution of the Amur River and North Sakhalin Basin: New Evidence from Seismic Stratigraphy and Neogene-Recent Sediment Budgets. Basin Research, 28(2): 273-297. https://doi.org/10.1111/bre.12110
      Nicholson, U., VanLaningham, S., Macdonald, D. I. M., 2013. Quaternary Landscape Evolution over a Strike-Slip Plate Boundary: Drainage Network Response to Incipient Orogenesis in Sakhalin, Russian Far East. Geosphere, 9(3): 588-601. https://doi.org/10.1130/GES00883.1
      Prokudin, V. G., 2015. On the Age of the Sedimentary Cover of the Kurile Basin, Sea of Okhotsk. Russian Journal of Pacific Geology, 9(3): 215-226. https://doi.org/10.1134/S1819714015030069
      Qi, J. H., Wu, Z. Q., Zhang, X. H., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back-Arc Area. Earth Science, 45(7): 2495-2507 (in Chinese with English abstract).
      Qiao, S., Shi, X., Wang, G., et al., 2017. Sediment Accumulation and Budget in the Bohai Sea, Yellow Sea and East China Sea. Marine Geology, 390: 270-281. https://doi.org/10.1016/j.margeo.2017.06.004
      Qin, Y. S., Zhao, Y. Y., Chen, L. R., et al., 1987. Geology of the East China Sea. Science Press, Beijing, 28-36 (in Chinese).
      Raymo, M. E., Ruddiman, W. F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359: 117-122. https://doi.org/10.1038/359117a0
      Richardson, N. J., Densmore, A. L., Seward, D., et al., 2010. Did Incision of the Three Gorges Begin in the Eocene? Geology, 38(6): 551-554. https://doi.org/10.1130/g30527.1
      Rodnikov, A. G., Sergeyeva, N. A., Zabarinskaya, L. P., 2014. Crustal and Mantle Structure of the Sea of Okhotsk, Pacific Northwest: A Review. Episodes, 37(4): 312-316. https://doi.org/10.18814/epiiugs/2014/v37i4/012
      Sagawa, T., Nagahashi, Y., Satoguchi, Y., et al., 2018. Integrated Tephrostratigraphy and Stable Isotope Stratigraphy in the Japan Sea and East China Sea Using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon. Progress in Earth and Planetary Science, 5(1): 18. https://doi.org/10.1186/s40645-018-0168-7
      Sakamoto, T., Ikehara, M., Aoki, K., et al., 2005. Ice-Rafted Debris (IRD)-Based Sea-Ice Expansion Events during the Past 100 kyrs in the Okhotsk Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2275-2301. https://doi.org/10.1016/j.dsr2.2005.08.007
      Sakamoto, T., Ikehara, M., Uchida, M., et al., 2006. Millennial-Scale Variations of Sea-Ice Expansion in the Southwestern Part of the Okhotsk Sea during the Past 120 kyr: Age Model and Ice-Rafted Debris in IMAGES Core MD01-2412. Global and Planetary Change, 53(1-2): 58-77. https://doi.org/10.1016/j.gloplacha.2006.01.012
      Shao, L., Qiao, P. J., Cui, Y. C., et al., 2020. The Evolutions of the Fluvial Systems in the Northern South China Sea since the Early Cenozoic. Science & Technology Review, 38(18): 57-61 (in Chinese with English abstract).
      Shi, X. F., Qiao, S. Q., Yang, S. Y., et al., 2021. Progress in Sedimentology Research of the Asian Continental Margin (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319-336 (in Chinese with English abstract).
      Shi, X. F., Zou, J. J., Wang, K. S., 2011. Paleoenvironmental Changes in the Okhotsk Sea since Late Pleistocene and Its Driving Force. Marine Geology & Quaternary Geology, 31(6): 1-12 (in Chinese with English abstract).
      Sibuet, J. C., Hsu, S. K., 2004. How Was Taiwan Created? Tectonophysics, 379(1-4): 159-181. https://doi.org/10.1016/j.tecto.2003.10.022
      Song, G., Lee, H. S., Lee, S., 2024. Architecture and Evolution of Shelf-Margin Clinoforms Developed in a Back-Arc Tectonic Setting: Insights from Quantitative Analysis on the South-West Shelf Margin of the Ulleung Basin. Basin Research, 36(2): e12859. https://doi.org/10.1111/bre.12859
      Sorokin, A. P., Artyomenko, T. V., 2003. Structural Evolution of the Eastern Margin of Eurasia in Late Mesozoic and Cenozoic. Journal of Geoscientific Research in Northeast Asia, 6(2): 149-159.
      Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2014. Neogene Igneous Intrusions in the Northern South China Sea: Evidence from High-Resolution Three Dimensional Seismic Data. Marine and Petroleum Geology, 54: 83-95. https://doi.org/10.1016/j.marpetgeo.2014.02.014
      Sun, X. L., Tian, Y. T., Kuiper, K. F., et al., 2021. No Yangtze River Prior to the Late Miocene: Evidence from Detrital Muscovite and K-Feldspar 40Ar/39Ar Geochronology. Geophysical Research Letters, 48(5): e2020GL089903. https://doi.org/10.1029/2020GL089903
      Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019JB017584
      Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      Suo, Y. H., Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract).
      Syvitski, J. P. M., Kettner, A., 2011. Sediment Flux and the Anthropocene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 369(1938): 957-975. https://doi.org/10.1098/rsta.2010.0329
      Tada, R., Murray, R. W., Alvarez Zarikian, C. A., 2015. Proceedings of Integrated Ocean Drilling Program (IODP), Volume 346. IODP, College Station. https://doi.org/10.2204/iodp.proc.346.101
      Terekhov, E. P., Tsoy, I. B., Vashchenkova, N. G., et al., 2008. Sedimentation Settings and Evolution History of the Kuril Basin (Sea of Okhotsk) in the Cenozoic. Oceanology, 48(4): 569-577. https://doi.org/10.1134/S0001437008040115
      Vassallo, R., Jolivet, M., Ritz, J. F., et al., 2007. Uplift Age and Rates of the Gurvan Bogd System (Gobi-Altay) by Apatite Fission Track Analysis. Earth and Planetary Science Letters, 259(3/4): 333-346. https://doi.org/10.1016/j.epsl.2007.04.047
      Wan, S. M., Li, A. C., Clift, P. D., et al., 2006. Development of the East Asian Summer Monsoon: Evidence from the Sediment Record in the South China Sea since 8.5 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 139-159. https://doi.org/10.1016/j.palaeo.2006.06.013
      Wan, S. M., Li, A. C., Clift, P. D., et al., 2007. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. https://doi.org/10.1016/j.palaeo.2007.07.009
      Wang, F. L., He, G. W., Deng, X. G., et al., 2021. Fish Teeth Sr Isotope Stratigraphy and Nd Isotope Variations: New Insights on REY Enrichments in Deep-Sea Sediments in the Pacific. Journal of Marine Science and Engineering, 9(12): 1379. https://doi.org/10.3390/jmse9121379
      Wang, F., Ding, W. W., 2023. How Did Sediments Disperse and Accumulate in the Oceanic Basin, South China Sea. Marine and Petroleum Geology, 147: 105979. https://doi.org/10.1016/j.marpetgeo.2022.105979
      Wang, H. Q., Ding, W. W., Fang, P. G., et al., 2024a. Neogene and Quaternary Sediment Accumulation in the Okinawa Trough. Marine and Petroleum Geology, 162: 106750. https://doi.org/10.1016/j.marpetgeo.2024.106750
      Wang, K. S., Shi, X. F., Wu, Y. H., et al., 2014. Characteristics and Provenance Implications of Heavy Mineral in Core OS03-1 from the East-Southern Okhotsk Sea. Acta Oceanologica Sinica, 36(5): 177-185 (in Chinese with English abstract).
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea Is Not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, P. X., Tian, J., Cheng, X. R., et al., 2004. Major Pleistocene Stages in a Carbon Perspective: The South China Sea Record and Its Global Comparison. Paleoceanography, 19(4): PA4005. https://doi.org/10.1029/2003PA000991
      Wang, P., Li, Q., 2009. The South China Sea: Paleoceanography and Sedimentology. Springer, New York.
      Wang, P. X., 2005. Cenozoic Deformation and History of Sea-Land Interactions in Asia. Earth Science, 30(1): 1-18 (Chinese with English abstract).
      Wang, W., Bidgoli, T., Yang, X. H., et al., 2018. Source-to-Sink Links between East Asia and Taiwan from Detrital Zircon Geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688. https://doi.org/10.1029/2018GC007576
      Wang, Z. X., Bradshaw, C. D., Wei, H. C., et al., 2024b. Moisture Variability in Northeast Tibet Following the Middle Miocene Climate Transition. Communications Earth & Environment, 5: 556. https://doi.org/10.1038/s43247-024-01710-2
      Weaver, R., Roberts, A. P., Flecker, R., et al., 2004. Tertiary Geodynamics of Sakhalin (NW Pacific) from Anisotropy of Magnetic Susceptibility Fabrics and Paleomagnetic Data. Tectonophysics, 379(1-4): 25-42. https://doi.org/10.1016/j.tecto.2003.09.028
      Werner, R., Baranov, B., Hoernle, K., et al., 2020. Discovery of Ancient Volcanoes in the Okhotsk Sea (Russia): New Constraints on the Opening History of the Kurile Back Arc Basin. Geosciences, 10(11): 442. https://doi.org/10.3390/geosciences10110442
      Wu, F. D., Lu, Y. C., Li, S. T., et al., 1998. Tertiary Sequence Stratigraphic Framework and Sea-Level Changes in the East China Sea Shelf Basin. Earth Science, 23(1): 13-20 (in Chinese with English abstract).
      Wu, F. L., Fang, X. M., Yang, Y. B., et al., 2022. Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 684-700. https://doi.org/10.1038/s43017-022-00331-7
      Wu, L. C., 1990. Quaternary Sedimentary Characteristics and Evolvement of the Estuary of Minjiang River. Donghai Marine Science, 8(3): 26-34 (in Chinese with English abstract).
      Wu, Y. M., Ding, W. W., Clift, P. D., et al., 2020. Sedimentary Budget of the Northwest Sub-Basin, South China Sea: Controlling Factors and Geological Implications. International Geology Review, 62(7-8): 970-987. https://doi.org/10.1080/00206814.2019.1597392
      Wu, Y. M., Ding, W. W., Sun, Z., et al., 2018. Sedimentary Budget of the Southwest Sub-Basin, South China Sea: Controlling Factors and Geological Implications. Geological Journal, 53(6): 3082-3092. https://doi.org/10.1002/gj.3145
      Xie, H., Zhou, D., Pang, X., et al., 2013. Cenozoic Sedimentary Evolution of Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea. Marine Geophysical Research, 34(3): 159-173. https://doi.org/10.1007/s11001-013-9183-7
      Xu, R. Y., 1995. Formation and Migration of the Water System of Qiantang River. Zhejiang Land & Resources, (2): 40-48 (in Chinese with English abstract).
      Xu, S. M., Ye, Q., Li, S. Z., et al., 2016. Sequential Patterns in Cenozoic Marginal Basins of the Northwest Pacific. Geological Journal, 51: 387-415. https://doi.org/10.1002/gj.2819
      Yan, Y., Carter, A., Palk, C., et al., 2011. Understanding Sedimentation in the Song Hong-Yinggehai Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 12(6): Q06014. https://doi.org/10.1029/2011GC003533
      Yang, F. L., Xu, X., Zhao, W. F., et al., 2011. Petroleum Accumulations and Inversion Structures in the Xihu Depression, East China Sea Basin. Journal of Petroleum Geology, 34(4): 429-440. https://doi.org/10.1111/j.1747-5457.2011.00513.x
      Yang, S. Y., 2006. Advances in Sedimentary Geochemistry and Tracing Applications of Asian Rivers. Advances in Earth Science, 21(6): 648-655 (in Chinese with English abstract).
      You, Y., Huber, M., Müller, R. D., et al., 2009. Simulation of the Middle Miocene Climate Optimum. Geophysical Research Letters, 36(4): L04702. https://doi.org/10.1029/2008GL036571
      Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. https://doi.org/10.1126/science.1059412
      Zhai, L. N., Wan, S. M., Colin, C., et al., 2021. Deep-Water Formation in the North Pacific during the Late Miocene Global Cooling. Paleoceanography and Paleoclimatology, 36(2): e2020PA003946. https://doi.org/10.1029/2020PA003946
      Zhan, J. M., Tang, Y. J., Liu, B., et al., 2024. Sediment Provenance and Its Direction of Yueguifeng Formation in Lishui-Jiaojiang Depression: Evidence from Detrital Zircon U-Pb Chronology and Heavy Minerals. Earth Science, 49(4): 1339-1351 (in Chinese with English abstract).
      Zhang, J. Y., Krijgsman, W., Lu, Y. C., et al., 2021a. Detrital Zircon Ages Reveal Yangtze Provenance since the Early Oligocene in the East China Sea Shelf Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110548. https://doi.org/10.1016/j.palaeo.2021.110548
      Zhang, R., Jiang, D. B., Zhang, Z. S., et al., 2017. Comparison of the Climate Effects of Surface Uplifts from the Northern Tibetan Plateau, the Tianshan, and the Mongolian Plateau on the East Asian Climate. Journal of Geophysical Research: Atmospheres, 122(15): 7949-7970. https://doi.org/10.1002/2017jd026470
      Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2022. Cenozoic Reorganization of Fluvial Systems in Eastern China: Sedimentary Provenance of Detrital K-Feldspar in Taiwan. Chemical Geology, 592: 120740. https://doi.org/10.1016/j.chemgeo.2022.120740
      Zhang, Z. J., Tian, Y. T., Sun, X. L., et al., 2025. Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea. Earth Science, 50(7): 2775-2790 (in Chinese with English abstract).
      Zhang, Z. Q., Yao, Q., Liu, K. B., et al., 2021b. Historical Flooding Regime along the Amur River and Its Links to East Asia Summer Monsoon Circulation. Geomorphology, 388: 107782. https://doi.org/10.1016/j.geomorph.2021.107782
      Zhao, P., Alexandrov, I., Jahn, B. M., et al., 2018. Timing of Okhotsk Sea Plate Collision with Eurasia Plate: Zircon U-Pb Age Constraints from the Sakhalin Island, Russian Far East. Journal of Geophysical Research: Solid Earth, 123(9): 8279-8293. https://doi.org/10.1029/2018JB015800
      Zhao, Q. H., Wang, P. X., 1999. Progress in Quaternary Paleoceanography of the South China Sea: A Review. Quaternary Sciences, 19(6): 481-501 (in Chinese with English abstract).
      Zheng, H., Jia, D., Chen, J., et al., 2011. Did Incision of the Three Gorges Begin in the Eocene? Geology, 39(9): e244-e244. https://doi.org/10.1130/G30527.1
      Zheng, H. B., Chen, G. C., Xie, X., et al., 2008. Grain Size Distribution and Dynamic Control of Late Quaternary Terrigenous Sediments in the South China Sea and Their Implication for East Asian Monsoon Evolution. Quaternary Sciences, 28(3): 414-424 (in Chinese with English abstract).
      Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110
      程宇龙, 万世明, 2023. 晚新生代日本海古生产力演化: 研究进展评述. 沉积学报, 41(6): 1714-1738.
      范代读, 李从先, 2007. 长江贯通时限研究进展. 海洋地质与第四纪地质, 27(2): 121-131.
      葛倩, 孟宪伟, 初凤友, 等, 2012. 南海北部ZHS-176孔古海洋学记录: 氧同位素和有机碳. 海洋地质与第四纪地质, 32(5): 73-80.
      黄奇瑜, 2017. 台湾岛的年龄. 中国科学: 地球科学, 47(4): 394-405.
      黄维, 汪品先, 2006. 渐新世以来的南海沉积量及其分布. 中国科学: 地球科学, 36(9): 822-829.
      林旭, 刘静, 刘海金, 等, 2023. 中新世黄河水系演化重建: 来自钾长石Pb同位素的约束. 地质学报, 97(10): 3438-3455.
      林旭, 刘静, 刘海金, 等, 2024. 黄河形成于何时? 地球科学, 49(6): 2158-2185.
      刘苍字, 贾海林, 陈祥锋, 2001. 闽江河口沉积结构与沉积作用. 海洋与湖沼, 32(2): 177-184.
      马小林, 田军, 2015. 15Ma以来海陆记录的轨道‒构造尺度东亚季风的演化以及西北内陆的干旱化. 第四纪研究, 35(6): 1320-1330.
      祁江豪, 吴志强, 张训华, 等, 2020. 西太平洋弧后地区新生代构造迁移的深部地震证据. 地球科学, 45(7): 2495-2507.
      秦蕴珊, 赵一阳, 陈丽蓉, 等, 1987. 东海地质. 北京: 科学出版社, 28-36.
      邵磊, 乔培军, 崔宇驰, 等, 2020. 新生代早期南海北部水系演变. 科技导报, 38(18): 57-61.
      石学法, 乔淑卿, 杨守业, 等, 2021. 亚洲大陆边缘沉积学研究进展(2011—2020). 矿物岩石地球化学通报, 40(2): 319-336.
      石学法, 邹建军, 王昆山, 2011. 鄂霍次克海晚第四纪以来古环境演化. 海洋地质与第四纪地质, 31(6): 1-12.
      索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
      王昆山, 石学法, 吴永华, 等, 2014. 鄂霍次克海东南部OS03-1岩心重矿物分布特征及物质来源. 海洋学报, 36(5): 177-185.
      汪品先, 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30(1): 1-18. doi: 10.3321/j.issn:1000-2383.2005.01.001
      武法东, 陆永潮, 李思田, 等, 1998. 东海陆架盆地第三系层序地层格架与海平面变化. 地球科学, 23(1): 13-20. doi: 10.3321/j.issn:1000-2383.1998.01.003
      吴立成, 1990. 闽江河口第四纪沉积特征及演变历史. 东海海洋, 8(3): 26-34.
      徐柔远, 1995. 钱塘江水系的形成和变迁. 浙江国土资源, (2): 40-48.
      杨守业, 2006. 亚洲主要河流的沉积地球化学示踪研究进展. 地球科学进展, 21(6): 648-655.
      湛君明, 唐友军, 刘彬, 等, 2024. 丽水‒椒江凹陷月桂峰组沉积物源性质及其物源方向: 来自碎屑锆石U-Pb年代学和重矿物成分的证据. 地球科学, 49(4): 1339-1351. doi: 10.3799/dqkx.2022.506
      张增杰, 田云涛, 孙习林, 等, 2025. 华南主要大河新生代演化: 南海北缘沉积学记录的制约. 地球科学, 50(7): 2775-2790. doi: 10.3799/dqkx.2025.027
      赵泉鸿, 汪品先, 1999. 南海第四纪古海洋学研究进展. 第四纪研究, 19(6): 481-501.
      郑洪波, 陈国成, 谢昕, 等, 2008. 南海晚第四纪陆源沉积: 粒度组成、动力控制及反映的东亚季风演化. 第四纪研究, 28(3): 414-424.
    • 加载中
    图(6)
    计量
    • 文章访问数:  103
    • HTML全文浏览量:  5
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-19
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回