Enrichment Regularities of Se and Te and Their Potential Resources in Pulang Porphyry Cu-Au-Mo Deposit, Sanjiang Orogenic Belt
-
摘要: 近年来,普朗超大型斑岩铜多金属矿床(Cu-An-Mo)的硒(Se)和碲(Te)的富集现象备受关注,但资源前景与综合利用价值尚不明确.本研究采用LA-ICP-MS和ME-MS61r等方法,系统探究了该矿床Se和Te的主要载体矿物与空间分布规律,并对其资源前景进行了评估.研究发现,Se主要富集于黄铜矿和辉钼矿,Te主要寄主矿物为辉钼矿.空间分布上,主矿段硫化物的Se和Te含量显著高于东部矿段;但在单一勘探线剖面上,两者含量随深度变化无明显规律.从综合利用价值来看,铜精矿Se含量为170×10-6~200×10-6、钼精矿为250×10-6,均达到伴生Se矿综合回收指标;铜精矿Te含量为3.6×10-6~5.5×10-6,钼精矿为16.4×10-6(略超伴生Te矿回收标准),因矿床以铜为主的开采特点,Te综合回收价值相对有限.资源前景方面,基于已探明的5.11 Mt铜资源量估算,普朗矿床Se潜在资源量约4 440 t,达到超大型规模.Abstract: Recent years have witnessed increasing attention on the enrichment of selenium (Se) and tellurium (Te) within the Pulang super-large porphyry Cu-Au-Mo deposit; however, their resource potential and comprehensive utilization value remain unclear. In this paper it presents a systematical investigation of the principal host minerals and spatial distribution patterns of Se and Te within the deposit, employing methods such as LA-ICP-MS and ME-MS61r, and evaluation of their resource prospects. The findings reveal that Se is primarily enriched in chalcopyrite and molybdenite, while the main host mineral for Te is molybdenite. At the spatial distribution level, the contents of Se and Te in sulfides of the main mining area are obviously higher than those in the eastern mining area on the plane, which may be related to differences in mineralization types and ore-forming temperatures. However, in a single exploration line section, the contents of Se and Te show no obvious regular changes with depth. Regarding utilization value, the analysis of Cu and Mo concentrates shows that the Se content in Cu concentrates is 170×10-6-200×10-6, and that in Mo concentrates reaches 250×10-6, both meeting the recovery indexes for associated Se minerals. The Te content in Cu concentrates is 3.6×10-6-5.5×10-6, and that in Mo concentrates is 16.4×10-6. Only Mo concentrates slightly exceed the recovery standard for associated Te minerals, and due to the Cu-dominated mining characteristics of the deposit, the comprehensive recovery value of Te is relatively limited. In terms of resource estimation, based on the proven Cu resource of 5.11 Mt, the potential Se resource of the Pulang deposit is calculated to be approximately 4 440 t, reaching the super-large scale.
-
图 1 义敦岛弧构造格架(a)和普朗斑岩型铜金钼矿床地质简图(b. 据 Cao et al., 2019;Zhao et al., 2025修改)
Fig. 1. Tectonic framework of the Yidun island arc (a) and geological map of the Pulang porphyry Cu-Au-Mo deposit (b. modified from Cao et al. (2019) and Zhao et al.(2025))
图 3 普朗矿床代表性样品的黄铁矿(Py)、黄铜矿(Ccp)、辉钼矿(Mol)和磁黄铁矿(Po)LA-ICP-MS分析点位及其硒(红色数值)和碲(蓝色数值)含量(10‒6)
Fig. 3. LA-ICP-MS analysis spots and selenium (red values) and tellurium (blue values) contents (10‒6) in pyrite (Py), chalcopyrite (Ccp), molybdenite (Mol), and pyrrhotite (Po) from representative samples of the Pulang deposit
图 4 普朗矿床北部矿段、首采区和东部矿段代表性勘探线硫化物的硒(a)和碲(b)含量
德兴、城门山、鸡冠咀、鸡笼山和姚家姚家陵硫化物的硒和碲含量数据源自Xiong et al.(2022);Zhang et al.(2022);Guo et al.(2023);冷成彪等(2023);Li et al.(2024);Jiang et al.(2025)
Fig. 4. Selenium (a) and tellurium (b) contents in sulfides from representative exploration lines of the northern mining block, initial mining area, and eastern mining block, Pulang deposit
表 1 普朗矿床铜精矿和钼精矿的伴生元素含量
Table 1. Associated element contents in copper and molybdenum concentrates from the Pulang deposit
样品号 Cu
(%)Fe
(%)Mo
(10‒6)Se
(10‒6)Te
(10‒6)Ag
(10‒6)As
(10‒6)Pb
(10‒6)Co
(10‒6)Ni
(10‒6)主要金属矿物 Cu1 19.80 31.9 8 400 170 3.8 42.2 550 750 200 99 Ccp, Py Cu3 21.1 32.1 8 200 180 5.3 44.9 620 490 178.5 91 Ccp, Py Cu5 19.90 33.0 8 190 170 5.1 42.7 660 510 230 103.5 Ccp, Py Cu7 19.25 31.4 6 590 170 4.4 43.5 660 600 200 115 Ccp, Py Cu9 20.1 33.4 7 390 180 4.5 43.4 650 590 216 107 Ccp, Py Cu11 21.4 33.4 8 170 200 4.6 48.5 630 690 199 99 Ccp, Py Cu13 21.4 32.2 6 730 180 5.0 44.7 560 580 182.5 89 Ccp, Py Cu15 22.1 31.9 7 810 190 4.4 45.3 464 580 168 87 Ccp, Py Cu17 20.5 31.9 7 060 170 4.8 44.5 560 530 196 98 Ccp, Py Cu19 22.4 31.6 6 430 180 4.7 44.6 750 550 165.5 80 Ccp, Py Cu21 21.1 32.1 6 780 180 5.5 45.1 760 630 170.5 83 Ccp, Py Cu23 23.1 32.4 1 790 190 3.6 46.8 580 620 153 81 Ccp, Py Cu25 22.8 32.6 1 930 190 4.9 46.8 530 620 160.5 82 Ccp, Py Cu27 22.4 32.9 1 610 200 4.7 46.8 620 590 181 86 Ccp, Py Cu29 21.2 31.0 6 920 190 4.6 44.2 780 520 152 74 Ccp, Py Mo1 2.14 4.4 > 10 000 250 16.4 45.4 67 350 34 22 Mol, Ccp -
Auclair, G., Fouquet, Y., Bohn, M., 1987. Distribution of Selenium in High-Temperature Hydrothermal Sulfide Deposits at 13 Degrees North, East Pacific Rise. The Canadian Mineralogist, 25(4): 577-587. Cao, D. H., Wang, A. J., Li, W. C., et al., 2009. Magmatic Mixing of Pulang Porphyry Copper Deposit: Petrological and Element Geochemical Evidence. Acta Geologica Sinica, 83(2): 166-175 (in Chinese with English abstract). Cao, K., Yang, Z. M., Mavrogenes, J., et al., 2019. Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, Southwest China. Economic Geology, 114(2): 275-301. https://doi.org/10.5382/econgeo.2019.4631 Chen, B. H., Ding, J. H., Ye, H. S., et al., 2020. Metallogenic Regularity of Selenium Ore in China. Mineral Deposits, 39(6): 1063-1077 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2020.06.007 Deng, J., Wang, C. M., Li, W. C., et al., 2014. The Situation and Enlightenment of the Research of the Tectonic Evolution and Metallogenesis in the Sanjiang Tethys. Earth Science Frontiers, 21(1): 52-64 (in Chinese with English abstract). Deng, J., Wang, Q. F., Li, G. J., 2016. Superimposed Orogeny and Composite Metallogenic System: Case Study from the Sanjiang Tethyan Belt, SW China. Acta Petrologica Sinica, 32(8): 2225-2247 (in Chinese with English abstract). Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry-Skarn System: A Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520 Han, Z. K., Chen, Z. Z., Pan, Z. S., et al., 2025. Analysis of the Supply and Demand Dynamics of Tellurium Resources in China by 2035. China Mining Magazine, 34(2): 297-305 (in Chinese with English abstract). Hou, Z. Q., Qu, X. M., Zhou, J. R., et al., 2001. Collision-Orogenic Processes of the Yidun Arc in the Sanjiang Region: Record of Granites. Acta Geologica Sinica, 75(4): 484-497 (in Chinese with English abstract). Hou, Z. Q., Yang, Y. Q., Qu, X. M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120 (in Chinese with English abstract). Hu, D. P., Guan, S. J., Su, Y., et al., 2024. Characteristics of Ore-Forming Fluids and Genesis of the First Mining Area and Eastern Ore Section of the Pulang Porphyry Copper Deposit, Southeastern China: A Comparative Study. Minerals, 14(1): 98. https://doi.org/10.3390/min14010098 Jiang, J. C., Xu, J., Xie, G. Q., et al., 2025. Occurrence and Distribution of Se and Te in the Jilongshan Au-Cu Skarn Deposit from the Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 176: 106439. https://doi.org/10.1016/j.oregeorev.2024.106439 John, D. A., Taylor, R. D., 2016. By-Products of Porphyry Copper and Molybdenum Deposits. Acta Geochimica, 36(1): 1-7. https://doi.org/10.5382/rev.18.07 Keith, M., Smith, D. J., Jenkin, G. R. T., et al., 2018. A Review of Te and Se Systematics in Hydrothermal Pyrite from Precious Metal Deposits: Insights into Ore-Forming Processes. Ore Geology Reviews, 96: 269-282. https://doi.org/10.1016/j.oregeorev.2017.07.023 Leng, C. B., Chen, T. L., Ren, Z., et al., 2023. Distribution Characteristics and Differential Enrichment Mechanism of Rhenium in Molybdenite in the Dexing Copper Ore Field. Acta Petrologica Sinica, 39(10): 3107-3120 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.10.15 Li, W. C., Liu, X. L., 2015. The Metallogenic Regularity Related to the Tectonic and Petrographic Features of Pulang Porphyry Copper Orefield, Yunnan, and Its Ore-Controlling Characteristics. Earth Science Frontiers, 22(4): 53-66 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.2015.04.007 Li, W. C., Yin, G. H., Yu, H. J., et al., 2011. The Porphyry Metallogenesis of Geza Volcanic Magmatic Arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552 (in Chinese with English abstract). Li, W. C., Zhang, X. F., Yu, H. J., et al., 2022. Geology and Mineralization of the Pulang Supergiant Porphyry Copper Deposit (5.11 Mt) in Shangri-La, Yunnan Province, China: A Review. China Geology, 5(4): 662-695. https://doi.org/10.31035/cg2022060 Li, W. K., Yang, Z. M., Cao, K., et al., 2019. Redox-Controlled Generation of the Giant Porphyry Cu-Au Deposit at Pulang, Southwest China. Contributions to Mineralogy and Petrology, 174(2): 12. https://doi.org/10.1007/s00410-019-1546-x Li, X. H., Xie, G. Q., Jian, W., et al., 2024. Distribution of Tellurium, Selenium, Cobalt and Gold in Sulfide Minerals: A Case Study of the Jiguanzui Porphyry-Skarn Au-Cu Deposit, Eastern China. Ore Geology Reviews, 175: 106318. https://doi.org/10.1016/j.oregeorev.2024.106318 Liu, J. J., Zhai, D. G., Liu, X. H., et al., 2011. Research Status of Extraordinary Enrichment of Selenium and Tellurium in Gold Deposits. Acta Mineralogica Sinica, 31(S1): 267-269 (in Chinese with English abstract). https://doi.org/10.16461/j.cnki.1000-4734.2011.s1.102 Liu, J. J., Zhai, D. G., Wang, D. Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.sf.2020.3.13 Liu, J. T., Yang, L. Q., Lyu, L., 2013. Pulang Reduced Porphyry Copper Deposit in the Zhongdian Area, Southwest China: Constrains by the Mineral Assemblages and the Ore-Forming Fluid Compositions. Acta Petrologica Sinica, 29(11): 3914-3924 (in Chinese with English abstract). Liu, X. L., Li, W. C., Yin, G. H., 2012. Lead Isotope Characteristics and Tracing Significance of Ore Metallogenic Material in Geza Arc Metallogenic Belt, Yunnan. Geoscience, 26(3): 445-452 (in Chinese with English abstract). Maslennikov, V. V., Ayupova, N. R., Maslennikova, S. P., et al., 2017. Criteria for the Detection of Hydrothermal Ecosystem Faunas in Ores of Massive Sulfide Deposits in the Urals. Lithology and Mineral Resources, 52(3): 173-191. https://doi.org/10.1134/S002449021703004X Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/C1JA10172B Ren, J. B., Xu, J. F., Chen, J. L., 2011. Zircon Geochronology and Geological Implications of Ore-Bearing Porphyries from Zhongdian Arc. Acta Petrologica Sinica, 27(9): 2591-2599 (in Chinese with English abstract). Revan, M. K., Genç, Y., Maslennikov, V. V., et al., 2014. Mineralogy and Trace-Element Geochemistry of Sulfide Minerals in Hydrothermal Chimneys from the Upper-Cretaceous VMS Deposits of the Eastern Pontide Orogenic Belt (NE Turkey). Ore Geology Reviews, 63: 129-149. https://doi.org/10.1016/j.oregeorev.2014.05.006 Shen, Q. W., Wang, D. Z., Leng, C. B., et al., 2023. Discovery of Telluride and Selenide in the Giant Pulang Porphyry Cu-Au Deposit, Yunnan Province. Rock and Mineral Analysis, 42(3): 643-646 (in Chinese with English abstract). https://doi.org/10.15898/j.ykcs.202303180038 Tu, G. C., 2000. Preliminary Discussion on Tellurium Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 211-214 (in Chinese with English abstract). Wang, D. Z., Liang, F., Wang, Y. J., et al., 2025. Occurrence States and Enrichment Mechanisms of Low-Melting Point Copper-Philic Element and Noble Metals in Porphyry System: A Case Study of the Pulang Porphyry Cu-Au Deposit, Southeast Tibet. Acta Petrologica Sinica, 41(2): 621-641 (in Chinese with English abstract). doi: 10.18654/1000-0569/2025.02.15 Wang, G. Z., Liu, J. J., Liu, Z. J., et al., 2024. Types, Distribution and Resource Potential of Selenium Deposits in China. China Mining Magazine, 33(4): 39-50 (in Chinese with English abstract). Xia, Q. L., Li, T. F., Kang, L., et al., 2021. Study on the PTX Parameters and Fractal Characteristics of Ore-Forming Fluids in the East Ore Section of the Pulang Copper Deposit, Southwest China. Journal of Earth Science, 32(2): 390-407. https://doi.org/10.1007/s12583-021-1448-5 Xie, G. Q., Ji, Y. H., Wu, X. L., et al., 2025. Study on Skarn Deposit Model. Geological Bulletin of China, 44(S1): 201-219 (in Chinese with English abstract). Xie, G. Q., Wu, X. L., Li, X. H., et al., 2024. A Primary Study on the Current Status and Mineralization Regularities of Associated Te and Se Resources in Porphyry-Skarn Cu Polymetallic Deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 35-48, 5 (in Chinese with English abstract). Xiong, Y. Y., Zhou, T. F., Fan, Y., et al., 2022. Enrichment Mechanisms and Occurrence Regularity of Critical Minerals Resources in the Yaojialing Zn Skarn Polymetallic Deposit, Tongling District, Eastern China. Ore Geology Reviews, 144: 104822. https://doi.org/10.1016/j.oregeorev.2022.104822 Yang, Q., Ren, Y. S., Chen, S. B., et al., 2019. Geological, Geochronological, and Geochemical Insights into the Formation of the Giant Pulang Porphyry Cu (-Mo-Au) Deposit in Northwestern Yunnan Province, SW China. Minerals, 9(3): 191. https://doi.org/10.3390/min9030191 Yang, Z., Zhang, X. F., 2021. Multiphase Intrusion at the Giant Pulang Porphyry Cu-Au Deposit in Western Yunnan (Southwestern China): Comparison between Ore-Causative and Barren Intrusions. Mineralogy and Petrology, 115(2): 223-240. https://doi.org/10.1007/s00710-020-00734-8 Yang, Z., Zhang, X. F., Yuan, Y. S., et al., 2021. Hydrothermal Evolution and Mineralization of the Pulang Porphyry Cu-Au Deposit in the Sanjiang Tethys, Southwest China: Constraints from Fluid Inclusions and D-O-S Isotopes. Ore Geology Reviews, 139: 104430. https://doi.org/10.1016/j.oregeorev.2021.104430 Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 133-187. https://doi.org/10.5382/SP.22.05 Zeng, P. S., Li, W. C., Wang, H. P., et al., 2006. Indosinian Super-Large Porphyry Copper Deposit in Pulang, Yunnan Province: Petrological and Chronological Characteristics. Acta Petrologica Sinica, 22(4): 989-1000 (in Chinese with English abstract). Zhang, Y., Chen, H. Y., Cheng, J. M., et al., 2022. Pyrite Geochemistry and Its Implications on Au-Cu Skarn Metallogeny: An Example from the Jiguanzui Deposit, Eastern China. American Mineralogist, 107(10): 1910-1925. https://doi.org/10.2138/am-2022-8118 Zhao, X. Y., Tang, Z. C., Deng, M. G., et al., 2025. Genesis of the Pulang Polymetallic Mineralization System in Yunnan Province, China: Insights from In Situ Trace Element and S Isotope Analyses of Pyrite. Journal of Geochemical Exploration, 278: 107848. https://doi.org/10.1016/j.gexplo.2025.107848 Zhu, Q. Q., Xie, G. Q., Gao, R., et al., 2025. Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province. Earth Science, 50(7): 2667-2688 (in Chinese with English abstract). Zhu, Z. D., Li, Z. Z., Li, Z. P., et al., 2023. Geochemical Characteristics of Tectonic(Altered Rock) in the Initial Mining Area and Prospecting Prediction of Yunnan Pulang Porphyry Copper Deposit. Geotectonica et Metallogenia, 47(5): 1002-1017 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2023.05.005 曹殿华, 王安建, 李文昌, 等, 2009. 普朗斑岩铜矿岩浆混合作用: 岩石学及元素地球化学证据. 地质学报, 83(2): 166-175. 陈炳翰, 丁建华, 叶会寿, 等, 2020. 中国硒矿成矿规律概要. 矿床地质, 39(6): 1063-1077. 邓军, 王长明, 李文昌, 等, 2014. 三江特提斯复合造山与成矿作用研究态势及启示. 地学前缘, 21(1): 52-64. 邓军, 王庆飞, 李龚健, 2016. 复合造山和复合成矿系统: 三江特提斯例析. 岩石学报, 32(8): 2225-2247. 韩中奎, 陈子瞻, 潘昭帅, 等, 2025.2035年我国碲资源供需形势分析. 中国矿业, 34(2): 297-305. 侯增谦, 曲晓明, 周继荣, 等, 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75(4): 484-497. 侯增谦, 杨岳清, 曲晓明, 等, 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. 冷成彪, 陈涛亮, 任志, 等, 2023. 德兴斑岩矿田辉钼矿中铼的分布特征及富集机制. 岩石学报, 39(10): 3107-3120. 李文昌, 刘学龙, 2015. 云南普朗斑岩型铜矿田构造岩相成矿规律与控矿特征. 地学前缘, 22(4): 53-66. 李文昌, 尹光侯, 余海军, 等, 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552. 刘家军, 翟德高, 刘新会, 等, 2011. 金矿床中硒、碲超常富集研究现状. 矿物学报, 31(S1): 267-269. 刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98. 刘江涛, 杨立强, 吕亮, 2013. 中甸普朗还原性斑岩型铜矿床: 矿物组合与流体组成约束. 岩石学报, 29(11): 3914-3924. 刘学龙, 李文昌, 尹光侯, 2012. 云南格咱岛弧岩浆成矿带铅同位素特征及成矿物质来源示踪. 现代地质, 26(3): 445-452. 任江波, 许继峰, 陈建林, 2011. 中甸岛弧成矿斑岩的锆石年代学及其意义. 岩石学报, 27(9): 2591-2599. 沈啟武, 王大钊, 冷成彪, 等, 2023. 云南普朗超大型斑岩铜金矿床中发现碲化物和硒化物. 岩矿测试, 42(3): 643-646. 涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214. 王大钊, 梁丰, 王艳军, 等, 2025. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究: 以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报, 41(2): 621-641. 王冠智, 刘家军, 柳振江, 等, 2024. 中国硒矿的矿床类型、分布与资源潜力. 中国矿业, 33(4): 39-50. 谢桂青, 纪云昊, 吴晓林, 等, 2025. 矽卡岩矿床模型研究. 地质通报, 44(S1): 201-219. 谢桂青, 吴晓林, 李新昊, 等, 2024. 长江中下游斑岩-矽卡岩铜多金属矿床共伴生碲、硒资源现状和成矿规律浅析. 矿物岩石地球化学通报, 43(1): 35-48, 5. 曾普胜, 李文昌, 王海平, 等, 2006. 云南普朗印支期超大型斑岩铜矿床: 岩石学及年代学特征. 岩石学报, 22(4): 989-1000. 朱乔乔, 谢桂青, 高任, 等, 2025. 江西城门山铜多金属矿床中稀散元素的差异化富集规律. 地球科学, 50(7): 2667-2688. doi: 10.3799/dqkx.2025.025 朱振东, 李正章, 李志鹏, 等, 2023. 云南普朗铜矿首采区构造(蚀变岩)地球化学特征及找矿预测. 大地构造与成矿学, 47(5): 1002-1017. -
王雷 附表.docx
-




下载: