• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟

    李爽 彭铭 石振明 刘毛毛 夏成志 王悦 朱艳

    李爽, 彭铭, 石振明, 刘毛毛, 夏成志, 王悦, 朱艳, 2025. 基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟. 地球科学, 50(10): 3967-3981. doi: 10.3799/dqkx.2025.112
    引用本文: 李爽, 彭铭, 石振明, 刘毛毛, 夏成志, 王悦, 朱艳, 2025. 基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟. 地球科学, 50(10): 3967-3981. doi: 10.3799/dqkx.2025.112
    Li Shuang, Peng Ming, Shi Zhenming, Liu Maomao, Xia Chengzhi, Wang Yue, Zhu Yan, 2025. Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method. Earth Science, 50(10): 3967-3981. doi: 10.3799/dqkx.2025.112
    Citation: Li Shuang, Peng Ming, Shi Zhenming, Liu Maomao, Xia Chengzhi, Wang Yue, Zhu Yan, 2025. Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method. Earth Science, 50(10): 3967-3981. doi: 10.3799/dqkx.2025.112

    基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟

    doi: 10.3799/dqkx.2025.112
    基金项目: 

    国家自然科学基金-联合基金重点项目 U23A2044

    广西重点研发计划项目 桂科AB25069121

    国家自然科学基金-青年基金 42207238

    详细信息
      作者简介:

      李爽(2000-),男,博士研究生,从事地质灾害全过程模拟研究.E-mail:2111042@tongji.edu.cn

      通讯作者:

      彭铭(1981-),男,教授,从事地质灾害链式机理及智能风险防控研究.E-mail: pengming@tongji.edu.cn

    • 中图分类号: P642

    Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method

    • 摘要:

      采用一种双向耦合的SPH数值模型,精确模拟滑坡-堵江-成坝灾害链的全过程.模型以Drucker–Prager准则描述滑体大变形行为,结合混合物理论与非线性渗流拖曳力实现水土耦合.通过室内试验验证后,成功重现白格滑坡灾害链演化,模拟结果与实测高度吻合.结果表明,滑坡入水引发的涌浪及成坝过程可依据滑体速度与能量变化清晰划分阶段.量化分析显示,内摩擦角φ增大(5°~20°)导致堰塞坝长度线性减小,高度呈幂函数增长,涌浪峰值高度显著降低.涌浪峰值与滑体入水弗劳德数呈线性正相关.上述发现揭示了滑体参数对灾害链演化路径的系统性影响,为高风险山地河流域灾害预测与风险评估提供理论支撑.

       

    • 图  1  SPH水土耦合模型示意图

      Fig.  1.  Schematic of SPH fluid-soil coupling model

      图  2  滑涌浪试验设置

      Fig.  2.  Experimental setup for landslide-induced wave

      图  3  滑坡入水涌浪室内试验不同时刻的照片(a~e)及对应的SPH模拟结果(f~j)

      Fig.  3.  Photographs of the landslide-induced wave experiments at different moments(a-e) and corresponding SPH simulation results (f-j)

      图  4  不同监测点下模拟得到的浪高与试验数据对比

      Fig.  4.  Comparison of simulated wave heights with experimental data at different monitoring points

      图  5  白格滑坡位置及堆积体影像

      Fig.  5.  Location and imagery of Baige landslide

      图  6  白格滑坡初始模型设置及监测点分布

      Fig.  6.  Initial model configuration and monitoring points of the Baige landslide

      图  7  SPH模拟得到的白格滑坡堵江过程

      Fig.  7.  SPH simulation of the Baige landslide-damming process

      图  8  白格滑坡SPH模拟结果与现场调查结果对比

      Fig.  8.  Comparison between SPH results and field data of Baige landslide

      图  9  滑坡体速度及动能随时间演化

      Fig.  9.  Evolution of velocity and energy of the landslide

      图  10  滑坡涌浪高度及随时间演化

      Fig.  10.  Evolution of the height of landslide-induced waves

      图  11  不同内摩角φ下的堆积形态(a~d)、动能随时间演化(e)及堰塞坝长度l和高度h的定量拟合(f)

      Fig.  11.  Accumulation morphology (a-d), kinetic energy evolution (e), and fitting lines of the dam length l and height h (f) under varying friction angles φ

      图  12  不同内摩角φ下的入水特征(a~d)、测点W3处浪高变化(e)及涌浪峰值Hmax与弗劳德数Fr的定量拟合(f)

      Fig.  12.  Water entry characteristics under different internal friction angles φ (a-d), wave height variation at measurement point W3 (e), and quantitative fitting of surge peak values with the Froude number Fr (f)

      表  1  滑坡涌浪试验的参数设置

      Table  1.   Parameters of landslide-induced wave experiment

      参数
      土体颗粒密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 2 500
      土体杨氏模量$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 5.84
      土体泊松比 0.3
      土体内摩擦角$ (° $) 23.3
      土体粘聚力$ \left(\mathrm{P}\mathrm{a}\right) $ 20
      土体中值粒径$ (m $) $ 4\times {10}^{-3} $
      土体初始体积分数 0.6
      土体粒子初始间距(m) 0.01
      水体密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 1 000
      水体动力粘度$ (\mathrm{P}\mathrm{a}\cdot \mathrm{s} $) 10-3
      水体粒子初始间距(m) 0.005
      下载: 导出CSV

      表  2  白格滑坡的数值模型参数设置

      Table  2.   Parameters of Baige landslide simulation

      参数
      土体颗粒密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 2 400
      土体杨氏模量$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 5.84
      土体泊松比 0.3
      土体内摩擦角$ (° $) 10.5
      土体粘聚力$ \left(\mathrm{P}\mathrm{a}\right) $ 15 000
      土体中值粒径$ (m $) 0.02
      土体初始体积分数 0.75
      土体粒子初始间距(m) 10
      水体密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 1 000
      水体动力粘度$ (\mathrm{P}\mathrm{a}\cdot \mathrm{s} $) 10-3
      水体粒子初始间距(m) 10
      下载: 导出CSV
    • Adami, S., Hu, X. Y., Adams, N. A., 2012. A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics. Journal of Computational Physics, 231(21): 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005
      Bao, Y. D., Su, L. J., Chen, J. P., et al., 2023. Dynamic Process of a High-Level Landslide Blocking River Event in a Deep Valley Area Based on FDEM-SPH Coupling Approach. Engineering Geology, 319: 107108. https://doi.org/10.1016/j.enggeo.2023.107108
      Bui, H. H., Fukagawa, R., Sako, K., et al., 2008. Lagrangian Meshfree Particles Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12): 1537-1570. https://doi.org/10.1002/nag.688
      Bui, H. H., Nguyen, G. D., 2021. Smoothed Particle Hydrodynamics (SPH) and Its Applications in Geomechanics: From Solid Fracture to Granular Behaviour and Multiphase Flows in Porous Media. Computers and Geotechnics, 138: 104315. https://doi.org/10.1016/j.compgeo.2021.104315
      Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y
      Du, W. J., Sheng, Q., Yang, X. H., et al., 2022. Chain Generation Process of Landslide Blocking River Based on Two-Phase Double-Point Material Point Method. Advanced Engineering Sciences, 54(3): 36-45 (in Chinese with English abstract).
      Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626
      Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5
      Feng, D. L., Neuweiler, I., Huang, Y., 2022. Numerical Modeling of Wave-Porous Structure Interaction Process with an SPH Model. Scientia Sinica Physica, Mechanica & Astronomica, 52(10): 104715. https://doi.org/10.1360/sspma-2022-0216
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract).
      Heller, V., Hager, W. H., 2011. Wave Types of Landslide Generated Impulse Waves. Ocean Engineering, 38(4): 630-640. https://doi.org/10.1016/j.oceaneng.2010.12.010
      Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil-Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157
      Jia, K. C., Zhuang, J. Q., Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419(in Chinese with English abstract).
      Li, D. Y., Nian, T. K., Tiong, R. L. K., et al., 2023a. River Blockage and Impulse Wave Evolution of the Baige Landslide in October 2018: Insights from Coupled DEM-CFD Analyses. Engineering Geology, 321: 107169. https://doi.org/10.1016/j.enggeo.2023.107169
      Li, D. Y., Nian, T. K., Wu, H., et al., 2023. Coupled DEM–CFD Method for Landslide-River Blockage-Impulse Wave Disaster Chain Simulation and Its Application. Advanced Engineering Sciences, 55(1): 141-149(in Chinese with English abstract).
      Li, S., Peng, M., Gao, L., et al., 2024a. A 3D SPH Framework for Simulating Landslide Dam Breaches by Coupling Erosion and Side Slope Failure. Computers and Geotechnics, 175: 106699. https://doi.org/10.1016/j.compgeo.2024.106699
      Li, S., Tang, H., Peng, C., et al., 2023b. Sensitivity and Calibration of Three-Dimensional SPH Formulations in Large-Scale Landslide Modeling. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024583. https://doi.org/10.1029/2022jb024583
      Li, Y., Liu, H. Q., Yang, L., et al., 2024b. An Optimized DEM-SPH Model for Surge Waves Induced by Riverside Landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 48(1): 270-286. https://doi.org/10.1002/nag.3638
      Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1
      Luo, H. W., Zhou, G. G. D., Lu, X. Q., et al., 2025. Experimental Investigation on the Formation and Failure of Landslide Dams Considering the Landslide Mobility and River Flow. Engineering Geology, 346: 107873. https://doi.org/10.1016/j.enggeo.2024.107873
      Nian, T. K., Wu, H., Takara, K., et al., 2021. Numerical Investigation on the Evolution of Landslide-Induced River Blocking Using Coupled DEM-CFD. Computers and Geotechnics, 134: 104101. https://doi.org/10.1016/j.compgeo.2021.104101
      Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414. https://doi.org/10.1007/s10346-019-01177-9
      Peng, M., Li, S., Gao, L., et al., 2024. A Novel Local-Drag-Force-Based Approach for Simulating Wave Attenuation by Mangrove Forests Using a 3D-SPH Method. Ocean Engineering, 306: 118001. https://doi.org/10.1016/j.oceaneng.2024.118001
      Peng, X. Y., Yu, P. C., Chen, G. Q., et al., 2020. Development of a Coupled DDA–SPH Method and Its Application to Dynamic Simulation of Landslides Involving Solid–Fluid Interaction. Rock Mechanics and Rock Engineering, 53(1): 113-131. https://doi.org/10.1007/s00603-019-01900-x
      Ren, B., Wen, H. J., Dong, P., et al., 2016. Improved SPH Simulation of Wave Motions and Turbulent Flows through Porous Media. Coastal Engineering, 107: 14-27. https://doi.org/10.1016/j.coastaleng.2015.10.004
      Shi, Z. M., Zhang, G. D., Peng, M., et al., 2023. Experimental Investigation on the Breaching Mechanisms of Landslide Dams with Heterogeneous Structures. Advanced Engineering Sciences, 55(1): 129-140 (in Chinese with English abstract).
      Viroulet, S., Sauret, A., Kimmoun, O., 2014. Tsunami Generated by a Granular Collapse down a Rough Inclined Plane. EPL (Europhysics Letters), 105(3): 34004. https://doi.org/10.1209/0295-5075/105/34004
      Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4
      Wendland, H., 1995. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree. Advances in Computational Mathematics, 4(1): 389-396. https://doi.org/10.1007/BF02123482
      Wu, H., Nian, T. K., Shan, Z. G., 2023. Research Progress on the Formation Mechanism and Risk Assessment Method of River Blocking Induced by Landslide. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3192-3205 (in Chinese with English abstract).
      Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract).
      Zhang, C., Hu, X. Y., Adams, N. A., 2017. A Weakly Compressible SPH Method Based on a Low-Dissipation Riemann Solver. Journal of Computational Physics, 335: 605-620. https://doi.org/10.1016/j.jcp.2017.01.027
      Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066
      Zhang, G. B., Tang, D. L., Wen, H. J., et al., 2024a. An Improved Two Phases-Two Points SPH Model for Submerged Landslide. Computers and Geotechnics, 176: 106802. https://doi.org/10.1016/j.compgeo.2024.106802
      Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024b. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052
      Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y
      Zhou, G. G. D., Roque, P. J. C., Xie, Y. X., et al., 2020. Numerical Study on the Evolution Process of a Geohazards Chain Resulting from the Yigong Landslide. Landslides, 17(11): 2563-2576. https://doi.org/10.1007/s10346-020-01448-w
      Zhou, L., Fan, X. M., Xu, Q., et al., 2019. Numerical Simulation and Hazard Prediction on Movement Process Characteristics of Baige Landslide in Jinsha River. Journal of Engineering Geology, 27(6): 1395-1404 (in Chinese with English abstract).
      Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water-Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106
      杜文杰, 盛谦, 杨兴洪, 等, 2022. 基于两相双质点MPM的滑坡堵江灾害链生全过程分析. 工程科学与技术, 54(3): 36-45.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
      贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-堵江-溃决洪水地质灾害链动力学过程重建. 地球科学, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124
      李东阳, 年廷凯, 吴昊, 等, 2023. 滑坡-堵江-涌浪灾害链模拟的DEM–CFD耦合分析方法及其应用. 工程科学与技术, 55(1): 141-149.
      石振明, 张公鼎, 彭铭, 等, 2023. 非均质结构堰塞坝溃决机理模型试验. 工程科学与技术, 55(1): 129-140.
      吴昊, 年廷凯, 单治钢, 2023. 滑坡堵江成坝的形成演进机制及危险性预测方法研究进展. 岩石力学与工程学报, 42(增刊1): 3192-3205.
      许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551.
      周礼, 范宣梅, 许强, 等, 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究. 工程地质学报, 27(6): 1395-1404.
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  131
    • HTML全文浏览量:  6
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-03-21
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回