• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟

    彭铭 赵庆新 李爽 褚卫江 朱艳 葛向铭 陈昉健

    彭铭, 赵庆新, 李爽, 褚卫江, 朱艳, 葛向铭, 陈昉健, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟. 地球科学, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100
    引用本文: 彭铭, 赵庆新, 李爽, 褚卫江, 朱艳, 葛向铭, 陈昉健, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟. 地球科学, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100
    Peng Ming, Zhao Qingxin, Li Shuang, Chu Weijiang, Zhu Yan, Ge Xiangming, Chen Fangjian, 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100
    Citation: Peng Ming, Zhao Qingxin, Li Shuang, Chu Weijiang, Zhu Yan, Ge Xiangming, Chen Fangjian, 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science, 50(10): 3795-3808. doi: 10.3799/dqkx.2025.100

    考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟

    doi: 10.3799/dqkx.2025.100
    基金项目: 

    国家自然科学基金-联合基金重点项目 U23A2044

    广西重点研发计划项目 桂科AB25069121

    国家自然科学基金-青年基金项目 42207238

    福建省自然科学基金项目-面上项目 2022J011253

    详细信息
      作者简介:

      彭铭(1981-),男,教授,从事地质灾害链式机理及智能风险防控研究. ORCID:0000-0001-9134-4391. E-mail:pengming@tongji.edu.cn

      通讯作者:

      李爽(2000-),男,博士研究生,从事地质灾害全过程模拟研究. E-mail: 2111042@tongji.edu.cn

    • 中图分类号: P642

    Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage

    • 摘要:

      滑坡-涌浪是一种典型的多灾种耦合系统,具有跨介质灾种转化的复杂效应.基于黎曼光滑粒子流体动力学(Riemann-SPH),构建了考虑动态渗流的两相SPH滑坡-涌浪分析模型并验证了其准确性:动态渗流作用的引入使得散粒体滑坡-涌浪过程中的动量交换机制更加完整,最大波浪幅值am和最大波浪高度Hm的误差分别降低24.72%和41.95%以上.研究发现,滑动面倾角α与滑坡前缘倾角β对涌浪具有协同调控作用:随着α增大,amHm均呈现先增后减的单峰变化趋势;β的影响则呈现出分段特征:当α+β < 90°时,amHm随角度和增大显著增长,超过该阈值后表现出非单调性变化,表明存在滑坡体积增加与有效作用面积缩减的竞争机制.此外,α的增大强化了渗流、紊流与摩擦等耗散效应,加剧涌浪能量衰减.相关成果可为滑坡-涌浪灾害防治提供科学支撑.

       

    • 图  1  SPH水土耦合模型示意图

      Fig.  1.  Schematic of SPH soil-water coupling model

      图  2  滑坡-涌浪试验设置

      Fig.  2.  Experimental setup for the landslide-tsunami

      图  3  试验与数值模拟对比

      a~e.试验过程;f~j.考虑渗流的数值模拟;k~o.未考虑渗流的数值模拟

      Fig.  3.  Experiment vs. simulation

      图  4  不同监测点下数值模拟浪高与试验数据对比

      图据Viroulet et al.(2013). a.WG.1;b.WG.2;c.WG.3;d.WG.4

      Fig.  4.  Comparison of simulated wave heights with experimental data at monitoring points

      图  5  滑坡-涌浪计算模型布置示意图

      Fig.  5.  Schematic diagram of the landslide-tsunami computational model setup

      图  6  不同滑动面倾角α下WG.A涌浪波形

      a.β=20°;b.β=30°;c.β=40°;d.β=50°;e.β=60°

      Fig.  6.  WG.A waves for varied sliding surface inclinations α

      图  7  不同滑坡前缘倾角β下WG.A涌浪波形

      a.α=35°;b.α=45°;c.α=50°;d.α=55°;e.α=65°

      Fig.  7.  WG.A waves for varied landslide leading edge inclinations β

      图  8  滑坡-涌浪最大波浪幅值am衰减图

      a.α=35°;b.α=45°;c.α=50°;d.α=55°;e.α=65°

      Fig.  8.  Attenuation of maximum wave amplitude am for landslide-tsunamis

      图  9  滑坡-涌浪最大波浪高度Hm衰减图

      a.α=35°;b.α=45°;c.α=50°;d.α=55°;e.α=65°

      Fig.  9.  Attenuation of maximum wave height Hm for landslide-tsunamis

      图  10  不同滑坡体诱发涌浪流场对比

      t=0.3 s,α=50°,β=50°

      Fig.  10.  Flow field for waves generated by different landslides

      图  11  不同滑动面倾角α下滑坡-涌浪流场示意图(t=0.4 s,β=50°)

      a.α=35°;b.α=45°;c.α=50°;d.α=55°;e.α=65°

      Fig.  11.  Flow field for varied sliding surface inclinations (t=0.4 s, β=50°)

      图  12  不同滑坡前缘倾角β下滑坡-涌浪流场示意图(t=0.4 s,α=50°)

      a.β=20°;b.β=30°;c.β=40°;d.β=50°;e.β=60°

      Fig.  12.  Flow field for varied landslide leading edge inclinations (t=0.4 s, α=50°)

      表  1  模型试验参数(Viroulet et al., 2013)

      Table  1.   Parameters of the landslide-tsunami experiment (Viroulet et al., 2013)

      材料 物理参数 数值
      水体 密度 1 000 kg/m3
      运动黏滞系数 1.0×10-6 m2/s
      散粒体 密度 2 500 kg/m3
      中值粒径 4 mm
      杨氏模量 5.84 MPa
      内摩擦角 23.3°
      初始体积分数 0.6
      下载: 导出CSV

      表  2  数值模拟工况

      Table  2.   List of numerical simulation conditions

      滑动面倾角(α) 滑坡前缘倾角(β)
      35° 20°,30°,40°,50°,60°
      45° 20°,30°,40°,50°,60°
      50° 20°,30°,40°,50°,60°
      55° 20°,30°,40°,50°,60°
      65° 20°,30°,40°,50°,60°
      下载: 导出CSV
    • Barla, G., Paronuzzi, P., 2013. The 1963 Vajont Landslide: 50th Anniversary. Rock Mechanics and Rock Engineering, 46(6): 1267-1270. https://doi.org/10.1007/s00603-013-0483-7
      Clous, L., Abadie, S., 2019. Simulation of Energy Transfers in Waves Generated by Granular Slides. Landslides, 16(9): 1663-1679. https://doi.org/10.1007/s10346-019-01180-0
      Cui, P., Zhu, X. H., 2011. Surge Generation in Reservoirs by Landslides Triggered by the Wenchuan Earthquake. Journal of Earthquake and Tsunami, 5(5): 461-474. https://doi.org/10.1142/s1793431111001194
      Dai, Z. L., Lan, B. S., Jiang, M. T., et al., 2025. Numerical Modeling of Submarine Landslide Motion and Impact Behavior Based on the SPH Method. Journal of Ocean University of China, 24(2): 365-376. https://doi.org/10.1007/s11802-025-5853-8
      Evers, F. M., Hager, W. H., 2016. Spatial Impulse Waves: Wave Height Decay Experiments at Laboratory Scale. Landslides, 13(6): 1395-1403. https://doi.org/10.1007/s10346-016-0719-1
      Evers, F. M., Hager, W. H., Boes, R. M., 2019. Spatial Impulse Wave Generation and Propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3): 04019011. https://doi.org/10.1061/(asce)ww.1943-5460.0000514
      Fornaciai, A., Favalli, M., Nannipieri, L., 2019. Numerical Simulation of the Tsunamis Generated by the Sciara Del Fuoco Landslides (Stromboli Island, Italy). Scientific Reports, 9(1): 18542. https://doi.org/10.1038/s41598-019-54949-7
      Fritz, H. M., 2001. Lituya Bay Case: Rockslide Impact and Wave Run-up. Science of Tsunami Hazards, 19, 3.
      Fritz, H. M., Hager, W. H., Minor, H. E., 2004. Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6): 287-302. https://doi.org/10.1061/(asce)0733-950x(2004)130:6(287)
      Grilli, S. T., Tappin, D. R., Carey, S., et al., 2019. Modelling of the Tsunami from the December 22, 2018 Lateral Collapse of Anak Krakatau Volcano in the Sunda Straits, Indonesia. Scientific Reports, 9: 11946. https://doi.org/10.1038/s41598-019-48327-6
      Heller, V., Spinneken, J., 2013. Improved Landslide-Tsunami Prediction: Effects of Block Model Parameters and Slide Model. Journal of Geophysical Research: Oceans, 118(3): 1489-1507. https://doi.org/10.1002/jgrc.20099
      Heller, V., Spinneken, J., 2015. On the Effect of the Water Body Geometry on Landslide–Tsunamis: Physical Insight from Laboratory Tests and 2D to 3D Wave Parameter Transformation. Coastal Engineering, 104: 113-134. https://doi.org/10.1016/j.coastaleng.2015.06.006
      Huang, B. L., Yin, Y. P., Du, C. L., 2016. Risk Management Study on Impulse Waves Generated by Hongyanzi Landslide in Three Gorges Reservoir of China on June 24, 2015. Landslides, 13(3): 603-616. https://doi.org/10.1007/s10346-016-0702-x
      Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil‒Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157
      Jiang, Q., 2019. Unified Particle Method Research for Simulation of Landslides Generated Waves in Reservoir Bank (Dissertation). Ningbo Institute of Material Technology, Chinese Academy of Sciences, Ningbo(in Chinese with English abstract).
      Lee, C. H., Huang, Z. H., 2022. Effects of Grain Size on Subaerial Granular Landslides and Resulting Impulse Waves: Experiment and Multi-Phase Flow Simulation. Landslides, 19(1): 137-153. https://doi.org/10.1007/s10346-021-01760-z
      Lee, C. H., Lo, P. H., Shi, H. B., et al., 2022. Numerical Modeling of Generation of Landslide Tsunamis: A Review. Journal of Earthquake and Tsunami, 16(6): 2241001. https://doi.org/10.1142/s1793431122410019
      Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413(in Chinese with English abstract).
      Li, P. F., Jing, H. X., Li, G. D., 2024. Generation and Prediction of Water Waves Induced by Rigid Piston-Like Landslide. Natural Hazards, 120(3): 2683-2704. https://doi.org/10.1007/s11069-023-06300-7
      Li, Q. W., Huang, B. L., Zhang, P., et al., 2024. Influence of the Degree of Landslide Fragmentation on the Characteristics of Landslide Impulse Wave. Rock and Soil Mechanics, 45(11): 3345-3354(in Chinese with English abstract).
      Liu, J. X. Z., 2023. Partitioning Prediction Study of Landslide-Tsunamis in the Wu Gorge of the Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Luo, M., Khayyer, A., Lin, P. Z., 2021. Particle Methods in Ocean and Coastal Engineering. Applied Ocean Research, 114: 102734. https://doi.org/10.1016/j.apor.2021.102734
      Mao, Y. F., Guan, M. F., 2023. Mesh-Free Simulation of Height and Energy Transfer of Landslide-Induced Tsunami Waves. Ocean Engineering, 284: 115219. https://doi.org/10.1016/j.oceaneng.2023.115219
      Meng, Z. Z., Zhang, J. X., Hu, Y. T., et al., 2023. Temporal Prediction of Landslide-Generated Waves Using a Theoretical-Statistical Combined Method. Journal of Marine Science and Engineering, 11(6): 1151. https://doi.org/10.3390/jmse11061151
      Mohammed, F., Fritz, H. M., 2012. Physical Modeling of Tsunamis Generated by Three-Dimensional Deformable Granular Landslides. Journal of Geophysical Research (Oceans), 117(C11): C11015. https://doi.org/10.1029/2011JC007850
      Paquier, A. E., Oudart, T., Le Bouteiller, C., et al., 2021. 3D Numerical Simulation of Seagrass Movement under Waves and Currents with GPUSPH. International Journal of Sediment Research, 36(6): 711-722. https://doi.org/10.1016/j.ijsrc.2020.08.003
      Rauter, M., Viroulet, S., Gylfadóttir, S. S., et al., 2022. Granular Porous Landslide Tsunami Modelling—The 2014 Lake Askja Flank Collapse. Nature Communications, 13(1): 678. https://doi.org/10.1038/s41467-022-28296-7
      Tang, G. Q., Lu, L., Teng, Y. F., et al., 2018. Impulse Waves Generated by Subaerial Landslides of Combined Block Mass and Granular Material. Coastal Engineering, 141: 68-85. https://doi.org/10.1016/j.coastaleng.2018.09.003
      Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4
      Wu, H., Shi, A. C., Ni, W. D., et al., 2024a. Numerical Simulation on Potential Landslide–Induced Wave Hazards by a Novel Hybrid Method. Engineering Geology, 331: 107429. https://doi.org/10.1016/j.enggeo.2024.107429
      Wu, H., Zhong, Q. M., Deng, Z., et al., 2024b. Numerical Investigation of the Effect of Landslide Relative Density on the Impulse Wave Amplitude. Ocean Engineering, 309: 118563. https://doi.org/10.1016/j.oceaneng.2024.118563
      Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36(6): 1134-1142(in Chinese with English abstract).
      Xu, W. J., 2023. Research Advances in Disaster Dynamics of Landslide Tsunami. Journal of Engineering Geology, 31(6): 1929-1940(in Chinese with English abstract).
      Yin, K. L., Liu, Y. L., Wang, Y., et al., 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074(in Chinese with English abstract).
      Yu, M. L., Lee, C. H., 2019. Multi-Phase-Flow Modeling of Underwater Landslides on an Inclined Plane and Consequently Generated Waves. Advances in Water Resources, 133: 103421. https://doi.org/10.1016/j.advwatres.2019.103421
      Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066
      Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052
      Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water–Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106
      Zhu, Y. F., An, C., 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510(in Chinese with English abstract).
      蒋权, 2019. 库岸滑坡涌浪模拟的统一粒子法研究(博士学位论文). 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所).
      李宏伟, 徐志国, 史健宇, 等, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
      李秋旺, 黄波林, 张鹏, 等, 2024. 滑体破碎程度对滑坡涌浪特征的影响研究. 岩土力学, 45(11): 3345-3354.
      刘继芝娴, 2023. 三峡库区巫峡段高陡库岸滑坡涌浪分区预测研究(博士学位论文). 武汉: 中国地质大学.
      许强, 董秀军, 2011. 汶川地震大型滑坡成因模式. 地球科学, 36(6): 1134-1142. doi: 10.3799/dqkx.2011.119
      徐文杰, 2023. 库岸滑坡涌浪链生灾害动力学研究进展. 工程地质学报, 31(6): 1929-1940.
      殷坤龙, 刘艺梁, 汪洋, 等, 2012. 三峡水库库岸滑坡涌浪物理模型试验. 地球科学, 37(5): 1067-1074. doi: 10.3799/dqkx.2012.113
      朱艺帆, 安超, 2024. 均匀滑移模型在海啸预警中的应用: 以2021年Mw 8.2 Alaska地震为例. 地球科学, 49(2): 500-510.
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  106
    • HTML全文浏览量:  8
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-26
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回