• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    气体地球化学勘查研究进展与展望

    李高鑫 陈鑫 郑有业 高顺宝 林成贵 薛兆龙 姜晓佳

    李高鑫, 陈鑫, 郑有业, 高顺宝, 林成贵, 薛兆龙, 姜晓佳, 2025. 气体地球化学勘查研究进展与展望. 地球科学, 50(11): 4473-4498. doi: 10.3799/dqkx.2025.131
    引用本文: 李高鑫, 陈鑫, 郑有业, 高顺宝, 林成贵, 薛兆龙, 姜晓佳, 2025. 气体地球化学勘查研究进展与展望. 地球科学, 50(11): 4473-4498. doi: 10.3799/dqkx.2025.131
    Li Gaoxin, Chen Xin, Zheng Youye, Gao Shunbao, Lin Chenggui, Xue Zhaolong, Jiang Xiaojia, 2025. Research Progress and Prospects of Gas Geochemical Exploration. Earth Science, 50(11): 4473-4498. doi: 10.3799/dqkx.2025.131
    Citation: Li Gaoxin, Chen Xin, Zheng Youye, Gao Shunbao, Lin Chenggui, Xue Zhaolong, Jiang Xiaojia, 2025. Research Progress and Prospects of Gas Geochemical Exploration. Earth Science, 50(11): 4473-4498. doi: 10.3799/dqkx.2025.131

    气体地球化学勘查研究进展与展望

    doi: 10.3799/dqkx.2025.131
    基金项目: 

    地球深部探测与矿产资源勘查国家科技重大专项 2025ZD1005904

    西藏自治区科技计划 XZ202401ZY0026

    详细信息
      作者简介:

      李高鑫(1999—),男,博士研究生,主要从事气体地球化学勘查评价研究. ORCID:0009-0008-0292-5468. E-mail:15827193578@163.com

      通讯作者:

      陈鑫, E-mail: chenxin68@cug.edu.cn

    • 中图分类号: P59

    Research Progress and Prospects of Gas Geochemical Exploration

    • 摘要: 随着我国矿产勘查程度持续提高,覆盖区隐伏矿床勘查已成为未来重要方向.系统回顾了以气体为勘查介质在覆盖区找矿的研究进展,分析了与矿化相关气体用于勘查的原理、特征、来源及运移机制,总结了环境因素对其运移与富集的影响.针对不同类型的气体(CO2、烃类气体、含硫气体、惰性气体Rn、He及Hg),归纳了其在矿产勘查中的应用特征及面临的挑战,提出了多种气体联合测量在金属硫化物矿床勘查方面的优势.尽管气体地球化学方法在找矿实践中成效显著,但各类气体的成因机制、运移规律及其影响因素仍需深入研究,相关理论体系有待完善.同时,亟需构建涵盖气体地球化学异常检测、识别、追踪与评价的综合体系,以提升该方法的普适性和有效性.

       

    • 图  1  贱金属和金矿床勘查方法随矿床埋深变化示意(修改自Schodde,2017

      Fig.  1.  Exploration methods for base metals and gold deposits changes with depth of deposits (modified from Schodde, 2017)

      图  2  气源释放一定质量的气体进入上方均匀介质中(修改自Oakes,1984

      Fig.  2.  A gas source releases a mass of gas into a uniform medium above (modified from Oakes, 1984)

      图  3  矿化相关气体运移机制(修改自Anand et al.,2016

      Fig.  3.  Mechanism of migration of mineralization-related gases (modified from Anand et al., 2016)

      图  4  土壤中气体赋存形式(修改自Ruan and Cheng, 1991

      Fig.  4.  Forms of gas occurrence in soil (modified from Ruan and Cheng, 1991)

      图  5  主动采样装置示意(修改自Lin, 2021)

      Fig.  5.  Diagram of active sampling device (modified from Li, 2021)

      图  6  被动采样装置示意(修改自张文宇,2016

      Fig.  6.  Diagram of passive sampling device (modified from Zhang, 2016)

      图  7  CO2找矿实例

      a. Cortez Au矿床CO2测量结果;b. Kiska Porspect硫化物矿床CO2-O2测量结果;c. 氧化还原驱动气体运移模型;d. 蔡家营铅锌矿CO2测量结果. a. 修改自Muntean and Taufen(2011);b.修改自Highsmith(2004);c. 修改自Hamilton et al.(2004a);d. 修改自殷萤和徐外生(1991)

      Fig.  7.  Examples of CO2 exploration

      图  8  亚利桑那州夏天和冬天CO2测量结果对比(修改自Reid and Rasmussen, 1990

      Fig.  8.  Comparison of CO2 measurement results in summer and winter in Arizona (modified from Reid and Rasmussen, 1990)

      图  9  Crandon块状硫化物矿床CH4测量结果(a‒b)、含Mo石英脉中的CH4流体包裹体(c)和选厂沟金矿床CO2测量结果(d)

      a,b. 修改自McCarthy and Reimer(1986);c.修改自Polito et al.(2001);d. 修改自万卫等(2023)

      Fig.  9.  CH4 measurement results from the Crandon massive sulfide deposit (a‒b), CH4 fluid inclusions in Mo-bearing quartz veins (c) and CO2 measurement results from the Xuanchanggou gold deposit (d)

      图  10  江苏白家村Cu矿床H2S测量结果(a)、新墨西哥州Torpedo矿床上方COS测量结果(b)和美国亚利桑那州North Silver Bell矿床COS、Cu、Mo、CS2、SO2测量结果(c)

      a. 修改自Jin et al.(1989);b.修改自Oakes and Hale(1987);c,d. 修改自Hinkle and Dilbert(1984)

      Fig.  10.  H2S measurement results from the Baijia Village Cu deposit in Jiangsu (a), COS measurement results above the Torpedo deposit in New mexico (b) and measurements of COS, Cu, Mo, CS2, and SO2 from the North Silver Bell deposit in Arizona, USA (c)

      图  11  粤北某U矿床氡气测量结果(a)、鄂尔多斯某盆地U矿床氡气测量结果(b)、Koongarra U矿床氦气测量结果(c)和102 U矿床氦气测量结果(d)

      a.修改自姜涛等(2018);b.修改自刘汉彬等(2023);c.修改自许来生(1999);d.修改自刘庆余(1988)

      Fig.  11.  Radon gas measurement results from a U deposit in northern Guangdong (a), radon gas measurement results from a U deposit in the Ordos basin (b), helium gas measurement results from the Koongarra U deposit (c) and helium gas measurement results from the 102U deposit (d)

      图  12  Urals铜矿床汞气测量图(a)和莲花山矿床壤中汞气异常图(b)

      a.修改自Fursov(1990);b.修改自常凤池等(1989)

      Fig.  12.  Mercury gas measurement map from the Urals copper deposit (a) and mercury gas anomaly map in the Lianhuashan deposit (b)

      图  13  蒙亚啊矿床(a)PM44土壤气体联合测量图和PM12土壤气体联合测量图(b)

      Fig.  13.  Mengya'a deposit PM44 soil gas combined measurement map (a) and PM12 soil gas combined measurement map (b)

      图  14  驱龙矿床PM01土壤气体联合测量图(a. 据Li et al., 2025)和普朗矿床PM12土壤气体联合测量图(b. 据沈啟武等,2025

      Fig.  14.  PM01 soil gas combined measurement map at the Qulong deposit (a. modified from Li et al., 2025) and PM12 soil gas combined measurement map at the Pulang deposit (b. modified from Shen et al., 2025)

    • Ahmadi, N., Heck, K., Rolle, M., et al., 2021. On Multicomponent Gas Diffusion and Coupling Concepts for Porous Media and Free Flow: A Benchmark Study. Computational Geosciences, 25(5): 1493-1507. https://doi.org/10.1007/s10596­021­10057­y
      Alonso, E. E., Gens, A., Delahaye, C. H., 2003. Influence of Rainfall on the Deformation and Stability of a Slope in Overconsolidated Clays: A Case Study. Hydrogeology Journal, 11(1): 174-192. https://doi.org/10.1007/s10040­002­0245­1
      Alpers, C. N., Dettman, D. L., Lohmann, K. C., et al., 1990. Stable Isotopes of Carbon Dioxide in Soil Gas over Massive Sulfide Mineralization at Crandon, Wisconsin. Journal of Geochemical Exploration, 38(1/2): 69-86. https://doi.org/10.1016/0375­6742(90)90093­P
      Amali, S., Rolston, D. E., 1993. Theoretical Investigation of Multicomponent Volatile Organic Vapor Diffusion: Steady­State Fluxes. Journal of Environmental Quality, 22(4): 825-831. https://doi.org/10.2134/jeq1993.00472425002200040027x
      Anand, R. R., Aspandiar, M. F., Noble, R. R. P., 2016. A Review of Metal Transfer Mechanisms through Transported Cover with Emphasis on the Vadose Zone within the Australian Regolith. Ore Geology Reviews, 73: 394-416. https://doi.org/10.1016/j.oregeorev.2015.06.018
      Arias, J., Lowell, J., Hale, M., 1982. Development and Application of Vapour Geochemistry Techniques to Minerals Exploration in Overburden Covered Areas of Northern Chile. Revista Geologica de Chile, 16: 23-80.
      Arias, J. A., Hale, M., Webb, J. S., 1979. Vapour Dispersion of Mercury and Radon at Cachinal, Northern Chile. Revista Geologica de Chile, 8: 3-12.
      Ball, T. K., Crow, M. J., Laffoley, N., et al., 1990. Application of Soil­Gas Geochemistry to Mineral Exploration in Africa. Journal of Geochemical Exploration, 38(1-2): 103-115. https://doi.org/10.1016/0375­6742(90)90095­R
      Bellingrath­Kimura, S. D., Kishimoto­Mo, A. W., Oura, N., et al., 2015. Differences in the Spatial Variability among CO2, CH4, and N2O Gas Fluxes from an Urban Forest Soil in Japan. AMBIO, 44(1): 55-66. https://doi.org/10.1007/s13280­014­0521­z
      Ben­Noah, I., Friedman, S. P., Berkowitz, B., 2023. Dynamics of Air Flow in Partially Water­Saturated Porous Media. Reviews of Geophysics, 61(2): e2022RG000798. https://doi.org/10.1029/2022RG000798
      Bloom, A. A., Palmer, P. I., Fraser, A., et al., 2012. Seasonal Variability of Tropical Wetland CH4 Emissions: The Role of the Methanogen­Available Carbon Pool. Biogeosciences, 9(8): 2821-2830. https://doi.org/10.5194/bg­9­2821­2012
      Bradshaw, P. M. D., 2015. Barringer, Back to the Future: Airborne Geochemistry and Many Related Topics. Association of Applied Geochemists, Nepean.
      Brown, A., 2000. Evaluation of Possible Gas Microseepage Mechanisms. AAPG Bulletin, 84: 1775-1789. https://doi.org/10.1306/8626c389­173b­11d7­8645000102c1865d
      Butt, C. R. M., Gole, M. J., 1985. Helium in Soil and Overburden Gas as an Exploration Pathfinder—An Assessment. Journal of Geochemical Exploration, 24(2): 141-173. https://doi.org/10.1016/0375­6742(85)90043­3
      Butt, C. R. M., Gole, M. J., Dyck, W., 2000. Chapter 10 Helium. Geochemical Remote Sensing of the Sub­Surface. Elsevier, Amsterdam, 303-352. https://doi.org/10.1016/s0168­6275(00)80034­3
      Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. https://doi.org/10.1144/1467­7873/03­019
      Cao, J. J., 2011. Migration Mechanisms of Gold Nanoparticles Explored in Geogas of the Hetai Ore District, Southern China. Geochemical Journal, 45(3): e9-e13. https://doi.org/10.2343/geochemj.1.0128
      Cao, J. J., Hu, R. Z., Liang, Z. R., et al., 2009. TEM Observation of Geogas­Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 101(3): 247-253. https://doi.org/10.1016/j.gexplo.2008.09.001
      Cao, J. J., Hu, X. Y., Jiang, Z. T., et al., 2010a. Simulation of Adsorption of Gold Nanoparticles Carried by Gas Ascending from the Earth's Interior in Alluvial Cover of the Middle­Lower Reaches of the Yangtze River. Geofluids, 10(3): 438-446. https://doi.org/10.1111/j.1468­8123.2010.00287.x
      Cao, J. J., Liu, C., Xiong, Z. H., et al., 2010b. Particles Carried by Ascending Gas Flow at the Tongchanghe Copper Mine, Guizhou Province, China. Science China Earth Sciences, 53(11): 1647-1654. https://doi.org/10.1007/s11430­010­4115­8
      Cao, J. J., Li, Y. K., Jiang, T., et al., 2015. Sulfur­ Containing Particles Emitted by Concealed Sulfide Ore Deposits: An Unknown Source of Sulfur­Containing Particles in the Atmosphere. Atmospheric Chemistry and Physics, 15(12): 6959-6969. https://doi.org/10.5194/acp­15­6959­2015
      Carr, G. R., Wilmshurst, J. R., 2000. Chapter 12 Mercury. Geochemical Remote Sensing of the Sub­Surface. Elsevier, Amsterdam, 395-437. https://doi.org/10.1016/s0168­6275(00)80036­7
      Carter, J. S., Cazalet, P. C. D., Ferguson, J., 1988. Light Hydrocarbon Gases and Mineralization. Mineral Deposits within the European Community. Springer, Berlin, 406-427. https://doi.org/10.1007/978­3­642­51858­4_22
      Chang, F. C., 1989. The Effects of the Soil Low­Temperature Adsorbed Mercury Survey Method in Prospecting. Journal of Guilin University of Technology, 9(3): 311-318 (in Chinese with English abstract).
      Christophersen, M., Kjeldsen, P., 2001. Lateral Gas Transport in Soil Adjacent to an Old Landfill: Factors Governing Gas Migration. Waste Management & Research, 19(2): 144-159. https://doi.org/10.1177/0734242X0101900206
      Ciotoli, G., Lombardi, S., Annunziatellis, A., 2007. Geostatistical Analysis of Soil Gas Data in a High Seismic Intermontane Basin: Fucino Plain, Central Italy. Journal of Geophysical Research: Solid Earth, 112(B5): 2005JB004044. https://doi.org/10.1029/2005JB004044
      Cohen, D. R., Kelley, D. L., Anand, R., et al., 2010. Major Advances in Exploration Geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. https://doi.org/10.1144/1467­7873/09­215
      Delahaye, C. H., Alonso, E. E., 2002. Soil Heterogeneity and Preferential Paths for Gas Migration. Engineering Geology, 64(2-3): 251-271. https://doi.org/10.1016/S0013­7952(01)00104­1
      Dentith, M. C., Mudge, S. T., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, Cambridge.
      Disnar, J. R., 1990. Volatile Hydrocarbons in Ba­Zn­Pb Ore Genesis: Analysis and Use in Mineral Exploration. Journal of Geochemical Exploration, 38(1/2): 205-224. https://doi.org/10.1016/0375­6742(90)90102­G
      Disnar, J. R., Gauthier, B., 1988. Exploration for Concealed Orebodies by the Analysis of Volatile Organic Compounds Contained in Surface Rocks: Trèves Zn­Pb Deposit (Gard, France). Journal of Geochemical Exploration, 30(1-3): 179-196. https://doi.org/10.1016/0375­6742(88)90058­1
      Dou, X. F., Zheng, Y. Y., Zheng, S. L., et al., 2024. Advanced Soil­Gas Geochemical Exploration Methods for Orogenic Gold Deposits: A Case Study of Chalapu Deposit, Xizang. Ore Geology Reviews, 173: 106226. https://doi.org/10.1016/j.oregeorev.2024.106226
      Du, L. T., 2006. The Five Gas­Spheres of the Earth and Natural Gasexploitation from Middle Crust. Natural Gas Geoscience, 17(1): 25-30, 35 (in Chinese with English abstract).
      Dyck, W., Jonasson, I. R., 1977. The Nature and Behavior of Gases in Natural Waters. Water Research, 11(8): 705-711. https://doi.org/10.1016/0043­1354(77)90111­7
      Dyck, W., Jonasson, I. R., 2000. Chapter 12 Radon. Handbook of Exploration Geochemistry, 7: 353-394. https://doi.org/10.1016/S0168­6275(00)80035­5
      Etiope, G., Martinelli, G., 2002. Migration of Carrier and Trace Gases in the Geosphere: An Overview. Physics of the Earth and Planetary Interiors, 129(3/4): 185-204. https://doi.org/10.1016/S0031­9201(01)00292­8
      Etiope, G., Sherwood, B. L., 2013. Abiotic Methane on Earth. Reviews of Geophysics, 51(2): 276-299. https://doi.org/10.1002/rog.20011
      Fen, C. S., Lin, Y. R., Chen, C. Y., et al., 2021. Methane Transport in a Soil Column: Experimental and Modeling Investigation. Environmental Engineering Research, 26(5): 200311. https://doi.org/10.4491/eer.2020.311
      Feng, X. B., Yan, H. Y., Wang, S. F., et al., 2004. Seasonal Variation of Gaseous Mercury Exchange Rate between Air and Water Surface over Baihua Reservoir, Guizhou, China. Atmospheric Environment, 38(28): 4721-4732. https://doi.org/10.1016/j.atmosenv.2004.05.023
      Fu, X. W., Feng, X. B., Wan, Q., et al., 2010. Probing Hg Evasion from Surface Waters of Two Chinese Hyper/Meso­Eutrophic Reservoirs. Science of the Total Environment, 408(23): 5887-5896. https://doi.org/10.1016/j.scitotenv.2010.08.001
      Fursov, V. Z., 1990. Mercury Vapor Surveys: Technique and Results. Journal of Geochemical Exploration, 38(1/2): 145-155. https://doi.org/10.1016/0375­6742(90)90098­U
      Gal, F., Joublin, F., Haas, H., et al., 2011. Soil Gas (222Rn, CO2, 4He) Behaviour over a Natural CO2 Accumulation, Montmiral Area (Drôme, France): Geographical, Geological and Temporal Relationships. Journal of Environmental Radioactivity, 102(2): 107-118. https://doi.org/10.1016/j.jenvrad.2010.10.010
      Gan, J., Li, H., He, Z. W., et al., 2022. Application and Significance of Geological, Geochemical, and Geophysical Methods in the Nanpo Gold Field in Laos. Minerals, 12(1): 96. https://doi.org/10.3390/min12010096
      Goodman, S., 1987. The Relationship between Light Hydrocarbons and Carbonate Petrology—A Study from the Mendip Hills. Geological Journal, 22(4): 371-382. https://doi.org/10.1002/gj.3350220408
      Gougoulias, C., Clark, J. M., Shaw, L. J., 2014. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the Below­Ground Microbial Processing of Plant­Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. https://doi.org/10.1002/jsfa.6577
      Govett, G. J. S., 1976. Detection of Deeply Buried and Blind Sulphide Deposits by Measurement of H+ and Conductivity of Closely Spaced Surface Soil Samples. Journal of Geochemical Exploration, 6(1/2): 359-382. https://doi.org/10.1016/0375­6742(76)90024­8
      Govett, G. J. S., Atherden, P. R., 1987. Electrogeochemical Patterns in Surface Soils­Detection of Blind Mineralization beneath Exotic Cover, Thalanga, Queensland, Australia. Journal of Geochemical Exploration, 28(1/2/3): 201-218. https://doi.org/10.1016/0375­6742(87)90048­3
      Green, C. T., Walvoord, M. A., Andraski, B. J., et al., 2015. Multimodel Analysis of Anisotropic Diffusive Tracer­Gas Transport in a Deep Arid Unsaturated Zone. Water Resources Research, 51(8): 6052-6073. https://doi.org/10.1002/2014WR016055
      Guan, Z. N., 2005. Geomagnetic Field and Magnetic Prospecting. Geological Publishing House, Beijing (in Chinese).
      Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits: The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry, 10(3): 261-267. https://doi.org/10.1144/1467­7873/09­236
      Hale, M., 2000. Chapter 1 Genesis, Behaviour and Detection of Gases in the Crust. Handbook of Exploration Geochemistry, 7: 3-15. https://doi.org/10.1016/s0168­6275(00)80025­2
      Hamilton, S. M., 2000. Chapter 3 Spontaneous Potentials and Electrochemical Cells. In: Govett, G. J. S., ed., Geochemical Remote Sensing of the Sub­Surface. Elsevier, Amsterdam, 81-119. https://doi.org/10.1016/s0168­6275(00)80027­6
      Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004a. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part Ⅰ: Methodologies and Field Investigation Atthe Marsh Zone Gold Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 33-44. https://doi.org/10.1144/1467­7873/03­020
      Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004b. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part Ⅱ: Field Investigation at Cross Lake VMS Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 45-58. https://doi.org/10.1144/1467­7873/03­021
      Han, X., Li, Y., Du, J., et al., 2014. Rn and CO2 Geochemistry of Soil Gas across the Active Fault Zones in the Capital Area of China. Natural Hazards and Earth System Sciences, 14(10): 2803-2815. https://doi.org/10.5194/nhess­14­2803­2014.
      He, W., 2012. Study on the Genesis Mechanism and Distribution Prediction of Mercury in Natural Gas (Dissertation). China University of Geosciences (Beijing), Beijing (in Chinese with English abstract).
      Hibi, Y., 2008. Formulation of a Dusty Gas Model for Multi­Component Diffusion in the Gas Phase of Soil. Soils and Foundations, 48(3): 419-432. https://doi.org/10.3208/sandf.48.419
      Hibi, Y., Fujinawa, K., Nishizaki, S., et al., 2010. Investigation for Necessity of Dispersivity and Tortuosity in the Dusty Gas Model for a Binary Gas System in Soil. Soils and Foundations, 50(1): 143-159. https://doi.org/10.3208/sandf.50.143
      Highsmith, P., 2004. Overview of Soil Gas Theory. The Association of Applied Geochemists Quarterly Newsletter Explore, 122: 1-15.
      Hinkle, M. E., 1994. Environmental Conditions Affecting Concentrations of He, CO2, O2 and N2 in Soil Gases. Applied Geochemistry, 9(1): 53-63. https://doi.org/10.1016/0883­2927(94)90052­3
      Hinkle, M. E., Dennen, K. O., 1989. Tabulation of Meteorological Variables and Concentrations of Helium, Carbon Dioxide, Oxygen, and Nitrogen in Soil Gases Collected Regularly from a Site at Reston, Virginia, for One Year. U. S. Geological Survey, Washington, D. C. . https://doi.org/10.3133/ofr8910
      Hinkle, M. E., Dilbert, C. A., 1984. Gases and Trace Elements in Soils at the North Silver Bell Deposit, Pima County, Arizona. Journal of Geochemical Exploration, 20(3): 323-336. https://doi.org/10.1016/0375­6742(84)90074­8
      Hinkle, M. E., Ryder, J. L., 1987. Effect of Moisture and Carbon Dioxide on Concentrations of Helium in Soils and Soil Gases. Journal of Geophysical Research: Solid Earth, 92(B12): 12587-12594. https://doi.org/10.1029/JB092iB12p12587
      Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1-2): 43-67. https://doi.org/10.1016/0375­6742(90)90092­O
      Hinkle, M. E., Kantor, J. A., 1978. Collection and Analysis of Soil Gases Emanating from Buried Sulfide Mineralization, Johnson Camp Area, Cochise County, Arizona. Journal of Geochemical Exploration, 9: 209-216.
      Hinkle, M. E., Lovell, J. S., 2000. Chapter 8 Sulphur Gases. Geochemical Remote Sensing of the Sub­Surface. Elsevier, Amsterdam, 249-289. https://doi.org/10.1016/s0168­6275(00)80032­x
      Hinze, W. J., von Frese, R. R. B., 1990. Magnetics in Geoexploration. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 99(4): 515-547. https://doi.org/10.1007/BF02840315
      Hu, G., Cao, J. J., Hopke, P. K., et al., 2015. Study of Carbon­Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China. Resource Geology, 65(1): 13-26. https://doi.org/10.1111/rge.12055
      Hu, G. L., Tian, J. J., Lai, W. M., et al., 1980. Migration and Transformation of Mercury and Formation of Mercury Gas Anomaly in Soil. Geology and Prospecting, 16(12): 55-60 (in Chinese with English abstract).
      Hu, Z., 2000. Chapter 13 Discrimination of Mercury Anomalies. Handbook of Exploration Geochemistry, 7: 439-450. https://doi.org10.1016/S0168­6275(00)80037­9
      Hutter, A. R., Knutson, E. O., 1998. An International Intercomparison of Soil Gas Radon and Radon Exhalation Measurements. Health Physics, 74(1): 108-114. https://doi.org/10.1097/00004032­199801000­00014
      Jia, G. X., 2009. Research and Application of Geochemical Techniques for Radon Gas Exploration (Dissertaiton). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      Jiang, T., Liu, G. A., Wu, J. Y., et al., 2018. Analysis of Prospecting Potential of Deep Uranium Deposits in an Uranium Exploration Area of North Guangdong Province. Geology and Exploration, 54(1): 52-58 (in Chinese with English abstract).
      Jiang, Y. Y., Liu, Q. Y., Li, J. J., et al., 1984. Helium Survey-Its Applicaion to Geological Mapping and Energy Exploration. Geophysical and Geochemical Exploration, 8(6): 321-331 (in Chinese with English abstract).
      Jin, J., Hu, Z. Q., Sun, X. L., et al., 1989. Geochemical Exploration in Thick Transported Overburden, Eastern China. Journal of Geochemical Exploration, 33(1/2/3): 155-169. https://doi.org/10.1016/0375­6742(89)90026­5
      Kahma, A., Nurmi, A., Mattsson, P., 1975. On the Composition of the Gases Generated by Sulphide­Bearing Boulders during Weathering and on the Ability of Prospecting Dogs to Detect Samples Treated with These Gases in the Terrain. Geological Survey of Finland, Espoo.
      Klusman, R. W., 2009. Transport of Ultratrace Reduced Gases and Particulate, Near­Surface Oxidation, Metal Deposition and Adsorption. Geochemistry: Exploration, Environment, Analysis, 9(3): 203-213. https://doi.org/10.1144/1467­7873/09­192
      Klusman, R. W., Jaacks, J. A., 1987. Environmental Influences Upon Mercury, Radon and Helium Concentrations in Soil Gases at a Site near Denver, Colorado. Journal of Geochemical Exploration, 27(1/2): 259-280. https://doi.org/10.1016/0375­6742(87)90023­9
      Klusman, R. W., Leopold, M. E., LeRoy, M. P., 2000. Seasonal Variation in Methane Fluxes from Sedimentary Basins to the Atmosphere: Results from Chamber Measurements and Modeling of Transport from Deep Sources. Journal of Geophysical Research: Atmospheres, 105(D20): 24661-24670. https://doi.org/10.1029/2000JD900407
      Kristiansson, K., Malmqvist, L., 1982. Evidence for Nondiffusive Transport of 86Rn in the Ground and a New Physical Model for the Transport. Geophysics, 47(10): 1444-1452. https://doi.org/10.1190/1.1441293
      Kristiansson, K., Malmqvist, L., 1987. Trace Elements in the Geogas and Their Relation to Bedrock Composition. Geoexploration, 24(6): 517-534. https://doi.org/10.1016/0016­7142(87)90019­6
      Kristiansson, K., Malmqvist, L., Persson, W., 1990. Geogas Prospecting: A New Tool in the Search for Concealed Mineralizations. Endeavour, 14(1): 28-33. https://doi.org/10.1016/S0160­9327(05)80049­3
      Kromer, E., Friedrich, G., Wallner, P., 1981. Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks. Journal of Geochemical Exploration, 15(1-3): 51-62. https://doi.org/10.1016/0375­6742(81)90055­8
      Lett, R. E., Sacco, D. A., Elder, B., 2020a. Real­Time Detection of Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia Using Onsite Soil Gas Carbon Dioxide and Oxygen Analysis by Electronic Gas Sensors (NTS 093A/58, 093G/03). Geoscience BC, Vancouver.
      Lett, R. E., Sacco, D. A., Elder, B., 2020b. Real­Time Analysis of Soil Gas for Carbon Dioxide and Oxygen to Identify Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia. Geoscience BC, Vancouver.
      Li, S. B., 2020. Development of a Rapid Radon Measurement Instrument for RaA in Soil (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Li, S. Y., Xu, F. F., 1997. A Test on the Application of Light Hydrocarbon and Sulfide Gasometry to the Prospecting for Polymetallic Concealed Deposits. Geophysical and Geochemical Exploration, 21(2): 128-138, 127 (in Chinese with English abstract).
      Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yingnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5): 840-845 (in Chinese with English abstract).
      Lin, C. G., Cheng, Z. Z., Chen, X., et al., 2021. Application of Multi­Component Gas Geochemical Survey for Deep Mineral Exploration in Covered Areas. Journal of Geochemical Exploration, 220: 106656. https://doi.org/10.1016/j.gexplo.2020.106656
      Lintern, M. J., Noble, R. R. P., Reid, N., et al., 2013. Metal Migration at the North Miitel Ni Sulphide Deposit in the Southern Yilgarn Craton: Part 2, Vegetation and Organic Soil. Geochemistry: Exploration, Environment, Analysis, 13(2): 87-98. https://doi.org/10.1144/geochem2012­133
      Liu, H. B., Han, J., Shi, X., et al., 2023. Application Study of Gas Geochemical Survey Method in the Exploration of Zaohuohao Sandstone Type Uranium Deposit. Uranium Geology, 39(2): 287-301 (in Chinese with English abstract).
      Liu, H. L., Zhang, B. M., Wang, X. Q., et al., 2021. The Application of Deep­Penetrating Geochemistry in the Arid Gobi Desert Terrain: A Case Study in the Huaniushan Pb­Zn Deposit, Gansu Province. Acta Geoscientica Sinica, 42(4): 545-554 (in Chinese with English abstract).
      Liu, H. T., Liu, J. M., Yu, C. M., et al., 2006. Integrated Geological and Geophysical Exploration for Concealed Ores beneath Cover in the Chaihulanzi Goldfield, Northern China. Geophysical Prospecting, 54(5): 605-621. https://doi.org/10.1111/j.1365­2478.2006.00553.x
      Liu, Q., Hu, X., Ye, M., et al., 2015. Gas Recognition under Sensor Drift by Using Deep Learning. Int. J. Intell. Syst., 30: 907-922. https://doi.org/10.1002/int.21731
      Liu, Q. Y., 1988. Application of CO2 Gas Geochemical Method in Geological Prospecting. Geology­Geochemistry, 16(6): 11-16 (in Chinese with English abstract).
      Lovell, J. S., 1979. Applications of Vapour Geochemistry to Mineral Exploration (Dissertation). University of London, London.
      Lovell, J. S., Hale, M., 1983. Application of Soil Air Carbon Dioxide and Oxygen Measurements to Mineral Exploration. Transactions of the Institution of Mining and Metallurgy Section B. Applied Earth Science, 92: B28-B32.
      Lu, M., Ye, R., Wang, Z. K., et al., 2019. Geogas Prospecting for Buried Deposits under Loess Overburden: Taking Shenjiayao Gold Deposit as an Example. Journal of Geochemical Exploration, 197: 122-129. https://doi.org/10.1016/j.gexplo.2018.11.015
      Luca, P. R. F., 2012. Procesos De Oxidación Química y Bioquímica en Rocas Sulfuro Mineralizadas y Relación con La Generación De Iones Libres y Gases De Hidrocarburos: Aplicacación a La Exploración De Yacimientos Bajo Cobertura (Dissertation). University of Chile, San Diego (in Spanish).
      Lukashev, V. K., 1990. Application of Artificial Sorbents for Testing Gas Seeps on the Seafloor and on Shore. Journal of Geochemical Exploration, 38(1/2): 225-231. https://doi.org/10.1016/0375­6742(90)90103­H
      Lynam, M. M., Dvonch, J. T., Hall, N. L., et al., 2014. Spatial Patterns in Wet and Dry Deposition of Atmospheric Mercury and Trace Elements in Central Illinois, USA. Environmental Science and Pollution Research, 21(6): 4032-4043. https://doi.org/10.1007/s11356­013­2011­4
      Malmqvist, L., Kristiansson, K., 1984. Experimental Evidence for an Ascending Microflow of Geogas in the Ground. Earth and Planetary Science Letters, 70(2): 407-416. https://doi.org/10.1016/0012­821X(84)90024­4
      Malmqvist, L., Kristiansson, K., 1985. A Physical Mechanism for the Release of Free Gases in the Lithosphere. Geoexploration, 23(4): 447-453. https://doi.org/10.1016/0016­7142(85)90072­9
      Malmqvist, L., Kristiansson, K., Kristiansson, P., 1999. Geogas Prospecting-An Ideal Industrial Application of PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150(1-4): 484-490. https://doi.org/10.1016/S0168­583X(98)01044­1
      Martínez, J., Rey, J., Sandoval, S., et al., 2019. Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sensing, 11(24): 2923. https://doi.org/10.3390/rs11242923
      McCarthy, J. H., 1972. Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits. Journal of Geochemical Exploration, 1(2): 143-162. https://doi.org/10.1016/0375­6742(72)90012­X
      McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2): 408-420. https://doi.org/10.2113/gsecongeo.81.2.408
      McCarthy, J. H., McGuire, E., 1998. Soil Gas Studies along the Carlin Trend, Eureka and Elko Counties, Nevada. In: Tosdal, R. M., ed., Contributions to the Gold Metallogeny of Northern Nevada. U. S. Geological Survey, Washington, D. C., 243-250.
      McCarthy, J. H., Reimer, G. M., 1986. Advances in Soil Gas Geochemical Exploration for Natural Resources: Some Current Examples and Practices. Journal of Geophysical Research: Solid Earth, 91(B12): 12327-12338. https://doi.org/10.1029/JB091iB12p12327
      Menon, R., Sunder Raju, P. V., Reddy, G. K., 2009. Soil­Geochemistry, Radiometric and Soil Gas Helium Studies in the Uranium Mineralized Zone of Tumallapalle, Cuddapah Basin, Andhra Pradesh. Journal of the Geological Society of India, 74(1): 23-26. https://doi.org/10.1007/s12594­009­0099­4
      Mulshaw, S. C., 1996. A Critical Evaluation of the Use of Hydrocarbon Gases in Rocks as a Pathfinder for Base­Metal Mineralisation in Shannonbridge, Central Ireland. Journal of Geochemical Exploration, 56(3): 265-277. https://doi.org/10.1016/S0375­6742(96)00055­6
      Muntean, J., Taufen, P., 2011. Geochemical Exploration for Gold through Transported Alluvial Cover in Nevada: Examples from the Cortez Mine. Economic Geology, 106(5): 809-833. https://doi.org/10.2113/econgeo.106.5.809
      Mwenifumbo, C. J., Elliott, B. E., Jefferson, C. W., et al., 2004. Physical Rock Properties from the Athabasca Group: Designing Geophysical Exploration Models for Unconformity Uranium Deposits. Journal of Applied Geophysics, 55(1-2): 117-135. https://doi.org/10.1016/j.jappgeo.2003.06.008
      Noble, R. R. P., Seneshen, D. M., Lintern, M. J., et al., 2018. Soil­Gas and Weak Partial Soil Extractions for Nickel Exploration through Transported Cover in Western Australia. Geochemistry: Exploration, Environment, Analysis, 18(1): 31-45. https://doi.org/10.1144/geochem2017­026
      Nriagu, J. O., 1979. Geochemical Processes, Water and Sediment Environments. Geochimica et Cosmochimica Acta, 43(11): 1869-1870. https://doi.org/10.1016/0016­7037(79)90038­3
      Ou, G. X., Chen, A. F., Cui, J. Y., et al., 2000. Uranium Metallogenic Model of Hydrocarbons in Granite­Type Uranium Deposits. China Nuclear Science and Technology Report, 577-593 (in Chinese with English abstract).
      Oakes, B. W., 1984. Vapour Geochemical Pathfinders for Oxidizing Sulphide Mineralization beneath Exotic Overburden (Dissertation). University of London, London.
      Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3): 235-249. https://doi.org/10.1016/0375­6742(87)90050­1
      Ozima, M., Podosek, F. A., 2001. Noble Gas Geochemistry. Cambridge University Press, Cambridge.
      Pauwels, H., Baubron, J. C., Freyssinet, P., et al., 1999. Sorption of Metallic Compounds on Activated Carbon: Application to Exploration for Concealed Deposits in Southern Spain. Journal of Geochemical Exploration, 66(1-2): 115-133. https://doi.org/10.1016/S0375­6742(99)00011­4
      Pizarro, P. P. I., 2016. Gas­Transported Elements as an Exploration Technique under Post­Mineral Cover: Atlantida Deposit and Surroundings (Dissertation). University of Chile, San Diego.
      Plet, C., Noble, R. R. P., 2023. Soil Gases in Mineral Exploration: A Review and the Potential for Future Developments. Geochemistry: Exploration, Environment, Analysis, 23(2): 2023-2028. https://doi.org/10.1144/geochem2023­008
      Plet, C., Siégel, C., Woltering, M., et al., 2021. Sulfur and CO2 Gases Emitted during Weathering of Sulfides: Role of Microbial Activity and Implications to Exploration through Cover. Ore Geology Reviews, 134: 104167. https://doi.org/10.1016/j.oregeorev.2021.104167
      Polito, P. A., 1999. Exploration Implications Predicted by the Distribution of Carbon­Oxygen­Hydrogen Gases above and within the Junction Gold Deposit, Kambalda, Western Australia (Dissertation). University of Adelaide, Adelaide.
      Polito, P. A., Bone, Y., Clarke, J. D. A., et al., 2001. Compositional Zoning of Fluid Inclusions in the Archaean Junction Gold Deposit, Western Australia: A Process of Fluid‐Wall‐Rock Interaction? Australian Journal of Earth Sciences, 48(6): 833-855. https://doi.org/10.1046/j.1440­0952.2001.00903.x
      Polito, P. A., Clarke, J. D. A., Bone, Y., et al., 2002. A CO2­O2­Light Hydrocarbon­Soil­Gas Anomaly above the Junction Orogenic Gold Deposit: A Potential, Alternative Exploration Technique. Geochemistry: Exploration, Environment, Analysis, 2(4): 333-344. https://doi.org/10.1144/1467­787302­035
      Qian, J. L., Yu, J., Chen, W., et al., 2015. Application of Mercury Gas Measurement in Soil in Lajiu District, Longzi County, Xizang. China Mining Magazine, 24(S2): 92-95 (in Chinese with English abstract).
      Qin, L. Y., Xu, Q. H., Wei, K. L., et al., 2012. Hydrocarbon Component Characteristics of Danchi Tin­Polymetallic Ore Belt in Guangxi and Their Metallogenic Indication Significance. Mineral Deposits, 31(1): 111-118 (in Chinese with English abstract).
      Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil­Gas CO2 in the Exploration for Sulfide­Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1-2): 87-101. https://doi.org/10.1016/0375­6742(90)90094­Q
      Rich, S. D., 2016. Geochemical Mapping of Porphyry Deposits and Associated Alteration through Transported Overburden (Dissertation). University of British Columbia, Vancouver. https://doi.org/10.14288/1.0307413
      Rose, A. W., Hutter, A. R., Washington, J. W., 1990. Sampling Variability of Radon in Soil Gases. Journal of Geochemical Exploration, 38(1/2): 173-191. https://doi.org/10.1016/0375­6742(90)90100­O
      Ruan, T., Fei, Q., 2000. Chapter 6 Gas Geochemistry Surveys for Petroleum. Handbook of Exploration Geochemistry, 7: 213-231. https://doi.org/10.1016/S0168­6275(00)80030­6
      Ruan, T. J., Cheng, J. P., 1991. Hydrogen Stripping of Absorbed Hydrocarbons in Soil Sample—A New Method in Geochemical Exploration for Oil and Gas. Journal of Southeast Asian Earth Sciences, 5(1-4): 5-7. https://doi.org/10.1016/0743­9547(91)90003­g
      Ruan, T. J., Hale, M., Howarth, R. J., 1985a. Numerical Modelling Experiments in Vapour Geochemistry. Ⅱ: Vapour Dispersion Patterns and Exploration Implications. Journal of Geochemical Exploration, 23(3): 265-280. https://doi.org/10.1016/0375­6742(85)90030­5
      Ruan, T. J., Howart, R. J., Hale, M., 1985b. Numerical Modelling Experiments in Vapour Geochemistry—Ⅰ. Method and FORTRAN Program. Computers & Geosciences, 11(1): 55-67. https://doi.org/10.1016/0098­3004(85)90038­X
      Rukhlov, A. S., Ootes, L., Hickin, A. S., et al., 2021. Near­Surface Mercury Vapour Haloes in Air above Ore Deposits and Faults on Vancouver Island: Insights into Buried Materials in Real­Time? In: Geological Fieldwork 2020, British Columbia Ministry of Energy, Mines and Low Carbon Innovation. British Columbia Geological Survey, Victoria.
      Ryall, W. R., 1979. Mercury Distribution in the Woodlawn Massive Sulfide Deposit, New South Wales. Economic Geology, 74(6): 1471-1484. https://doi.org/10.2113/gsecongeo.74.6.1471
      Schodde, R., 2017. Challenges of Exploring Under Deep Cover. AMIRA International's 11th Biennial Exploration Managers Conference, Healesville.
      Shen, Q. W., Chen, Z. J., Dong, Q. F., et al., 2025. Application of H2S and SO2 Gas Geochemical Measurements in the Pulang Porphyry Copper Deposit, Yunnan Province. Bulletin of Geological Science and Technology, 44(2): 204-213 (in Chinese with English abstract).
      Song, M. C., Wan, G. P., Cao, C. G., et al., 2012. Geophysical­Geological Interpretation and Deep­Seated Gold Deposit Prospecting in Sanshandong­Jiaojia Area, Eastern Shandong Province, China. Acta Geologica Sinica­English Edition, 86(3): 640-652. https://doi.org/10.1111/j.1755­6724.2012.00692.x
      Sormaz, K., 2014. Application of Soil He Surveys to the Mapping of Underlying Geological Structures in the Dalby Area, Queensland (Dissertation). University of New South Wales, Sydney. https://doi.org/10.26190/unsworks/19205
      Tan, K. H., 2009. Environmental Soil Science (3rd ed.). CRC Press, Boca Raton. https://doi.org/10.1201/9781439895016
      Taylor, C. H., Kesler, S. E., Cloke, P. L., 1982. Sulfur Gases Produced by the Decomposition of Sulfide Minerals: Application to Geochemical Exploration. Journal of Geochemical Exploration, 17(3): 165-185. https://doi.org/10.1016/0375­6742(82)90001­2
      Thorstenson, D. C., Pollock, D. W., 1989. Gas Transport in Unsaturated Porous Media: The Adequacy of Fick's Law. Reviews of Geophysics, 27(1): 61-78. https://doi.org/10.1029/RG027i001p00061
      Vàrhegyi, A., Hakl, J., Monnin, M., et al., 1992. Experimental Study of Radon Transport in Water as Test for a Transportation Microbubble Model. Journal of Applied Geophysics, 29(1): 37-46. https://doi.org/10.1016/0926­9851(92)90011­9
      Virtanen, S., Puustinen, M., Yli­Halla, M., 2017. Oxidation of Iron Sulfides in Subsoils of Cultivated Boreal Acid Sulfate Soil Fields­Based on Soil Redox Potential and pH Measurements. Geoderma, 308: 252-259. https://doi.org/10.1016/j.geoderma.2017.05.020
      Wan, W., Wang, M. Q., Cheng, Z. Z., et al., 2023. An Experimental Investigation of the CO2 and SO2 Gas Geochemical Survey Method for Mineral Exploration in Forested Areas. Geophysical and Geochemical Exploration, 47(5): 1137-1146 (in Chinese with English abstract).
      Wan, W., Wang, M. Q., Hu, M. Y., et al., 2017. Identification of Metal Sources in Geogas from the Wangjiazhuang Copper Deposit, Shandong, China: Evidence from Lead Isotopes. Journal of Geochemical Exploration, 172: 167-173. https://doi.org/10.1016/j.gexplo.2016.10.008
      Wang, C. M., Li, X. H., Wei, B. L, 1991. Application of Fault Gas Measurement in Seismology. Seismological Press, Beijing (in Chinese with English abstract).
      Wang, K., Ge, X. B., Ning, J. G., et al., 2022. Multidisciplinary Geophysical Investigations over Deep Coal­ Bearing Strata: A Case Study in Yangjiazhangzi, Northeast China. Energies, 15(15): 5689. https://doi.org/10.3390/en15155689
      Wang, M. Q., Gao, Y. Y., Liu, Y. H., 2008. Progress in the Collection of Geogas in China. Geochemistry: Exploration, Environment, Analysis, 8(2): 183-190. https://doi.org/10.1144/1467­7873/07­138
      Wang, X. L., 2023. Response of Deep Soil CO2 Concentration to Rainfall Events (Dissertation). Northwest A & F University, Xi'an (in Chinese with English abstract).
      Whire, D. E., Waring, G. A., 1963. Data of Geochemistry Chapter K, Volcanic Emanations. US Geol. Survey Prof. Paper, D153­D161.
      Winkler, R., Ruckerbauer, F., Bunzl, K., 2001. Radon Concentration in Soil Gas: A Comparison of the Variability Resulting from Different Methods, Spatial Heterogeneity and Seasonal Fluctuations. Science of the Total Environment, 272(1-3): 273-282. https://doi.org/10.1016/S0048­9697(01)00704­5
      Wu, Z. H., Jin, Y. F., Gu, P., 1996. Principles of Geogas Survey and Its Applicationin Geological Exploration. Geophysical and Geochemical Exploration, 20(4): 259-264 (in Chinese with English abstract).
      Wu, Z. H., Jin, Y. F., Guo, Y. J., et al., 1995. A Study of Application of Geogas Survey in Yexian­Dengxian­ Nanzhang Geoscience Profile. Acta Petrologica Sinica, 11(3): 333-342 (in Chinese with English abstract).
      Xiang, R. J., Shi, C. Z., Feng, Z. X., 1991. Advances in Crust and Upper Mantle Research. Seismological Press, Beijing (in Chinese).
      Xie, X. J., Wang, X. Q., Xu, L., et al., 1999. Orientation Study of Strategic Deep Penetration Geochemical Methods in the Central Kyzylkum Desert Terrain, Uzbekistan. Journal of Geochemical Exploration, 66(1-2): 135-143. https://doi.org/10.1016/S0375­6742(99)00024­2
      Xu, L. S., 1999. Helium Survey and Its Significance in Geological Prospecting. Hunan Geology, (4): 264-268 (in Chinese with English abstract).
      Xu, Q. D., Zhang, X. J., Shang, H. S., et al., 2012. New Approach of Integrated Geological Prospection in Covered Areas: A Case Study from Northwestern Xilinguole, Inner Mongolia. Earth Science, 37(6): 1252-1258 (in Chinese with English abstract).
      Xu, Q. H., Chen, Y. R., Jia, G. X., et al., 2007. Application of Hydrocarbons in Metallogenic and Mineral Resource Exploration Research. Acta Petrologica Sinica, 23(10): 2623-2638 (in Chinese with English abstract).
      Xu, Y. C., Shen, P., Tao, M. X., et al., 1991. Industrial Accumulation of Mantle Source Helium and the Tanchenglujiang Fracture Zone. Chinese Science Bulletin, 36(6): 494-498.
      Yan, G. X., 2021. Study on the Variation Law of Radon Concentration in Soil in a Uranium Exploration Area (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Yang, Y. F., Lv, L. D., Qiu, S. K., et al., 2022. Study on the Influence of Sampling Methods for Measuring Soil Radon Exhalation Rates. Radiation Measurements, 159: 106880. https://doi.org/10.1016/j.radmeas.2022.106880
      Yin, B. C., 1997. Integrated Geochemical Gas Survey. Geophysical and Geochemical Exploration, 21(4): 241-246 (in Chinese with English abstract).
      Yin, Y., Xu, W. S., 1991. Distribution and Genesis of CO2 Anomalies in the Caijiaying Lead­Zinc Ore District. Geophysical and Geochemical Exploration, 15(6): 453-458 (in Chinese with English abstract).
      You, Y. F., Zhou, Q. R., 1992. Research and Application of the Instantaneous Measurement Technique of CO2 in Soilgas for Locating Gold Orebodies. Uranium Geology, 8(3): 174-177 (in Chinese with English abstract).
      Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4): 12-17 (in Chinese with English abstract).
      Zhang, M. T., 1983. Sulfur Dioxide Gas Measurement Prospecting Method. Geology of Chemical Minerals, 5(1): 72-73 (in Chinese with English abstract).
      Zhang, W. Y., 2016. Study on the Prospecting Model for Concealed Polymetallic Ore Using Ground Gas Method (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhang, X., 2015. The Formation Conditions and Resource Estimation of Natural Gas and Helium in the Weihe Basin (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Zhang, Z. M., 1981. Research and Application of Mercury Vapor Halo. Geophysical and Geochemical Exploration, 5(6): 375-380 (in Chinese with English abstract).
      Zhi, C., Zhang, Y. C., Chen, Y. F., 2022. Experiment of Mercury Gas Measurement in Deep Prospecting of Hucun Village Copper­Molybdenum Deposit, Tongling Ore Concentration Area. Journal of Geology, 46(3): 313-319 (in Chinese with English abstract).
      Zhou, S. C., Wang, D. H., Liu, X. H., et al., 2023. Technical Methods for Integrated Geogas Survey and Their Applications in the Exploration of Pegmatite­Type Rare Metal Deposits. Geophysical and Geochemical Exploration, 47(6): 1627-1634 (in Chinese with English abstract).
      常凤池, 1989. 土壤低温吸附汞测量法的找矿效果. 桂林冶金地质学院学报, 9(3): 311-318.
      杜乐天, 2006. 地球的5个气圈与中地壳天然气开发. 天然气地球科学, 17(1): 25-30, 35.
      管志宁, 2005. 地磁场与磁力勘探. 北京: 地质出版社.
      何伟, 2012. 天然气中汞的成因机制及分布规律预测研究. 北京: 中国地质大学(北京).
      胡国廉, 田俊杰, 赖文明, 等, 1980. 汞的迁移转化和壤中汞气异常的形成. 地质与勘探, 16(12): 55-60.
      贾国相, 2009. 氡气勘查地球化学技术研究与应用(硕士学位论文). 昆明: 昆明理工大学.
      姜涛, 刘国安, 吴建勇, 等, 2018. 粤北某铀矿勘查区深部铀矿找矿潜力分析. 地质与勘探, 54(1): 52-58.
      蒋永一, 刘庆余, 李家俊, 等, 1984. 氦气测量方法及其应用于区域地质研究和寻找能源资源的效果. 物探与化探, 8(6): 321-331.
      李姝彬, 2020. RaA土壤快速测氡仪研制(硕士学位论文). 成都: 成都理工大学.
      李生郁, 徐丰孚, 1997. 轻烃及硫化物气体测量找寻多金属隐伏矿方法试验. 物探与化探, 21(2): 128-138, 127.
      李伟, 刘翠辉, 贺根文, 等, 2017. 壤中汞气测量在于都营脑隐伏矿产勘查中的应用. 物探与化探, 41(5): 840-845.
      刘汉彬, 韩娟, 石晓, 等, 2023. 气体地球化学测量方法在皂火壕砂岩型铀矿勘查中的应用试验研究. 铀矿地质, 39(2): 287-301.
      刘汉粮, 张必敏, 王学求, 等, 2021. 穿透性地球化学在干旱戈壁荒漠覆盖区的应用: 甘肃花牛山铅锌矿试验实例. 地球学报, 42(4): 545-554.
      刘庆余, 1988. CO2气体地球化学法在地质找矿中的应用. 地质地球化学, 16(6): 11-16.
      欧光习, 陈安福, 崔建勇, 等, 2000. 花岗岩型铀矿床中碳氢化合物的铀成矿模式. 中国核科技报告, 577-593.
      钱建利, 余杰, 陈武, 等, 2015. 壤中汞气测量在西藏隆子县拉九区中的应用. 中国矿业, 24(S2): 92-95.
      秦来勇, 徐庆鸿, 韦可利, 等, 2012. 广西丹池锡多金属成矿带烃类组分特征及其成矿指示探讨. 矿床地质, 31(1): 111-118.
      沈啟武, 陈志军, 董桥峰, 等, 2025. H2S和SO2气体地球化学测量在云南普朗斑岩铜矿中的应用. 地质科技通报, 44(2): 204-213.
      万卫, 汪明启, 程志中, 等, 2023. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究. 物探与化探, 47(5): 1137-1146.
      汪成民, 1991. 断层气测量在地震科学中的应用. 北京: 地震出版社.
      王晓璐, 2023. 深层土壤CO2浓度对降雨事件的响应(硕士学位论文). 西安: 西北农林科技大学.
      伍宗华, 金仰芬, 古平, 1996. 地气测量的原理及其在地质勘查中的应用. 物探与化探, 20(4): 259-264.
      伍宗华, 金仰芬, 郭英杰, 等, 1995. 地气测量在叶县‒邓县‒南漳地学剖面研究中的应用. 岩石学报, 11(3): 333-342.
      项仁杰, 史崇周, 冯昭贤, 1991. 地壳和上地幔研究进展. 北京: 地震出版社.
      许来生, 1999. 氦气测量及其地质找矿意义. 湖南地质, (4): 264-268.
      徐启东, 张晓军, 尚恒胜, 等, 2012. 构建覆盖区综合地质找矿思路和流程的探索: 以内蒙古锡林郭勒西北部为例. 地球科学, 37(6): 1252-1258 doi: 10.3799/dqkx.2012.133
      徐庆鸿, 陈远荣, 贾国相, 等, 2007. 烃类组分在金属矿床的成矿理论和矿产勘查研究中的应用. 岩石学报, 23(10): 2623-2638.
      颜国旭, 2021. 某铀矿勘探中地表壤中氡浓度变化规律研究(硕士学位论文). 成都: 成都理工大学.
      尹冰川, 1997. 综合气体地球化学测量. 物探与化探, 21(4): 241-246.
      殷萤, 徐外生, 1991. 蔡家营铅锌银矿区CO2异常分布特征及其成因的讨论. 物探与化探, 15(6): 453-458.
      游云飞, 周奇荣, 1992. 壤中气CO2瞬时测量技术在找金矿中的研究与应用. 铀矿地质, 8(3): 174-177.
      张洁, 程志中, 伦知颍, 等, 2016. 土壤中CO2、SO2和H2S气体测量: 一种适用于覆盖区找矿的化探方法. 地质科技情报, 35(4): 12-17.
      张民堂, 1983. 二氧化硫气体测量找矿法. 化工地质, 5(1): 72-73.
      张文宇, 2016. 地气法勘查隐伏多金属矿找矿模式研究(博士学位论文). 成都: 成都理工大学.
      张雪, 2015. . 渭河盆地天然气及氦气成藏条件与资源量预测(博士学位论文). 西安: 长安大学.
      张中民, 1981. 汞蒸气晕的研究与应用. 物探与化探, 5(6): 375-380.
      智超, 张玉成, 陈玉峰, 2022. 汞气测量在铜陵矿集区胡村铜钼矿深部找矿中的试验. 地质学刊, 46(3): 313-319.
      周四春, 王登红, 刘晓辉, 等, 2023. 综合地气测量探测伟晶岩稀有金属矿技术方法及应用. 物探与化探, 47(6): 1627-1634.
    • 加载中
    图(14)
    计量
    • 文章访问数:  176
    • HTML全文浏览量:  19
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-24
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回