• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于3D-CA-GAN的岩石体纹理合成技术

    段炼 冯云 花卫华 陈启浩 刘修国 张坤 付伟

    段炼, 冯云, 花卫华, 陈启浩, 刘修国, 张坤, 付伟, 2025. 基于3D-CA-GAN的岩石体纹理合成技术. 地球科学, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134
    引用本文: 段炼, 冯云, 花卫华, 陈启浩, 刘修国, 张坤, 付伟, 2025. 基于3D-CA-GAN的岩石体纹理合成技术. 地球科学, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134
    Duan Lian, Feng Yun, Hua Weihua, Chen Qihao, Liu Xiuguo, Zhang Kun, Fu Wei, 2025. Rock Solid Texture Synthesis Based on 3D-CA-GAN. Earth Science, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134
    Citation: Duan Lian, Feng Yun, Hua Weihua, Chen Qihao, Liu Xiuguo, Zhang Kun, Fu Wei, 2025. Rock Solid Texture Synthesis Based on 3D-CA-GAN. Earth Science, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134

    基于3D-CA-GAN的岩石体纹理合成技术

    doi: 10.3799/dqkx.2025.134
    基金项目: 

    中铁第一勘察设计院集团有限公司科研项目 2022KY53ZD(CYH)-10

    中国铁建股份有限公司重大专项 2024-W04

    详细信息
      作者简介:

      段炼(2002-),女,研究生,主要研究领域为三维模型可视化. ORCID:0009-0009-8628-5222. E-mail:duanlian@cug.edu.cn

      通讯作者:

      花卫华,ORCID:0000-0002-2255-7411. E-mail: huaweihua@cug.edu.cn

    • 中图分类号: P58

    Rock Solid Texture Synthesis Based on 3D-CA-GAN

    • 摘要: 基于二维样本(深度学习)的体纹理合成是一种重要的岩石体纹理生成途径,目前岩石体纹理合成存在无法长距离依赖和颜色失真的问题.提出一种基于三维坐标注意力生成对抗网络(3D-Coordinate Attention Generative Adversarial Network,简称3D-CA-GAN)的创新方法.通过将坐标注意力机制(Coordinate Attention,简称CA)扩展至三维空间,结合内容感知上采样模块和多尺度判别器,实现了矿物颗粒空间分布的高保真建模.实验表明,该方法在SSIM(0.773)、PSNR(提升24.92%)和LPIPS(降低0.110)等指标上显著优于现有技术,消融实验进一步验证3D-CA模块使方向性纹理的SSIM提升14.69%.本研究为地质建模提供了具有真实感纹理合成的新解决方案,其三维注意力框架对通用生成任务具有借鉴意义.

       

    • 图  1  3D-CA-GAN总体框架

      Fig.  1.  Overall frame diagram of 3D-CA-GAN

      图  2  生成器网络架构

      Fig.  2.  Generator network architecture

      图  3  多尺度鉴别器结构

      Fig.  3.  Multi-scale discriminator structure

      图  4  混合空洞卷积的扩张感受野与网格效应分析示意

      Fig.  4.  Diagram of the dilated receptive field and grid effect analysis in hybrid dilated convolution

      图  5  混合空洞卷积块

      Fig.  5.  Hybrid dilated convolution block

      图  6  3D-Coordinate attention模块

      Fig.  6.  3D coordinate attention module

      图  7  内容感知的上采样模块

      Fig.  7.  Content-aware upsampling module

      图  8  部分数据集构建流程

      Fig.  8.  Partial dataset construction pipeline

      图  9  岩石纹理图片

      Fig.  9.  Rock texture images

      图  10  岩石体纹理生成结果展示

      Fig.  10.  Synthetic solid volume texture exemplars

      图  11  岩石体纹理的训练损失值展示

      Fig.  11.  Loss convergence profile of solid volume texture synthesis

      图  12  岩石体纹理在3D网格模型上的纹理映射效果

      Fig.  12.  3D mesh texture mapping visualization of synthesized solid volumes

      图  13  岩石体纹理在经典3D网格模型上的纹理映射效果

      Fig.  13.  UV-mapping of synthesized solid textures on standard 3D mesh primitives

      图  14  非均匀岩石体纹理合成效果

      Fig.  14.  Non-uniform solid volume texture synthesis results

      图  15  定性对比实验结果

      Fig.  15.  Qualitative comparison results

      图  16  不同迭代次数下的对比实验结果

      Fig.  16.  Comparative experimental results under different iteration counts

      图  17  各向异性体纹理的对比实验

      Fig.  17.  Anisotropic solid texture simulation results

      图  18  消融实验结果

      Fig.  18.  Ablation study results

      表  1  硬件设施

      Table  1.   Hardware facilities

      名称 规格参数
      显卡(GPU) NVIDIA Quadro RTX 6000
      处理器(CPU) Intel(R) Core(TM) i9-10900K CPU @3.70GHz 3.70
      显存 24G
      下载: 导出CSV

      表  2  软件配置

      Table  2.   Software configurations

      名称 版本
      操作系统 Windows 10
      深度学习框架 pytorch
      CUDA/cuDNN Cuda11.3
      Python 3.8
      下载: 导出CSV

      表  3  模型训练参数

      Table  3.   Model training parameters

      训练参数 描述 参数值
      scale_k 学习的尺度 5
      batch_size 批次大小 1
      learning_g 生成器学习率 5e-4
      learning_d 鉴别器学习率 3e-4
      下载: 导出CSV

      表  4  定量对比实验结果

      Table  4.   Quantitative comparison results

      样本 方法 SSIM
      PNSR
      LPIPS
      FID
      DISTS
      CNN 0.460 13.682 0.373 27.3 0.242
      a STS-GAN 0.701 13.467 0.274 22.8 0.253
      ours 0.773 14.678 0.263 11.0 0.156
      CNN 0.395 12.874 0.463 26.3 0.278
      b STS-GAN 0.689 14.287 0.398 23.6 0.257
      ours 0.621 15.014 0.302 12.3 0.203
      注:↑代表更高更好;↓代表更低更好.
      下载: 导出CSV

      表  5  定量消融实验结果

      Table  5.   Quantitative ablation study results

      样本 方法 SSIM
      PNSR
      LPIPS
      DISTS
      STS-GAN 0.701 13.467 0.274 0.253
      (a) +CA注意力 0.804 16.823 0.279 0.269
      +上采样模块 0.722 15.327 0.250 0.166
      +CA注意力+上采样模块 0.773 14.678 0.263 0.156
      STS-GAN 0.689 14.287 0.398 0.257
      (b) +CA注意力 0.726 15.288 0.316 0.236
      +上采样模块 0.616 14.936 0.437 0.313
      +CA注意力+上采样模块 0.621 15.014 0.302 0.203
      注:↑代表更高更好;↓代表更低更好.
      下载: 导出CSV

      表  6  混合空洞卷积块消融实验结果

      Table  6.   Ablation study results of hybrid dilated convolution blocks

      样本 方法 参数量 训练时长(h)
      (a) 普通卷积块 68 227 8.5
      混合空洞卷积块 44 723 6.2
      下载: 导出CSV
    • Cao, T. S., Kreis, K., Fidler, S., et al., 2023. TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion Models. IEEE International Conference on Computer Vision (ICCV), Paris, 4169-4181. https://arxiv.org/abs/2310.13772
      Du, S. P., Hu, S. M., Martin, R. R., 2013. Semiregular Solid Texturing from 2D Image Exemplars. IEEE Transactions on Visualization and Computer Graphics, 19(3): 460-469. https://doi.org/10.1109/TVCG.2012.129
      Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176 (in Chinese with English abstract).
      Gatys, L. A., Ecker, A. S., Bethge, M., 2015. Texture Synthesis Using Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS), La Jolla, 1-9. https://doi.org/10.5555/2969239.2969269
      Gatys, L. A., Ecker, A. S., Bethge, M., 2016. Image Style Transfer Using Convolutional Neural Networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2414-2423. https://doi.org/10.1109/CVPR.2016.265
      Gulrajani, I., Ahmed, F., Arjovcky, M., et al., 2017. Improved Training of Wasserstein GANs. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 5769-5779. https://doi.org/10.5555/3295222.3295327
      Gutierrez, J., Rabin, J., Galerne, B., et al., 2020. On Demand Solid Texture Synthesis Using Deep 3D Networks. Computer Graphics Forum, 39(1): 511-530. https://doi.org/10.1111/cgf.13889
      Heeger, D. J., Bergen, J. R., 1995. Pyramid-Based Texture Analysis/Synthesis. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, New York, 229-238. https://doi.org/10.1145/218380.218446
      Henzler, P., Mitra, N. J., Ritschel, T., 2020. Learning a Neural 3D Texture Space from 2D Exemplars. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 8353-8361. https://doi.org/10.1109/cvpr42600.2020.00838
      Hou, Q. B., Zhou, D. Q., Feng, J. S., 2021. Coordinate Attention for Efficient Mobile Network Design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 13708-13717. https://doi.org/10.1109/CVPR46437.2021.01350
      Hua, W. H., Xiao, Y. N., Wang, Z. J., et al., 2022. Real-Time Generation Technology of Vector Geological Profile Based on 3D Geological Model. Earth Science, 47(11): 4256-4266 (in Chinese with English abstract).
      Huo, D., Guo, Z. X., Zuo, X. X., et al., 2024. TexGen: Text-Guided 3D Texture Generation with Multi-View Sampling and Resampling. In: Leonardis, A., Ricci, E., Roth, S., eds., Computer Vision-ECCV 2024. Springer, Cham, 352-368. https://doi.org/10.1007/978-3-031-72920-1_20
      Kwatra, V., Essa, I., Bobick, A., et al., 2005. Texture Optimization for Example-Based Synthesis. ACM SIGGRAPH 2005 Papers, Los Angeles, 795-802. https://doi.org/10.1145/1186822.1073263
      Peachey, D. R., 1985. Solid Texturing of Complex Surfaces. ACM SIGGRAPH Computer Graphics, 19(3): 279-286. https://doi.org/10.1145/325165.325246
      Perlin, K., 1985. An Image Synthesizer. ACM SIGGRAPH Computer Graphics, 19(3): 287-296. https://doi.org/10.1145/325165.325247
      Portenier, T., Bigdeli, S., Goksel, O., 2020. GramGAN: Deep 3D Texture Synthesis from 2D Exemplars. Proceedings of the 34th International Conference on Neural Information Processing Systems, Montreal, 6994-7004. https://doi.org/10.5555/3495724.3496311
      Qian, Y. L., Shi, J., Sun, H. Q., et al., 2023. Vector Solid Texture Synthesis Using Unified RBF-Based Representation and Optimization. The Visual Computer, 39(9): 3963-3977. https://doi.org/10.1007/s00371-022-02541-y
      Qian, Y. L., Shu, Y., Sun, H. Q., et al., 2015. Vector Solid Texture Synthesis Using Two-Scale Shaping Model. Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Beijing, 27-36. https://doi.org/10.1145/2821592.2821605
      Shaham, T. R., Dekel, T., Michaeli, T., 2019. SinGAN: Learning a Generative Model from a Single Natural Image. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 4569-4579. https://doi.org/10.1109/iccv.2019.00467
      Tai, W. X., Zhou, Q., Yang, C. F., et al., 2023.3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract).
      Wang, J. Q., Chen, K., Xu, R., et al., 2022. CARAFE: Unified Content-Aware Re-Assembly of FEatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 4674-4687. https://doi.org/10.1109/TPAMI.2021.3074370
      Wang, P. Q., Chen, P. F., Yuan, Y., et al., 2018. Understanding Convolution for Semantic Segmentation. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 1451-1460. https://doi.org/10.1109/WACV.2018.00163
      Xiao, H. G., He, L., Zheng, Y. L., et al., 2022.3D Solid Digital and Numerical Modeling of Multimineral Heterogeneous Rocks Based on Deep Learning. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(6): 188. https://doi.org/10.1007/s40948-022-00495-y
      Zirek, S., 2023. Synthesising 3D Solid Models of Natural Heterogeneous Materials from Single Sample Image, Using Encoding Deep Convolutional Generative Adversarial Networks. Systems and Soft Computing, 5: 200051. https://doi.org/10.1016/j.sasc.2023.200051
      Zhang, R., Isola, P., Efros, A. A., et al., 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 586-595. https://doi.org/10.1109/CVPR.2018.00068
      Zhao, X., Guo, J. F., Wang, L., et al., 2023. STS-GAN: Can We Synthesize Solid Texture with High Fidelity from Arbitrary 2D Exemplar? In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization, Macao, 1768-1776. https://doi.org/10.24963/ijcai.2023/196
      扶金铭, 胡茂胜, 方芳, 等, 2024. Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法. 地球科学, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433
      花卫华, 肖旖旎, 王振娟, 等, 2022. 基于三维地质模型的矢量地质剖面图实时生成技术. 地球科学, 47(11): 4256-4266. doi: 10.3799/dqkx.2022.291
      邰文星, 周琦, 杨成富, 等, 2023. 黔西南者相金矿床三维地质可视化建模及应用. 地球科学, 48(11): 4017-4033. doi: 10.3799/dqkx.2022.095
    • 加载中
    图(18) / 表(6)
    计量
    • 文章访问数:  107
    • HTML全文浏览量:  19
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-15
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回