Provenance of Early Triassic Clastic Rocks and Its Constraint on Tectonic Evolution of Lijiang Basin, Upper Yangtze Block
-
摘要: 丽江盆地作为扬子西南边缘地区多板块交汇带,对其下三叠统沉积物源的研究可掲示扬子西南地区的沉积“源‒汇系统”及其与西部冈瓦纳弧盆体系的时空关系.野外观测与镜下鉴定显示鹤庆腊美组砂岩均来自近距离的长英质火山岩物质,且碎屑锆石分别呈现~254 Ma和~255 Ma单一年龄峰值,与峨眉山大火成岩省中酸性岩浆活动时间一致,与板内/非造山环境岩浆锆石具有锆石微量元素一致性,而区别于弧造山带;Lu-Hf同位素εHf(t)值表明其与峨眉山大火成岩省的长英质岩类有关系;全岩地球化学数据显示腊美组与峨眉山流纹岩、粗面岩、正长岩具有主微量元素一致的特征.综合分析得腊美组物源来自近源搬运的峨眉山流纹岩、粗面岩和正长岩.早三叠世期间丽江盆地仍为被动陆缘沉积,主要接受来自峨眉山大火成岩省的物质,无西部弧盆体系物质来源.Abstract: Lijiang basin is a multi-plate confluence zone located in the southwestern margin of the Yangtze block. The study for the provenance of the Lower Triassic reveals the source-sink system of the southwestern Yangtze block and its spatio-temporal relationship with the western Gondwana arc basin system. Field observations and microscopic identification show that the sandstones of the Lamei Formation in Heqing region are mainly derived from the proximal transport of felsic volcanic rocks. The detrital zircons exhibit single age peaks of ~254 Ma and ~255 Ma, corresponding to the timing of felsic magmatic activity in the Emeishan Large Igneous Province (ELIP), and are consistent with interior/non-orogenic magmatic zircon trace element signatures, distinguishing them from those in arc orogenic belts. The εHf(t) values of the Lu-Hf isotopic analysis indicate the provenance of the sandstones of Lamei Formation are from the felsic rocks of the ELIP. Whole-rock geochemical data show that the Lamei Formation shares similar trace element characteristics with the Emeishan rhyolites, porphyries and syenites. A comprehensive analysis suggests that the materials of the Lamei Formation originate from the proximal transport of rhyolite, trachyte and syenite from ELIP. During the Early Triassic, the Lijiang basin functioned as a passive continental margin sedimentation area, primarily receiving materials from the ELIP, with no contributions from the western arc-basin system.
-
Key words:
- Lower Triassic /
- Lijiang basin /
- provenance analysis /
- detrital zircon U-Pb age /
- chronology /
- whole-rock geochemistry /
- Lu-Hf /
- isotope
-
图 1 丽江盆地及邻区地质简图
a,b. 据云南省地质局(1966);c.据Munteanu et al.(2013)修改;d.据Metcalfe(2013)修改
Fig. 1. Simplified geologic map of the Lijiang basin and its adjacent areas
图 6 腊美组稀土元素CL球粒陨石配分模式(a, b)和微量元素Hf/Th-Th/Nb(c, d)判别图解
球粒陨石稀土元素含量参照Sun and Mc Donough(1989);微量元素判别图据Yang et al.(2012),峨眉山流纹岩数据据Xu et al.(2008);Shellnutt et al.(2009);Hei et al.(2018)
Fig. 6. The CL chondrite-normalized rare earth element diagrams (a, b) and Hf/Th-Th/Nb discriminating (c, d) for the detrital zircons of the Lamei sandstones
图 7 吉地坪和后本菁剖面腊美组碎屑锆石εHf(t)值与U-Pb年龄的关系
峨眉山流纹岩数据据Xu et al.(2010);Hei et al.(2018);Huang et al.(2022a);峨眉山玄武岩数据据Xu et al.(2001,2008);Xiao et al.(2004);Shellnutt et al.(2009);Zhong et al.(2009);峨眉山正长岩数据据Xu et al.(2008);Shellnutt et al.(2009);泛大洋弧岩浆岩(He et al.,2018;Shen et al.,2018;Wang et al.,2021)+华南PTB火山岩数据(高秋灵,2013;He et al.,2014;王曼等,2018;Wang et al.,2019)以及江达维西弧长英质火山岩数据(Wang et al.,2014)
Fig. 7. Plot of zircon εHf (t) versus 206Pb/238U age (Ma) for the Lamei Formation in Jidiping and Houbenjing areas
图 8 腊美组样品微量元素蛛网(a, b)和稀土元素球粒陨石标准化配分模式(c, d)
球粒陨石和原始地幔标准化数据引自Sun and McDonough(1989),UCC标准数据引自Taylor and McLennan(1985)
Fig. 8. The spider web of trace elements (a, b) and the standardized distribution model diagram of rare earth element chondrites (c, d) of the Lamei Formation samples
图 10 鹤庆下三叠统腊美组砂岩物源构造背景判别图解
a.Q-F-L;b. Qm-F-Lt(Dickinson et al.,1983;部分数据高崇龙等,2024). V.火山岩组分;P.深成岩组分
Fig. 10. Modal composition triangle diagrams for the samples from Lamei Formation in the Lower Triassic from Heqing
图 11 丽江盆地鹤庆吉地坪(c)、后本菁腊美组(b)(本文)与大理邓川青天堡组(d,e)、上沧下三叠统砾岩(韩超,2023) (f)以及已报道华南地区(a)下三叠统(张英利等,2016;Zhu et al., 2018;缪宇等,2021;Meng et al., 2022;周寅生等,2022;邓旭升等,2025)和EILP(g)碎屑锆石年龄谱对比图
Fig. 11. Probability density plots and histograms of detrital zircon U-Pb ages for the Lamei Formation from the Heqing Jidiping (c) and Houbenjing (b), Qingtianbao Formation from Dengchuan (d, e), the Lower Triassic from Shangcang (f), EILP(g) and South China block (a, published)
图 12 腊美组砂岩K2O/Na2O-SiO2 (a)、Th/Sc-Zr/Sc (b)、Co/Th-La/Sc (c)和Ti-Zr (d)比值
UCC数据引自Taylor and McLennan(1985),峨眉山正长岩+粗面岩数据自Xu et al.(2008);Shellnutt et al.(2009);Zhong et al.(2009);峨眉山流纹岩数据据Xu et al.(2010);Cheng et al.(2017);Hei et al.(2018);Huang et al.(2022a)
Fig. 12. Ratio of K2O/Na2O-SiO2 (a), Th/Sc-Zr/Sc (b), Co/Th-La/Sc (c) and Ti-Zr (d) in sandstone of Lamei Formation
图 13 早三叠世丽江盆地岩相古地理(a)和构造演化(b~d)
据四川省地质矿产研究所专题研究组(1987);崔克信(2004);马永生等(2009)
Fig. 13. The lithofacies and paleogeographic sketch (a) and the tectonic evolution (b‒d) of Lijiang area in Early Triassic
-
Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America, 210: 231. https://doi.org/10.1130/mem210 Chen, H. L., Zhu, M., Chen, S. Q., et al., 2020. Basin-Orogen Patterns and the Late Triassic Foreland Basin Conversion Process in the Western Yangtze Block, China. Journal of Asian Earth Sciences, 194: 104311. https://doi.org/10.1016/j.jseaes.2020.104311 Cheng, L. L., Wang, Y., Herrin, J. S., et al., 2017. Origin of K-Feldspar Megacrysts in Rhyolites from the Emeishan Large Igneous Province, Southwest China. Lithos, 294/295: 397-411. https://doi.org/10.1016/j.lithos.2017.10.018 Chung, S. L., Jahn, B. M., 1995. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 23(10): 889. https://doi.org/10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469 Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 Cui, K. X., 2004. Atlas of Palaeogeography and Its Evolution in Southwest China. Seismological Press, Beijing, 25-130 (in Chinese). Deng, X. S., Yang, J. H., He, B., et al., 2025. Response of Lower Triassic Clastic Rocks in Northwest Guizhou to Emei Mountain Igneous Province. Acta Sedimentologica Sinica, 43(4): 1293-1307 (in Chinese with English abstract). Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 Gao, C. L., Wang, J., Liu, M., et al., 2024. Boundary Changes of Jurassic-Cretaceous Prototype Basin of Southern Junggar and Responses of Sedimentary Provenance and Depositional Systems. Earth Science, 49(1): 103-122 (in Chinese with English abstract). Gao, Q. L., 2013. Felsic Volcanism in South China across the Permian-Triassic Boundary (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Han, C., 2023. Provenance of the Late Permian-Early Triassic Clastic Rocks in the Western Margin of the South China and Its Implications for the Subduction Polarity of the Paleo-Tethyan Branch Ocean (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3/4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 He, B., Xu, Y. G., Xiao, L., et al., 2006. Sedimentary Responses to Uplift of Emeishan Mantle Plume and Its Implications. Geological Review, 52(1): 30-37 (in Chinese with English abstract). He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo-Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo-Tethys Ignimbrite Flare-Up?. Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011 He, H. Y., Wang, Y. J., Qian, X., et al., 2018. The Bangxi-Chenxing Tectonic Zone in Hainan Island (South China) as the Eastern Extension of the Song Ma-Ailaoshan Zone: Evidence of Late Paleozoic and Triassic Igneous Rocks. Journal of Asian Earth Sciences, 164: 274-291. https://doi.org/10.1016/j.jseaes.2018.06.032 He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295 (in Chinese with English abstract). Hei, H. X., Su, S. G., Wang, Y., et al., 2018. Rhyolites in the Emeishan Large Igneous Province (SW China) with Implications for Plume-Related Felsic Magmatism. Journal of Asian Earth Sciences, 164: 344-365. https://doi.org/10.1016/j.jseaes.2018.05.032 Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 Huang, H., Cawood, P. A., Hou, M. C., et al., 2022a. Zircon U-Pb Age, Trace Element, and Hf Isotopic Constrains on the Origin and Evolution of the Emeishan Large Igneous Province. Gondwana Research, 105: 535-550. https://doi.org/10.1016/j.gr.2021.09.023 Huang, H., Huyskensm, M., Yinm, Q. Z., et al., 2022b. Eruptive Tempo of Emeishan Large Igneous Province: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian-Lopingian Boundary. Geology, 50(9): 1083-1087. Huang, H., Du, Y. S., Yang, J. H., et al., 2014. Origin of Permian Basalts and Clastic Rocks in Napo, Southwest China: Implications for the Erosion and Eruption of the Emeishan Large Igneous Province. Lithos, 208/209: 324-338. https://doi.org/10.1016/j.lithos.2014.09.022 Lei, Y. L., Li, B. L., Chen, Z. X., 2010. Tectonic Evolution on the Western Border Area of Upper Yangtze Plate. Geological Publishing House, Beijing, 1-181 (in Chinese). Li, C. M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174 (in Chinese with English abstract). Li, P. W., Gao, R., Guan, Y., et al., 2009. Paleomagnetic Constraints on the Closure Time of Paleo-Tethys: Implications for the Tectonic Setting of Formation of Triassic Songpan-Ganzi Flysch Complex. Acta Geoscientica Sinica, 30(1): 39-50 (in Chinese with English abstract). Ma, Y. S., Chen, H. D., Wang, G. L., 2009. Sequence Stratigraphy and Paleogeography of South China. Science Press, Beijing, 116-152 (in Chinese). McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeo-Geographic Evolution of Eastern Tethys. J. Asian Earth Sci., 66: 1-33. Meng, L. F., Chen. W., Shen, T., et al., 2022. A Study on the Provenance of Early to Late Triassic Clastic Rocks from the Northwestern Sichuan Basin, Southwestern China: Constraints on the Early Mesozoic Tectonic Evolution of the Western Yangtze Block. Frontiers in Earth Science, 10: 1-12. Miao, Y., Tian, Y. F., Wu, L., et al., 2021. Zircon U-Pb Chronology, Petrochemistry and Its Implications for Rodinia Supercontinent Tectonic Evolution in the Lower Triassic Feixianguan Formation in the Daibu Area, Southwest of Upper Yangtze. Acta Geologica Sinica, 95(12): 3739-3757 (in Chinese with English abstract). Munteanu, M., Yao, Y., Wilson, A. H., et al., 2013. Panxi Region (South West China): Tectonics, Magmatism and Metallogenesis. A Review. Tectonophysics, 608: 51-72. https://doi.org/10.1016/j. tecto. 2013. 09. 008 doi: 10.1016/j.tecto.2013.09.008 Nesbitt, H. W., Fedo, C. M., Young, G. M., 1997. Quartz and Feldspar Stability, Steady and Non‐Steady‐State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. The Journal of Geology, 105(2): 173-192. Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 Pan, G. T., Wang, L. Q., Li, X. Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract). Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 528-548. Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21(1): 115-144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x Shellnutt, J. G., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003 Shellnutt, J. G., Zhou, M. F., Yan, D. P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine, 145(3): 373-388. https://doi.org/10.1017/s0016756808004524 Shen, L. W., Yu, J. H., O'Reilly, S. Y., et al., 2018. Subduction-Related Middle Permian to Early Triassic Magmatism in Central Hainan Island, South China. Lithos, 318/319: 158-175. https://doi.org/10.1016/j.lithos.2018.08.009 Sichuan Institute of Geology and Mineral Resources, 1987. Triassic Statigraphy and Sedimentary Facies of Yanyuan-Lijiang Region. Geological Publishing House, Beijing, 48-104 (in Chinese). Song, F., He, Y. Y., Niu, Z. J., et al., 2024. Nanhuan-Sinian Sedimentary Strata Correlation and Its Provenance Feature in Southeastern Part of South China Block: Implications for Tectonic Evolution. Earth Science, 49(9): 3411-3427 (in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. Tomaschek, F., Kennedy, A. K., Villa, I. M., et al., 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and Mobilization of Zircon during High-Pressure Metamorphism. Journal of Petrology, 44(11): 1977-2002. https://doi.org/10.1093/petrology/egg067 Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014. Triassic Three-Stage Collision in the Paleo-Tethys: Constraints from Magmatism in the Jiangda-Deqen-Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2): 475-491. https://doi.org/10.1016/j.gr.2013.07.023 Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian-Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract). Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian-Triassic Boundary, South China: Constraints from Trace Elements and Hf-Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011 Wang, Y. N., Wang, Q. F., Deng, J., et al., 2021. Late Permian-Early Triassic Mafic Dikes in the Southwestern Margin of the South China Block: Evidence for Paleo-Pacific Subduction. Lithos, 384/385: 105994. https://doi.org/10.1016/j.lithos.2021.105994 Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002 Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002 Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/S0024-4937(01)00055-X Xu, Y. G., Chung, S. L., Shao, H., et al., 2010. Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End-Guadalupian Biological Crisis. Lithos, 119(1/2): 47-60. https://doi.org/10.1016/j.lithos.2010.04.013 Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. https://doi.org/10.1016/j.gca.2008.04.019 Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian-Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261/262: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018 Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012-143 Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Mixed Volcanogenic-Lithogenic Sources for Permian Bauxite Deposits in Southwestern Youjiang Basin, South China, and Their Metallogenic Significance. Sedimentary Geology, 341: 276-288. https://doi.org/10.1016/j.sedgeo.2016.04.016 Yunnan Geological Bureau, 1966. 1: 200 000 Regional Geological Survey Report of Heqing Area, 35-46 (in Chinese). Zhang, Y. L., Wang, Z. Q., Wang, G., et al., 2016. Chromian Spinel, Zircon Age Constraints on the Provenance of Early Triassic Feixianguan Formation Sandstones from Huize Area, Upper Yangtze Region. Geological Review, 62(1): 54-72 (in Chinese with English abstract). Zhao, X. X., Coe, R. S., 1987. Palaeomagnetic Constraints on the Collision and Rotation of North and South China. Nature, 327(6118): 141-144. https://doi.org/10.1038/327141a0 Zhong, H., Zhu, W. G., Chu, Z. Y., et al., 2007. SHRIMP U-Pb Zircon Geochronology, Geochemistry, and Nd-Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China. Chemical Geology, 236(1-2): 112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004 Zhong, H., Zhu, W. G., Hu, R. Z., et al., 2009. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Panzhihua A-Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust. Lithos, 110(1-4): 109-128. https://doi.org/10.1016/j.lithos.2008.12.006 Zhong, S. H., Feng, C. Y., Seltmann, R., et al., 2018. Can Magmatic Zircon be Distinguished from Hydrothermal Zircon by Trace Element Composition? The Effect of Mineral Inclusions on Zircon Trace Element Composition. Lithos, 314/315: 646-657. https://doi.org/10.1016/j.lithos.2018.06.029 Zhou, M. F., Zhao, J. H., Qi, L., et al., 2006. Zircon U-Pb Geochronology and Elemental and Sr-Nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, SW China. Contributions to Mineralogy and Petrology, 151(1): 1-19. https://doi.org/10.1007/s00410-005-0030-y Zhou, Y. S., Yang, J. H., Huang, Y., et al., 2022. Provenance of the Lower Triassic Feixianguan Formation in Southwestern Guizhou Province and Reconstruction of Volcanic Denudation Sequence in the Emeishan Large Igneous Province. Acta Geologica Sinica, 96(7): 2348-2364 (in Chinese with English abstract). Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144/145: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020 Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031 Zhu, M., Chen, H. L., Yu, L., et al., 2018. Provenance of the Early Triassic in the Southwestern Sichuan Basin, Upper Yangtze, and Its Implications for Tectonic Evolution. Canadian Journal of Earth Sciences, 55(1): 70-83. https://doi.org/10.1139/cjes-2017-0092 Zhu, M., Chen, H. L., Zhou, J., et al., 2016. Provenance of Early Triassic in Yanyuan Basin, Upper Yangtze and Its Implication for the Tectonic Evolution. Earth Science, 41(8): 1309-1321 (in Chinese with English abstract). 崔克信, 2004. 中国西南区域古地理及其演化图集. 北京: 地震出版社. 邓旭升, 杨江海, 何犇, 等, 2025. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应. 沉积学报, 43(4): 1293-1307. 高崇龙, 王剑, 刘明, 等, 2024. 准南侏罗‒白垩纪原型盆地边界变迁及其沉积物源响应. 地球科学, 49(1): 103-122. 高秋灵, 2013. 华南二叠‒三叠之交的长英质火山作用. 武汉: 中国地质大学. 韩超, 2023. 华南西缘晚二叠世‒早三叠世碎屑岩物源分析及其对古特提斯分支洋俯冲极性的约束(硕士学位论文). 成都: 成都理工大学. 何斌, 徐义刚, 肖龙, 等, 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30-37. 何谋惷, 丁振举, 王翔, 等, 2023. 湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征: 物源、古风化、沉积环境和构造背景. 地球科学, 48(9): 3280-3295. 雷永良, 李本亮, 陈竹新, 等, 2010. 上扬子板块西部边界地区构造演化. 北京: 石油工业出版社. 李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174. 李朋武, 高锐, 管烨, 等, 2009. 古特提斯洋的闭合时代的古地磁分析: 松潘复理石杂岩形成的构造背景. 地球学报, 30(1): 39-50. 马永生, 陈洪德, 王国力, 2009. 中国南方构造‒层序岩相古地理图集: 震旦记‒新近纪. 北京: 科学出版社. 缪宇, 田瑜峰, 吴亮, 等, 2021. 上扬子西南待补地区飞仙关组年代学、岩石地球化学及其对Rodinia超大陆构造演化的指示. 地质学报, 95(12): 3739-3757. 潘桂棠, 王立全, 李兴振, 等, 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质, 21(3): 1-26. 四川省地质矿产研究所专题研究组, 1987. 盐源‒丽江地区三叠纪地层及沉积相. 北京: 地质出版社. 宋芳, 何垚砚, 牛志军, 等, 2024. 华南板块东南部南华纪‒震旦纪沉积地层区域对比、物源特征及构造演化. 地球科学, 49(9): 3411-3427. 王曼, 钟玉婷, 侯莹玲, 等, 2018. 华南地区二叠纪‒三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48. 云南省地质局, 1966. 鹤庆地区1: 20万区域地质调查报告, 35-46. 张英利, 王宗起, 王刚, 等, 2016. 上扬子会泽地区早三叠世飞仙关组砂岩物源特征: 来自重矿物铬尖晶石和碎屑锆石的限定. 地质论评, 62(1): 54-72. 周寅生, 杨江海, 黄燕, 等, 2022. 黔西南下三叠统飞仙关组沉积物源分析对峨眉山大火成岩省火山剥蚀序列的重建约束. 地质学报, 96(7): 2348-2364. 朱民, 陈汉林, 周静, 等, 2016. 上扬子西南盐源盆地早三叠世物源体系及构造意义. 地球科学, 41(8): 1309-1321. doi: 10.3799/dqkx.2016.106 -




下载: