Analysis on Density Profile Characteristics of Naturally Deposited Snow and Avalanche Deposition
- 
					    摘要:
为明确区域积雪雪崩情况,对2024年1月喀纳斯雪崩区两条典型公路沿线积雪密度进行原位测量分析.基于中国西北大陆性气候条件下干冷积雪特征,对比自然降雪和雪崩堆积情况下的积雪密度特征,揭示积雪密度在垂直剖面上的变化规律.结果显示,不同情况下积雪密度的变化趋势具有相似性,但自然积雪的密度梯度和最大值与雪崩堆积体存在显著差异.因此,可结合积雪垂直剖面密度分布特征与最大值,提出判别雪体为自然积雪或雪崩堆积体的方法.研究成果为野外自然积雪及雪崩堆积体的分析和识别提供了科学依据.
Abstract:In order to clarify regional snow and avalanche conditions, the snow density along two typical highway lines in the Kanas avalanche area in January 2024 was measured. Based on the characteristics of dry and cold snow under the continental climate conditions of Northwest China, the density of naturally deposited snow and avalanche deposition is compared. The different characteristics of the density profiles at different conditions are identified. The results show that the trends of snow density profiles under the different conditions share similarities, but the density gradient and the maximum density change significantly from naturally deposited snow to avalanche deposition. Therefore, based on the characteristics of the vertical density profile and the maximum snow density, it can be identified whether a snow deposition is from natural snowfall or an avalanche. The outcomes provide a scientific basis for the analysis and identification of natural snow and avalanche deposits in the field.
- 
									Key words:
									
 - Kanas avalanche /
 - snow density /
 - naturally deposited snow /
 - avalanche deposition /
 - engineering geology
 
 - 
						
    
    
    
    
    
表 1 测点最大密度值、密度梯度及判别函数计算结果
Table 1. The maximum density value, density gradient and discriminant function calculation results of the measuring point
测点 $ {\rho }_{\mathrm{m}\mathrm{a}\mathrm{x}} $(g/cm3) $ \int \frac{\mathrm{d}\rho }{\mathrm{d}z}\mathrm{d}z $(g/cm4) $ {\tilde{\rho }}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ $ {\tilde{G}}_{\mathrm{i}\mathrm{n}\mathrm{t}} $ $ F $值 标签 类别 S232:K17+500 0.483 0.043 70 1.000 1.000 1.000 1 雪崩堆积体 S232:K25+550 0.328 0.015 85 0.115 0.000 0.069 0 自然积雪 X852:K21+950 0.337 0.017 11 0.166 0.045 0.114 0 自然积雪 X852:K25+500 0.431 0.022 41 0.703 0.236 0.506 1 雪崩堆积体 X852:K30+650 0.308 0.019 01 0.000 0.114 0.068 0 自然积雪  - 
						
Bai, S. Z., Chen, Z., Zhuang, X. C., et al., 2014. Variations of Winter Snow Concentration Degree and Concentration Period in Altay Region. Journal of Arid Meteorology, 32(1): 99-107(in Chinese with English abstract). Bouvet, L., Calonne, N., Flin, F., et al., 2023. Heterogeneous Grain Growth and Vertical Mass Transfer within a Snow Layer under a Temperature Gradient. The Cryosphere, 17(8): 3553-3573. https://doi.org/10.5194/tc-17-3553-2023 Calonne, N., Geindreau, C., Flin, F., et al., 2012.3-D Image-Based Numerical Computations of Snow Permeability: Links to Specific Surface Area, Density, and Microstructural Anisotropy. The Cryosphere, 6(5): 939-951. https://doi.org/10.5194/tc-6-939-2012 Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: Numerical Simulation of Dense Snow Avalanches in Three-Dimensional Terrain. Cold Regions Science and Technology, 63(1-2): 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005 Dai, L. Y., Che, T., Zhang, Y., et al., 2022. Microwave Radiometry Experiment for Snow in Altay, China: Time Series of In Situ Data for Electromagnetic and Physical Features of Snowpack. Earth System Science Data, 14(8): 3509-3530. https://doi.org/10.5194/essd-14-3509-2022 Dent, J. D., Burrell, K. J., Schmidt, D. S., et al., 1998. Density, Velocity and Friction Measurements in a Dry-Snow Avalanche. Annals of Glaciology, 26: 247-252. https://doi.org/10.3189/1998aog26-1-247-252 Dong, Z. W., Jiang, H. C., Baccolo, G., et al., 2023. Biological and Pollution Aerosols on Snow and Ice-Interplay between the Atmosphere and the Cryosphere. Journal of Earth Science, 34(6): 1951-1956. https://doi.org/10.1007/s12583-023-2004-2 Gao, P., Wei, W. S., Liu, M. Z., et al., 2010. Snow Density and Liquid Water Content within the Seasonal Snow Cover in the Western Tianshan Mountains. Journal of Glaciology and Geocryology, 32(4): 786-793(in Chinese with English abstract). Hao, J. S., Huang, F. R., Liu, Y., et al., 2018. Avalanche Activity and Characteristics of Its Triggering Factors in the Western Tianshan Mountains, China. Journal of Mountain Science, 15(7): 1397-1411. https://doi.org/10.1007/s11629-018-4941-2 Hao, J. S., Mind'je, R., Feng, T., et al., 2021. Performance of Snow Density Measurement Systems in Snow Stratigraphies. Hydrology Research, 52(4): 834-846. https://doi.org/10.2166/nh.2021.133 Hao, J. S., Zhang, X. Q., Cui, P., et al., 2023. Impacts of Climate Change on Snow Avalanche Activity along a Transportation Corridor in the Tianshan Mountains. International Journal of Disaster Risk Science, 14(4): 510-522. https://doi.org/10.1007/s13753-023-00475-0 Hao, X. H., Wang, J., Che, T., et al., 2009. The Spatial Distribution and Properties of Snow Cover in Binggou Watershed, Qilian Mountains: Measurement and Analysis. Journal of Glaciology and Geocryology, 31(2): 284-292(in Chinese with English abstract). Hopfinger, E. J., Tochon-Danguy, J. C., 1977. A Model Study of Powder-Snow Avalanches. Journal of Glaciology, 19(81): 343-356. https://doi.org/10.3189/s0022143000029373 Hu, L. Q., Huang, W. J., Yin, K. Q., et al., 2013. Estimation of Snow Water Resources and Its Distribution in Xinjiang. Advances in Water Science, 24(3): 326-332(in Chinese with English abstract). Jost, G., Weiler, M., Gluns, D. R., et al., 2007. The Influence of Forest and Topography on Snow Accumulation and Melt at the Watershed-Scale. Journal of Hydrology, 347(1-2): 101-115. https://doi.org/10.1016/j.jhydrol.2007.09.006 Keshari, A. K., Satapathy, D. P., Kumar, A., 2010. The Influence of Vertical Density and Velocity Distributions on Snow Avalanche Runout. Annals of Glaciology, 51(54): 200-206. https://doi.org/10.3189/172756410791386409 Lehning, M., Bartelt, P., Brown, B., et al., 2002. A Physical SNOWPACK Model for the Swiss Avalanche Warning Part Ⅱ. Snow Microstructure. Cold Regions Science and Technology, 35(3): 147-167. https://doi.org/10.1016/S0165-232X(02)00073-3 Li, X. Y., Sovilla, B., Jiang, C., et al., 2021. Three-Dimensional and Real-Scale Modeling of Flow Regimes in Dense Snow Avalanches. Landslides, 18(10): 3393-3406. https://doi.org/10.1007/s10346-021-01692-8 Ma, L. J., Qin, D. H., 2012. Temporal-Spatial Characteristics of Observed Key Parameters of Snow Cover in China during 1957-2009. Sciences in Cold and Arid Regions, 4(5): 384. https://doi.org/10.3724/sp.j.1226.2012.00384 Peng, D. D., Zhou, T. J., 2017. Why was the Arid and Semiarid Northwest China Getting Wetter in the Recent Decades? Journal of Geophysical Research(Atmospheres), 122(17): 9060-9075. https://doi.org/10.1002/2016JD026424 Song, M. Y., Li, Z. Q., Wang, F. T., et al., 2024. Influence of Sub-Cloud Secondary Evaporation Effects on the Stable Isotopes in Precipitation of Urumqi Glacier No. 1, Eastern Tianshan. Journal of Earth Science, 35(1): 177-189. https://doi.org/10.1007/s12583-021-1522-z Sovilla, B., Burlando, P., Bartelt, P., 2006. Field Experiments and Numerical Modeling of Mass Entrainment in Snow Avalanches. Journal of Geophysical Research(Earth Surface), 111(F3): F03007. https://doi.org/10.1029/2005JF000391 Sovilla, B., Sommavilla, F., Tomaselli, A., 2001. Measurements of Mass Balance in Dense Snow Avalanche Events. Annals of Glaciology, 32: 230-236. https://doi.org/10.3189/172756401781819058 Su, H. C., Wei, W. S., Han, P., 2003. Changes in Air Temperature and Evaporation in Xinjiang during Recent 50 Years. Journal of Glaciology and Geocryology, 25(2): 174-178 (in Chinese with English abstract). Tan, X. J., Wu, Z. N., Mu, X. M., et al., 2019. Spatiotemporal Changes in Snow Cover over China during 1960-2013. Atmospheric Research, 218: 183-194. https://doi.org/10.1016/j.atmosres.2018.11.018 Valero, C. V., Jones, K. W., Bühler, Y., et al., 2015. Release Temperature, Snow-Cover Entrainment and the Thermal Flow Regime of Snow Avalanches. Journal of Glaciology, 61(225): 173-184. https://doi.org/10.3189/2015jog14j117 Wang, B. X., Cheng, W. M., Xu, H., et al., 2024. Vegetation Differentiation Characteristics and Control Mechanisms in the Altay Region Based on Topographic Gradients. Ecological Indicators, 160: 111838. https://doi.org/10.1016/j.ecolind.2024.111838 Wang, S. P., Ding, Y. J., Jiang, F. Q., et al., 2017. Defining Indices for the Extreme Snowfall Events and Analyzing Their Trends in Northern Xinjiang, China. Journal of the Meteorological Society of Japan Ser. Ⅱ, 95(5): 287-299. https://doi.org/10.2151/jmsj.2017-016 Wang, S. P., Jiang, F. Q., Hu, R. J., et al., 2013. Temporal and Spatial Variability of Extreme Snowfall Indices over Northern Xinjiang from 1959/1960 to 2008/2009. Natural Hazards and Earth System Sciences Discussions, 1(6): 7059-7092. https://doi.org/10.5194/nhessd-1-7059-2013 Wang, X., Baker, I., 2013. Observation of the Microstructural Evolution of Snow under Uniaxial Compression Using X-Ray Computed Microtomography. Journal of Geophysical Research: Atmospheres, 118(22): 12371-12382. https://doi.org/10.1002/2013jd020352 Wei, W. S., Qin, D. H., Liu, M. Z., 2001. Properties and Structure of the Seasonal Snow Cover in the Northwest Regions of China. Arid Land Geography, 24(4): 310-313(in Chinese with English abstract). Yang, D. Q., Zhang, Y. S., Zhang, Z. Z., 1992. A Study on the Snow Density in the Head Area of Urumqi River Basin. Acta Geographica Sinica, 47(3): 260-266(in Chinese with English abstract). Yang, T., Li, Q., Liu, W. J., et al., 2020. Spatiotemporal Variability of Snowfall and Its Concentration in Northern Xinjiang, Northwest China. Theoretical and Applied Climatology, 139(3): 1247-1259. https://doi.org/10.1007/s00704-019-02994-7 Zhang, R. P., Liang, T. G., Feng, Q. S., et al., 2017. Evaluation and Adjustment of the AMSR2 Snow Depth Algorithm for the Northern Xinjiang Region, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 3892-3903. https://doi.org/10.1109/JSTARS.2016.2620521 Zhang, W., Shen, Y. P., He, J. Q., et al., 2014. Snow Properties on Different Underlying Surfaces during Snow-Melting Period in the Altay Mountains: Observation and Analysis. Journal of Glaciology and Geocryology, 36(3): 491-499(in Chinese with English abstract). Zhuang, X. C., Guo, C., Zhao, Z. B., et al., 2010. Snow Cover Variation Analysis in Altay Area of Xinjiang. Journal of Arid Meteorology, 28(2): 190-197(in Chinese with English abstract). 白松竹, 陈真, 庄晓翠, 等, 2014. 阿勒泰地区冬季降雪的集中度和集中期变化特征. 干旱气象, 32(1): 99-107. 高培, 魏文寿, 刘明哲, 等, 2010. 天山西部季节性积雪密度及含水率的特性分析. 冰川冻土, 32(4): 786-793. 郝晓华, 王建, 车涛, 等, 2009. 祁连山区冰沟流域积雪分布特征及其属性观测分析. 冰川冻土, 31(2): 284-292. 胡列群, 黄慰军, 殷克勤, 等, 2013. 新疆冬季雪水资源估算及分布特征. 水科学进展, 24(3): 326-332. 苏宏超, 魏文寿, 韩萍, 2003. 新疆近50a来的气温和蒸发变化. 冰川冻土, 25(2): 174-178. 魏文寿, 秦大河, 刘明哲, 2001. 中国西北地区季节性积雪的性质与结构. 干旱区地理, 24(4): 310-313. 杨大庆, 张寅生, 张志忠, 1992. 乌鲁木齐河源雪密度观测研究. 地理学报, 47(3): 260-266. 张伟, 沈永平, 贺建桥, 等, 2014. 阿尔泰山融雪期不同下垫面积雪特性观测与分析研究. 冰川冻土, 36(3): 491-499. 庄晓翠, 郭城, 赵正波, 等, 2010. 新疆阿勒泰地区积雪变化分析. 干旱气象, 28(2): 190-197.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: