Refined Seismic Hazard Assessment of Fault Intersection Zones in Sichuan-Yunnan Region Based on OpenQuake
- 
					    摘要:
为评估复杂构造背景下现有地震动区划图在活跃断裂带地震风险评估中的适用性,提升地震危险性分析的准确性.以2022年川滇地区Ms6.8级泸定地震影响区为研究对象,基于OpenQuake平台开展概率地震危险性分析(PSHA).研究通过地震目录处理、震级转换、震源参数估算和断层建模,构建包含背景地震源与断层源的区域地震模型,并选取多种适用于活跃浅层地壳构造的地面运动预测方程(GMPEs),生成地震动参数和超越概率分布图.结果表明,OpenQuake模拟地震动分布与中国第五代地震动区划图基本吻合,尤其在高峰值加速度(PGA)区域表征上更为准确.随着峰值加速度(PGA)阈值的提高,高超越概率区域逐渐缩小,并集中于主要断层附近.以0.1为震级档,避免了五代图在地震矩释放率上的低估问题.此外,还表明强震风险主要集中在断层交汇地带,建议将该区域作为重点监测与防护对象.
- 
									关键词:
									
 - 危险性分析 /
 - OpenQuake /
 - 川滇地区 /
 - 截断型古登堡-里克特关系 /
 - 工程地质学
 
Abstract:This study aims to evaluate the applicability of existing seismic ground motion zoning maps in earthquake risk assessment for active fault zones under complex tectonic settings and improve the accuracy of seismic hazard analysis. Focusing on the affected area of the 2022 Ms 6.8 Luding earthquake in the Sichuan-Yunnan region, probabilistic seismic hazard analysis (PSHA) was conducted using the OpenQuake platform. Through seismic catalog processing, magnitude conversion, source parameter estimation, and fault modeling, a regional seismic model incorporating both background seismic sources and fault sources was established. Multiple ground motion prediction equations (GMPEs) suitable for active shallow crustal tectonics were selected to generate seismic motion parameter distribution maps and exceedance probability analysis results. The findings demonstrate that OpenQuake-simulated ground motion distributions align fundamentally with China's fifth-generation seismic ground motion zoning map, particularly showing enhanced accuracy in identifying high peak ground acceleration (PGA) zones. As PGA thresholds increase, high-exceedance probability areas gradually diminish and concentrate near major faults. By adopting 0.1 magnitude increments, this research avoids the underestimation of seismic moment release rates observed in the fifth-generation zoning map. Furthermore, results indicate concentrated strong earthquake risks in fault intersection zones, suggesting these areas should be prioritized for monitoring and protective measures.
 - 
						
    
表 1 震源深度概率质量函数(PMF) 分布
Table 1. Probability mass function (PMF) distribution of hypocenter depth
深度(km) 2.5 7.5 12.5 17.5 22.5 27.5 概率 0.279 0.046 0.384 0.228 0.050 0.013  - 
						
Aki, K., 1965. Maximum Likelihood Estimate of b in the Formula log N=a-bM and Its Confidence Limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43: 237-239. Aki, K., 1972. Earthquake Mechanism. Tectonophysics, 13(1-4): 423-446. https://doi.org/10.1016/0040-1951(72)90032-7 Albini, P., Musson, R. M. W., Rovida, A., et al., 2014. The Global Earthquake History. Earthquake Spectra, 30(2): 607-624. https://doi.org/10.1193/122013eqs297 Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2 Baker, J., Bradley, B., Stafford, P., 2021. . Seismic Hazard and Risk Analysis. Cambridge University Press, Cambridge, UK Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. The Bulletin of the Seismological Society of America, 100(6): 2914-2926. https://doi.org/10.1785/0120100111 Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw-Based Historical Earthquake Catalog for Mainland China. The Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102 Cheng, J., Xu, X. W., Chen, G. H., 2020. A New Prediction Model of Seismic Hazard for the Sichuan-Yunnan Region Based on the Occurrence Rate of Large Earthquakes. Chinese Journal of Geophysics, 63(3): 1170-1182(in Chinese with English abstract). Cornell, C. A., 1968. Engineering Seismic Risk Analysis. The Bulletin of the Seismological Society of America, 58(5): 1583-1606. https://doi.org/10.1785/BSSA0580051583 Dangkua, D. T., Rong, Y. F., Magistrale, H., 2018. Evaluation of NGA-West2 and Chinese Ground-Motion Prediction Equations for Developing Seismic Hazard Maps of Mainland China. The Bulletin of the Seismological Society of America, 108(5A): 2422-2443. https://doi.org/10.1785/0120170186 Deng, Q. D., Zhang, Y. M., Huan, W. L., et al., 1980. Principles and Methods of Composing the Seismic Zoning Map of China. Acta Seismologica Sinica, 2(1): 90-110 (in Chinese with English abstract). Dolce, M., Prota, A., Borzi, B., et al., 2021. Seismic Risk Assessment of Residential Buildings in Italy. Bulletin of Earthquake Engineering, 19(8): 2999-3032. https://doi.org/10.1007/s10518-020-01009-5 Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of MS6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504-1516(in Chinese with English abstract). Gao, M. T., 2016. New Generation National Seismic Zoning Map and National Social and Economic Development. City and Disaster Reduction, (3): 1-5(in Chinese with English abstract). Gardner, J. K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian?The Bulletin of the Seismological Society of America, 64(5): 1363-1367. https://doi.org/10.1785/BSSA0640051363 Gutenberg, B., Richter, C. F., 1955. Magnitude and Energy of Earthquakes. Nature, 176(4486): 795. https://doi.org/10.1038/176795a0 Han, Y. Y., Zang, Y., Meng, L. Y., et al., 2022. A Summary of Seismic Activities in and around China in 2021. Earthquake Research Advances, 2(3): 100157. https://doi.org/10.1016/j.eqrea.2022.100157 Kagan, Y. Y., 2002. Seismic Moment Distribution Revisited: Ⅰ. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x.2002.01594.x Lamontagne, M., 2013. Hypocenter. Encyclopedia of Natural Hazards. Springer Netherlands, Dordrecht, 516-517. https://doi.org/10.1007/978-1-4020-4399-4_181 Lei, Q. Y., Zhang, P. Z., Zheng, W. J., et al., 2016. Dextral Strike-Slip of Sanguankou-Niushoushan Fault Zone and Extension of Arc Tectonic Belt in the Northeastern Margin of the Tibet Plateau. Science China Earth Sciences, 59(5): 1025-1040. https://doi.org/10.1007/s11430-016-5272-1 Li, C. H., Li, X., Guo, C. B., et al., 2022. Seismic Landslide Hazards Assessment along the Xianshuihe Fault Zone, Tibetan Plateau, China. Geological Bulletin of China, 41(8): 1473-1486(in Chinese with English abstract). Li, S. B., 1957. The Map of Seismicity of China. Chinese Journal of Geophysics, (2): 127-158(in Chinese with English abstract). Li, Z., Zhang, J., Zhao, J., et al., 2023. The Crustal Structure of the Longmenshan Fault Zone and Its Implications for Seismogenesis: New Insight from Aeromagnetic and Gravity Data. Journal of Geophysical Research: Solid Earth, 14: 1289-1305. https://doi.org/10.5194/se-14-1289-2023 Liu, J. W., Douglas, J., 2024. Comparison and Selection of Ground Motion Prediction Equations for the Sichuan–Yunnan Area, Southwest China. Bulletin of Earthquake Engineering, 22(5): 2303-2328. https://doi.org/10.1007/s10518-024-01861-9 Makropoullos, K. C., Burton, P. W., 1981. A Catalogue of Seismicity in Greece and Adjacent Areas. Geophysical Journal of the Royal Astronomical Society, 65(3): 741-762. https://doi.org/10.1111/j.1365-246X.1981.tb04881.x McGuire, R. K., 2004. Seismic Hazard and Risk Analysis. Earthquake Engineering Research Institute, Oakland, 35-56. Pagani, M., Monelli, D., Weatherill, G., et al., 2014. OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 85(3): 692-702. https://doi.org/10.1785/0220130087 Perfettini, H., Ampuero, J. P., 2008. Dynamics of a Velocity Strengthening Fault Region: Implications for Slow Earthquakes and Postseismic Slip. Journal of Geophysical Research: Solid Earth, 113(B9): 14237009. https://doi.org/10.1029/2007JB005398 Schwartz, D. P., Coppersmith, K. J., 1984. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. https://doi.org/10.1029/JB089iB07p05681 Seyhan, E., Stewart, J. P., 2014. Semi-Empirical Nonlinear Site Amplification from NGA-West2 Data and Simulations. Earthquake Spectra, 30(3): 1241-1256. https://doi.org/10.1193/063013EQS181M Stepp, J. C., 1972. Analysis of Completeness of the Earthquake Sample in the Puget Sound Area and Its Effect on Statistical Estimates of Earthquake Hazard. Proc. of the 1st Int. Conf. on Microzonazion, 2: 897-910. Taroni, M., 2020. Back to the Future: Old Methods for New Estimation and Test of the Gutenberg-Richter b-Value for Catalogues with Variable Completeness. Geophysical Journal International, 224(1): 337-339. https://doi.org/10.1093/gji/ggaa464 Weichert, D. H., 1980. Estimation of the Earthquake Recurrence Parameters for Unequal Observation Periods for Different Magnitudes. Bulletin of the Seismological Society of America, 70(4): 1337-1346. https://doi.org/10.1785/bssa0700041337 Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013 Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003. The Latest Structural Change Pattern of Active Blocks in Sichuan and Yunnan Areas and Its Power Source. Science in China (Ser. D), 33(S1): 151-162(in Chinese). Yin, L., Zhou, B. G., Ren, Z. K., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M6.8 Earthquake. Earth Science, 49(2): 425-436(inChinesewithEnglishabstract). Yu, Y. X., Li, S. Y., Xiao, L., 2013. Development of Ground Motion Attenuation Relations for the New Seismic Hazard Map of China. Technology for Earthquake Disaster Prevention, 8(1): 24-33(inChinesewithEnglishabstract). Zhang, L., He, C. R., 2013. Frictional Properties of Natural Gouges from Longmenshan Fault Zone Ruptured during the Wenchuan Mw7.9 Earthquake. Tectonophysics, 594: 149-164. https://doi.org/10.1016/j.tecto.2013.03.030 程佳, 徐锡伟, 陈桂华, 2020. 基于特大地震发生率的川滇地区地震危险性预测新模型. 地球物理学报, 63(3): 1170-1182. 邓起东, 张裕明, 环文林, 等, 1980. 中国地震烈度区划图编制的原则和方法. 地震学报, 2(1): 90-110. 范宣梅, 王欣, 戴岚欣, 等, 2022.2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究. 工程地质学报, 30(5): 1504-1516. 高孟潭, 2016. 新一代国家地震区划图与国家社会经济发展. 城市与减灾, (3): 1-5. 李彩虹, 李雪, 郭长宝, 等, 2022. 青藏高原东部鲜水河断裂带地震滑坡危险性评价. 地质通报, 41(8): 1473-1486. 李善邦, 1957. 中国地震区域划分圖及其說明Ⅰ. 总的說明. 地球物理学报(2): 127-158. 徐锡伟, 闻学泽, 郑荣章, 等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D辑: 地球科学), 33(增刊1): 151-162. 尹力, 周本刚, 任治坤, 等, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定M6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138 俞言祥, 李山有, 肖亮, 2013. 为新区划图编制所建立的地震动衰减关系. 震灾防御技术, 8(1): 24-33.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: