Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method
- 
					    摘要:
采用一种双向耦合的SPH数值模型,精确模拟滑坡-堵江-成坝灾害链的全过程.模型以Drucker–Prager准则描述滑体大变形行为,结合混合物理论与非线性渗流拖曳力实现水土耦合.通过室内试验验证后,成功重现白格滑坡灾害链演化,模拟结果与实测高度吻合.结果表明,滑坡入水引发的涌浪及成坝过程可依据滑体速度与能量变化清晰划分阶段.量化分析显示,内摩擦角φ增大(5°~20°)导致堰塞坝长度线性减小,高度呈幂函数增长,涌浪峰值高度显著降低.涌浪峰值与滑体入水弗劳德数呈线性正相关.上述发现揭示了滑体参数对灾害链演化路径的系统性影响,为高风险山地河流域灾害预测与风险评估提供理论支撑.
Abstract:This study adopts a bidirectionally coupled SPH numerical model to accurately simulate the full evolution of a landslide-dammed lake disaster chain. The model captures large deformation of the landslide body using the Drucker-Prager criterion and achieves water–soil coupling through mixture theory and nonlinear seepage drag forces. Validated against laboratory experiments, the model successfully reproduces the Baige landslide disaster chain, with simulation results closely matching field observations. Results show that the processes of landslide motion, impulse wave generation, and dam formation can be clearly delineated by the evolution of landslide velocity and energy. Quantitative analysis reveals that increasing the internal friction angle φ from 5° to 20° leads to a linear decrease in dam length, a power-law increase in dam height, and a significant reduction in wave height. The peak wave height exhibits a linear correlation with the landslide Froude number at impact. These findings highlight the systematic influence of landslide material properties on disaster chain dynamics and offer theoretical support for hazard prediction and risk assessment in mountainous river basins.
 - 
						
    
    
    
表 1 滑坡涌浪试验的参数设置
Table 1. Parameters of landslide-induced wave experiment
参数 值 土体颗粒密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 2 500 土体杨氏模量$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 5.84 土体泊松比 0.3 土体内摩擦角$ (° $) 23.3 土体粘聚力$ \left(\mathrm{P}\mathrm{a}\right) $ 20 土体中值粒径$ (m $) $ 4\times {10}^{-3} $ 土体初始体积分数 0.6 土体粒子初始间距(m) 0.01 水体密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 1 000 水体动力粘度$ (\mathrm{P}\mathrm{a}\cdot \mathrm{s} $) 10-3 水体粒子初始间距(m) 0.005 表 2 白格滑坡的数值模型参数设置
Table 2. Parameters of Baige landslide simulation
参数 值 土体颗粒密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 2 400 土体杨氏模量$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 5.84 土体泊松比 0.3 土体内摩擦角$ (° $) 10.5 土体粘聚力$ \left(\mathrm{P}\mathrm{a}\right) $ 15 000 土体中值粒径$ (m $) 0.02 土体初始体积分数 0.75 土体粒子初始间距(m) 10 水体密度($ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) 1 000 水体动力粘度$ (\mathrm{P}\mathrm{a}\cdot \mathrm{s} $) 10-3 水体粒子初始间距(m) 10  - 
						
Adami, S., Hu, X. Y., Adams, N. A., 2012. A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics. Journal of Computational Physics, 231(21): 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005 Bao, Y. D., Su, L. J., Chen, J. P., et al., 2023. Dynamic Process of a High-Level Landslide Blocking River Event in a Deep Valley Area Based on FDEM-SPH Coupling Approach. Engineering Geology, 319: 107108. https://doi.org/10.1016/j.enggeo.2023.107108 Bui, H. H., Fukagawa, R., Sako, K., et al., 2008. Lagrangian Meshfree Particles Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12): 1537-1570. https://doi.org/10.1002/nag.688 Bui, H. H., Nguyen, G. D., 2021. Smoothed Particle Hydrodynamics (SPH) and Its Applications in Geomechanics: From Solid Fracture to Granular Behaviour and Multiphase Flows in Porous Media. Computers and Geotechnics, 138: 104315. https://doi.org/10.1016/j.compgeo.2021.104315 Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y Du, W. J., Sheng, Q., Yang, X. H., et al., 2022. Chain Generation Process of Landslide Blocking River Based on Two-Phase Double-Point Material Point Method. Advanced Engineering Sciences, 54(3): 36-45 (in Chinese with English abstract). Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5 Feng, D. L., Neuweiler, I., Huang, Y., 2022. Numerical Modeling of Wave-Porous Structure Interaction Process with an SPH Model. Scientia Sinica Physica, Mechanica & Astronomica, 52(10): 104715. https://doi.org/10.1360/sspma-2022-0216 Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract). Heller, V., Hager, W. H., 2011. Wave Types of Landslide Generated Impulse Waves. Ocean Engineering, 38(4): 630-640. https://doi.org/10.1016/j.oceaneng.2010.12.010 Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil-Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157 Jia, K. C., Zhuang, J. Q., Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419(in Chinese with English abstract). Li, D. Y., Nian, T. K., Tiong, R. L. K., et al., 2023a. River Blockage and Impulse Wave Evolution of the Baige Landslide in October 2018: Insights from Coupled DEM-CFD Analyses. Engineering Geology, 321: 107169. https://doi.org/10.1016/j.enggeo.2023.107169 Li, D. Y., Nian, T. K., Wu, H., et al., 2023. Coupled DEM–CFD Method for Landslide-River Blockage-Impulse Wave Disaster Chain Simulation and Its Application. Advanced Engineering Sciences, 55(1): 141-149(in Chinese with English abstract). Li, S., Peng, M., Gao, L., et al., 2024a. A 3D SPH Framework for Simulating Landslide Dam Breaches by Coupling Erosion and Side Slope Failure. Computers and Geotechnics, 175: 106699. https://doi.org/10.1016/j.compgeo.2024.106699 Li, S., Tang, H., Peng, C., et al., 2023b. Sensitivity and Calibration of Three-Dimensional SPH Formulations in Large-Scale Landslide Modeling. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024583. https://doi.org/10.1029/2022jb024583 Li, Y., Liu, H. Q., Yang, L., et al., 2024b. An Optimized DEM-SPH Model for Surge Waves Induced by Riverside Landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 48(1): 270-286. https://doi.org/10.1002/nag.3638 Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1 Luo, H. W., Zhou, G. G. D., Lu, X. Q., et al., 2025. Experimental Investigation on the Formation and Failure of Landslide Dams Considering the Landslide Mobility and River Flow. Engineering Geology, 346: 107873. https://doi.org/10.1016/j.enggeo.2024.107873 Nian, T. K., Wu, H., Takara, K., et al., 2021. Numerical Investigation on the Evolution of Landslide-Induced River Blocking Using Coupled DEM-CFD. Computers and Geotechnics, 134: 104101. https://doi.org/10.1016/j.compgeo.2021.104101 Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414. https://doi.org/10.1007/s10346-019-01177-9 Peng, M., Li, S., Gao, L., et al., 2024. A Novel Local-Drag-Force-Based Approach for Simulating Wave Attenuation by Mangrove Forests Using a 3D-SPH Method. Ocean Engineering, 306: 118001. https://doi.org/10.1016/j.oceaneng.2024.118001 Peng, X. Y., Yu, P. C., Chen, G. Q., et al., 2020. Development of a Coupled DDA–SPH Method and Its Application to Dynamic Simulation of Landslides Involving Solid–Fluid Interaction. Rock Mechanics and Rock Engineering, 53(1): 113-131. https://doi.org/10.1007/s00603-019-01900-x Ren, B., Wen, H. J., Dong, P., et al., 2016. Improved SPH Simulation of Wave Motions and Turbulent Flows through Porous Media. Coastal Engineering, 107: 14-27. https://doi.org/10.1016/j.coastaleng.2015.10.004 Shi, Z. M., Zhang, G. D., Peng, M., et al., 2023. Experimental Investigation on the Breaching Mechanisms of Landslide Dams with Heterogeneous Structures. Advanced Engineering Sciences, 55(1): 129-140 (in Chinese with English abstract). Viroulet, S., Sauret, A., Kimmoun, O., 2014. Tsunami Generated by a Granular Collapse down a Rough Inclined Plane. EPL (Europhysics Letters), 105(3): 34004. https://doi.org/10.1209/0295-5075/105/34004 Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4 Wendland, H., 1995. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree. Advances in Computational Mathematics, 4(1): 389-396. https://doi.org/10.1007/BF02123482 Wu, H., Nian, T. K., Shan, Z. G., 2023. Research Progress on the Formation Mechanism and Risk Assessment Method of River Blocking Induced by Landslide. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3192-3205 (in Chinese with English abstract). Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). Zhang, C., Hu, X. Y., Adams, N. A., 2017. A Weakly Compressible SPH Method Based on a Low-Dissipation Riemann Solver. Journal of Computational Physics, 335: 605-620. https://doi.org/10.1016/j.jcp.2017.01.027 Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066 Zhang, G. B., Tang, D. L., Wen, H. J., et al., 2024a. An Improved Two Phases-Two Points SPH Model for Submerged Landslide. Computers and Geotechnics, 176: 106802. https://doi.org/10.1016/j.compgeo.2024.106802 Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024b. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052 Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y Zhou, G. G. D., Roque, P. J. C., Xie, Y. X., et al., 2020. Numerical Study on the Evolution Process of a Geohazards Chain Resulting from the Yigong Landslide. Landslides, 17(11): 2563-2576. https://doi.org/10.1007/s10346-020-01448-w Zhou, L., Fan, X. M., Xu, Q., et al., 2019. Numerical Simulation and Hazard Prediction on Movement Process Characteristics of Baige Landslide in Jinsha River. Journal of Engineering Geology, 27(6): 1395-1404 (in Chinese with English abstract). Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water-Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106 杜文杰, 盛谦, 杨兴洪, 等, 2022. 基于两相双质点MPM的滑坡堵江灾害链生全过程分析. 工程科学与技术, 54(3): 36-45. 郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124 贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-堵江-溃决洪水地质灾害链动力学过程重建. 地球科学, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124 李东阳, 年廷凯, 吴昊, 等, 2023. 滑坡-堵江-涌浪灾害链模拟的DEM–CFD耦合分析方法及其应用. 工程科学与技术, 55(1): 141-149. 石振明, 张公鼎, 彭铭, 等, 2023. 非均质结构堰塞坝溃决机理模型试验. 工程科学与技术, 55(1): 129-140. 吴昊, 年廷凯, 单治钢, 2023. 滑坡堵江成坝的形成演进机制及危险性预测方法研究进展. 岩石力学与工程学报, 42(增刊1): 3192-3205. 许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. 周礼, 范宣梅, 许强, 等, 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究. 工程地质学报, 27(6): 1395-1404.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: