• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于OpenQuake的川滇断层交汇带精细化地震危险性评估

    张奕哲 毛无卫 黄雨 郑虎

    张奕哲, 毛无卫, 黄雨, 郑虎, 2025. 基于OpenQuake的川滇断层交汇带精细化地震危险性评估. 地球科学, 50(10): 3997-4008. doi: 10.3799/dqkx.2025.135
    引用本文: 张奕哲, 毛无卫, 黄雨, 郑虎, 2025. 基于OpenQuake的川滇断层交汇带精细化地震危险性评估. 地球科学, 50(10): 3997-4008. doi: 10.3799/dqkx.2025.135
    Zhang Yizhe, Mao Wuwei, Huang Yu, Zheng Hu, 2025. Refined Seismic Hazard Assessment of Fault Intersection Zones in Sichuan-Yunnan Region Based on OpenQuake. Earth Science, 50(10): 3997-4008. doi: 10.3799/dqkx.2025.135
    Citation: Zhang Yizhe, Mao Wuwei, Huang Yu, Zheng Hu, 2025. Refined Seismic Hazard Assessment of Fault Intersection Zones in Sichuan-Yunnan Region Based on OpenQuake. Earth Science, 50(10): 3997-4008. doi: 10.3799/dqkx.2025.135

    基于OpenQuake的川滇断层交汇带精细化地震危险性评估

    doi: 10.3799/dqkx.2025.135
    基金项目: 

    国家自然科学基金项目 42120104008

    详细信息
      作者简介:

      张奕哲(2000-),男,博士研究生,主要从事地震工程地质研究.ORCID:0009-0004-1379-2833. E-mail:2410061@tongji.edu.cn

      通讯作者:

      郑虎, E‐mail:zhenghu@tongji.edu.cn

    • 中图分类号: P642

    Refined Seismic Hazard Assessment of Fault Intersection Zones in Sichuan-Yunnan Region Based on OpenQuake

    • 摘要:

      为评估复杂构造背景下现有地震动区划图在活跃断裂带地震风险评估中的适用性,提升地震危险性分析的准确性.以2022年川滇地区Ms6.8级泸定地震影响区为研究对象,基于OpenQuake平台开展概率地震危险性分析(PSHA).研究通过地震目录处理、震级转换、震源参数估算和断层建模,构建包含背景地震源与断层源的区域地震模型,并选取多种适用于活跃浅层地壳构造的地面运动预测方程(GMPEs),生成地震动参数和超越概率分布图.结果表明,OpenQuake模拟地震动分布与中国第五代地震动区划图基本吻合,尤其在高峰值加速度(PGA)区域表征上更为准确.随着峰值加速度(PGA)阈值的提高,高超越概率区域逐渐缩小,并集中于主要断层附近.以0.1为震级档,避免了五代图在地震矩释放率上的低估问题.此外,还表明强震风险主要集中在断层交汇地带,建议将该区域作为重点监测与防护对象.

       

    • 图  1  研究区域地形及断层分布

      标点处为2022年泸定Mw6.8地震,断层线的引用数据来源于中国地震灾害防御中心地震活动断层探察数据中心(https://www.activefault-datacenter.cn

      Fig.  1.  Topography and fault distribution of the study area

      图  2  研究区域地震分布情况及机制

      a.研究区域的主要活动断裂带与其地震深度震级分布图,黄色线为活动断裂;b.研究区域部分地震的震源机制图,沙滩球为1976—2024年Ms4.7以上地震震源机制解(www.globecmt.org

      Fig.  2.  Seismic distribution and mechanisms in the study area

      图  3  OpenQuake情景地震模拟下的泸定地震PGA分布

      Fig.  3.  PGA distribution of Luding earthquake under OpenQuake scenario seismic simulation

      图  4  地震目录去聚类及完整性验证

      a.研究区域主要地震事件的震级-时间分布图,蓝色点为主震,红色点余震;b.研究区域主要地震事件随时间和震级的分布图,中间的红线代表地震完整性分析的边界,用于区分地震目录中数据的完整性和不完整性部分

      Fig.  4.  Earthquake catalog declustering and completeness verification

      图  5  研究区域最大震级与地震震级-频次关系计算

      a.川滇地区地震最大震级估算的累积地震矩曲线图,其中红色实线为实际累积地震矩,蓝色实线为预测累积地震矩,虚线为上下界,箭头指示最大震级估算值(Mw=7.609);b.川滇地区地震发生率模型与观测数据对比图,其中蓝色点为观测增量发生率,蓝色实线为模型增量发生率;红色方块为观测累积发生率,红色实线为模型累积发生率

      Fig.  5.  Maximum magnitude and magnitude-frequency distribution in the study area

      图  6  平滑背景地震源的归一化地震发生率等高线

      图中的左右两个颜色条分别是年份与平滑背景地震源的平滑率.左颜色条表示地震发生的时间,由蓝色到黄色表示年份依次递增;右颜色调表示地震发生概率的空间分布强度,从紫色到黄色依次渐强

      Fig.  6.  Normalized seismic rate contours for smoothed background seismic sources

      图  7  研究区域的OpenQuake的模拟结果的PGA分布图与中国第五代地震图对比

      XSH-F.鲜水河断裂带;XJH-F.小金河断裂带;XJ-F.小江断裂带;JSJ-F.金沙江断裂带;LMS-F.龙门山断裂带;EY-JB-F.峨阳-金边断裂带

      Fig.  7.  Comparison of OpenQuake-simulated PGA distributions with China's fifth-generation seismic zonation map in the study area

      图  8  不同抗震烈度等级下研究区域50 a内地震动超越概率的空间分布

      a. 抗震烈度等级为7级,PGA=0.10 g;b. 抗震烈度等级为7级,PGA=0.15 g;c. 抗震烈度等级为8级,PGA=0.20 g;d. 抗震烈度等级为8级,PGA=0.30 g

      Fig.  8.  Spatial distribution of seismic motion exceedance probabilities within 50 a under different seismic intensity levels in the study area

      表  1  震源深度概率质量函数(PMF) 分布

      Table  1.   Probability mass function (PMF) distribution of hypocenter depth

      深度(km) 2.5 7.5 12.5 17.5 22.5 27.5
      概率 0.279 0.046 0.384 0.228 0.050 0.013
      下载: 导出CSV
    • Aki, K., 1965. Maximum Likelihood Estimate of b in the Formula log N=a-bM and Its Confidence Limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43: 237-239.
      Aki, K., 1972. Earthquake Mechanism. Tectonophysics, 13(1-4): 423-446. https://doi.org/10.1016/0040-1951(72)90032-7
      Albini, P., Musson, R. M. W., Rovida, A., et al., 2014. The Global Earthquake History. Earthquake Spectra, 30(2): 607-624. https://doi.org/10.1193/122013eqs297
      Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2
      Baker, J., Bradley, B., Stafford, P., 2021. . Seismic Hazard and Risk Analysis. Cambridge University Press, Cambridge, UK
      Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. The Bulletin of the Seismological Society of America, 100(6): 2914-2926. https://doi.org/10.1785/0120100111
      Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw-Based Historical Earthquake Catalog for Mainland China. The Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102
      Cheng, J., Xu, X. W., Chen, G. H., 2020. A New Prediction Model of Seismic Hazard for the Sichuan-Yunnan Region Based on the Occurrence Rate of Large Earthquakes. Chinese Journal of Geophysics, 63(3): 1170-1182(in Chinese with English abstract).
      Cornell, C. A., 1968. Engineering Seismic Risk Analysis. The Bulletin of the Seismological Society of America, 58(5): 1583-1606. https://doi.org/10.1785/BSSA0580051583
      Dangkua, D. T., Rong, Y. F., Magistrale, H., 2018. Evaluation of NGA-West2 and Chinese Ground-Motion Prediction Equations for Developing Seismic Hazard Maps of Mainland China. The Bulletin of the Seismological Society of America, 108(5A): 2422-2443. https://doi.org/10.1785/0120170186
      Deng, Q. D., Zhang, Y. M., Huan, W. L., et al., 1980. Principles and Methods of Composing the Seismic Zoning Map of China. Acta Seismologica Sinica, 2(1): 90-110 (in Chinese with English abstract).
      Dolce, M., Prota, A., Borzi, B., et al., 2021. Seismic Risk Assessment of Residential Buildings in Italy. Bulletin of Earthquake Engineering, 19(8): 2999-3032. https://doi.org/10.1007/s10518-020-01009-5
      Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of MS6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504-1516(in Chinese with English abstract).
      Gao, M. T., 2016. New Generation National Seismic Zoning Map and National Social and Economic Development. City and Disaster Reduction, (3): 1-5(in Chinese with English abstract).
      Gardner, J. K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian?The Bulletin of the Seismological Society of America, 64(5): 1363-1367. https://doi.org/10.1785/BSSA0640051363
      Gutenberg, B., Richter, C. F., 1955. Magnitude and Energy of Earthquakes. Nature, 176(4486): 795. https://doi.org/10.1038/176795a0
      Han, Y. Y., Zang, Y., Meng, L. Y., et al., 2022. A Summary of Seismic Activities in and around China in 2021. Earthquake Research Advances, 2(3): 100157. https://doi.org/10.1016/j.eqrea.2022.100157
      Kagan, Y. Y., 2002. Seismic Moment Distribution Revisited: Ⅰ. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x.2002.01594.x
      Lamontagne, M., 2013. Hypocenter. Encyclopedia of Natural Hazards. Springer Netherlands, Dordrecht, 516-517. https://doi.org/10.1007/978-1-4020-4399-4_181
      Lei, Q. Y., Zhang, P. Z., Zheng, W. J., et al., 2016. Dextral Strike-Slip of Sanguankou-Niushoushan Fault Zone and Extension of Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau. Science China Earth Sciences, 59(5): 1025-1040. https://doi.org/10.1007/s11430-016-5272-1
      Li, C. H., Li, X., Guo, C. B., et al., 2022. Seismic Landslide Hazards Assessment along the Xianshuihe Fault Zone, Tibetan Plateau, China. Geological Bulletin of China, 41(8): 1473-1486(in Chinese with English abstract).
      Li, S. B., 1957. The Map of Seismicity of China. Chinese Journal of Geophysics, (2): 127-158(in Chinese with English abstract).
      Li, Z., Zhang, J., Zhao, J., et al., 2023. The Crustal Structure of the Longmenshan Fault Zone and Its Implications for Seismogenesis: New Insight from Aeromagnetic and Gravity Data. Journal of Geophysical Research: Solid Earth, 14: 1289-1305. https://doi.org/10.5194/se-14-1289-2023
      Liu, J. W., Douglas, J., 2024. Comparison and Selection of Ground Motion Prediction Equations for the Sichuan–Yunnan Area, Southwest China. Bulletin of Earthquake Engineering, 22(5): 2303-2328. https://doi.org/10.1007/s10518-024-01861-9
      Makropoullos, K. C., Burton, P. W., 1981. A Catalogue of Seismicity in Greece and Adjacent Areas. Geophysical Journal of the Royal Astronomical Society, 65(3): 741-762. https://doi.org/10.1111/j.1365-246X.1981.tb04881.x
      McGuire, R. K., 2004. Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute, Oakland, 35-56.
      Pagani, M., Monelli, D., Weatherill, G., et al., 2014. OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 85(3): 692-702. https://doi.org/10.1785/0220130087
      Perfettini, H., Ampuero, J. P., 2008. Dynamics of a Velocity Strengthening Fault Region: Implications for Slow Earthquakes and Postseismic Slip. Journal of Geophysical Research: Solid Earth, 113(B9): 14237009. https://doi.org/10.1029/2007JB005398
      Schwartz, D. P., Coppersmith, K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. https://doi.org/10.1029/JB089iB07p05681
      Seyhan, E., Stewart, J. P., 2014. Semi-Empirical Nonlinear Site Amplification from NGA-West2 Data and Simulations. Earthquake Spectra, 30(3): 1241-1256. https://doi.org/10.1193/063013EQS181M
      Stepp, J. C., 1972. Analysis of Completeness of the Earthquake Sample in the Puget Sound Area and Its Effect on Statistical Estimates of Earthquake Hazard. Proc. of the 1st Int. Conf. on Microzonazion, 2: 897-910.
      Taroni, M., 2020. Back to the Future: Old Methods for New Estimation and Test of the Gutenberg-Richter b-Value for Catalogues with Variable Completeness. Geophysical Journal International, 224(1): 337-339. https://doi.org/10.1093/gji/ggaa464
      Weichert, D. H., 1980. Estimation of the Earthquake Recurrence Parameters for Unequal Observation Periods for Different Magnitudes. Bulletin of the Seismological Society of America, 70(4): 1337-1346. https://doi.org/10.1785/bssa0700041337
      Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013
      Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003. The Latest Structural Change Pattern of Active Blocks in Sichuan and Yunnan Areas and Its Power Source. Science in China (Ser. D), 33(S1): 151-162(in Chinese).
      Yin, L., Zhou, B. G., Ren, Z. K., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M6.8 Earthquake. Earth Science, 49(2): 425-436(inChinesewithEnglishabstract).
      Yu, Y. X., Li, S. Y., Xiao, L., 2013. Development of Ground Motion Attenuation Relations for the New Seismic Hazard Map of China. Technology for Earthquake Disaster Prevention, 8(1): 24-33(inChinesewithEnglishabstract).
      Zhang, L., He, C. R., 2013. Frictional Properties of Natural Gouges from Longmenshan Fault Zone Ruptured during the Wenchuan Mw7.9 Earthquake. Tectonophysics, 594: 149-164. https://doi.org/10.1016/j.tecto.2013.03.030
      程佳, 徐锡伟, 陈桂华, 2020. 基于特大地震发生率的川滇地区地震危险性预测新模型. 地球物理学报, 63(3): 1170-1182.
      邓起东, 张裕明, 环文林, 等, 1980. 中国地震烈度区划图编制的原则和方法. 地震学报, 2(1): 90-110.
      范宣梅, 王欣, 戴岚欣, 等, 2022.2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究. 工程地质学报, 30(5): 1504-1516.
      高孟潭, 2016. 新一代国家地震区划图与国家社会经济发展. 城市与减灾, (3): 1-5.
      李彩虹, 李雪, 郭长宝, 等, 2022. 青藏高原东部鲜水河断裂带地震滑坡危险性评价. 地质通报, 41(8): 1473-1486.
      李善邦, 1957. 中国地震区域划分圖及其說明Ⅰ. 总的說明. 地球物理学报(2): 127-158.
      徐锡伟, 闻学泽, 郑荣章, 等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D辑: 地球科学), 33(增刊1): 151-162.
      尹力, 周本刚, 任治坤, 等, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定M6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
      俞言祥, 李山有, 肖亮, 2013. 为新区划图编制所建立的地震动衰减关系. 震灾防御技术, 8(1): 24-33.
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  98
    • HTML全文浏览量:  9
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-16
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回