Economic Loss Assessment of Upstream Inundation under Time-Varying Water Levels in Landslide-Dammed Lakes: A Case Study of Tangjiashan Dammed Lake
- 
					    摘要:
堰塞坝形成引发的上游回水淹没常导致建筑物等固定资产严重损毁.由于上游水位的动态变化特性,传统损失评估方法存在显著不确定性.为此,提出一种融合淹没深度与持续时间影响的动态水位淹没损失评估方法.以唐家山堰塞坝为例,首先利用时间序列分析与DABA模型模拟水位动态变化过程,进而构建建筑物在不同时序水深条件下的双因素(水深-历时)易损性函数,最终实现经济损失的量化评估.结果表明:海拔高程是决定建筑物受淹时序的关键因素,而地形类型与泄洪速度则主导了损失累积速率及其空间分布格局.平坦低程区(如漩坪乡)在淹没初期(前100 h)损失急剧累积,而斜坡高程区(如禹里镇)则呈现缓慢线性增长趋势.人工开挖泄流槽工程可显著降低斜坡区的总损失(如禹里镇损失减少约40%),但对低洼地区的减灾效果有限.相较于固定水位模型,提出的时变水位模型在地形复杂区域的损失评估精度更高.人工干预泄洪相比自然溃坝模式展现出显著的减灾效益.本研究为堰塞坝上游淹没经济损失的动态评估提供了理论依据与技术路径,并为应急处置工程决策提供了量化支持工具.
Abstract:The upstream backwater inundation triggered by landslide dam formation often leads to severe destruction of fixed assets such as buildings. Due to the dynamic nature of upstream water levels, traditional loss assessment methods exhibit significant uncertainty. To address this, in this paper it proposes a dynamic water level inundation loss assessment method that integrates the impacts of both inundation depth and duration. Taking the Tangjiashan landslide dam as a case study, this research first utilizes time series analysis and the DABA model to simulate the dynamic water level fluctuation process. Subsequently, a dual-factor (water depth-duration) vulnerability function for buildings under varying temporal water depth conditions is constructed. Finally, a quantitative assessment of economic losses is achieved. The results demonstrate that elevation is the key factor determining the inundation sequence of buildings, while terrain type and flood release velocity dominate the loss accumulation rate and its spatial distribution pattern. Specifically, losses accumulate rapidly in flat, low-elevation areas (e.g., Xuanping Township) during the initial inundation phase (first 100 hours), whereas sloping, higher-elevation areas (e.g., Yuli Town) exhibit a slow, linear increase trend. Artificially excavated drainage channels significantly reduce total losses in sloping areas (e.g., approximately 40% reduction in Yuli Town), but their mitigating effect is limited in low-lying areas. Compared to the fixed water level model, the time-varying water level model proposed herein demonstrates superior accuracy in loss assessment within topographically complex regions. Artificially induced flood release shows significant disaster mitigation benefits compared to the natural dam breach mode. This study provides a theoretical foundation and technical pathway for the dynamic assessment of economic losses due to upstream inundation caused by landslide dams, and offers a quantitative decision support tool for emergency response engineering.
 - 
						
    
表 1 堰塞坝计算工况及参数
Table 1. Calculation scenarios and parameters for the landslide dam
工况 工况一 工况二 泄洪措施 自然泄洪 开挖泄流槽 坝体材料 高侵蚀性材料 三层不同风化程度碎裂岩 坝顶高程(m) 752 742 最大库容(108 m3) 3.16 2.47 表 2 溃决参数
Table 2. Breach parameters
溃决参数 工况1 工况2 溃口顶宽(m) 353 200 溃口底宽(m) 214 90 溃口深度(m) 82 42 溃决时间(h) 8.9 14 峰值流量(m³/s) 35 100 6 500  - 
						
Cao, B., Jiang, N. M., Xiong, J., 2008. Construction Technology and Organization for Emergency Treatment of Tangjiashan Dammed Lake. Yangtze River, 39(22): 4-6, 51(in Chinese). Chang, D. S., Zhang, L. M., 2010. Simulation of the Erosion Process of Landslide Dams Due to Overtopping Considering Variations in Soil Erodibility along Depth. Natural Hazards and Earth System Sciences, 10(4): 933-946. https://doi.org/10.5194/nhess-10-933-2010 Cian, F., Delgado Blasco, J. M., Ivanescu, C., 2024. Improving Rapid Flood Impact Assessment: An Enhanced Multi-Sensor Approach Including a New Flood Mapping Method Based on Sentinel-2 Data. Journal of Environmental Management, 369: 122326. https://doi.org/10.1016/j.jenvman.2024.122326 Dai, X. J., Yin, Y. P., Xing, A. G., 2019. Simulation and Dynamic Analysis of Yigong Rockslide-Debris Avalanche-Dam Breaking Disaster Chain. The Chinese Journal of Geological Hazard and Control, 30(5): 1-8(in Chinese with English abstract). de Moel, H., Aerts, J. C. J. H., 2011. Effect of Uncertainty in Land Use, Damage Models and Inundation Depth on Flood Damage Estimates. Natural Hazards, 58(1): 407-425. https://doi.org/10.1007/s11069-010-9675-6 Feng, W. K., Zhang, G. Q., Bai, H. L., et al., 2019. A Preliminary Analysis of the Formation Mechanism and Development Tendency of the Huge Baige Landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 27(2): 415-425(in Chinese with English abstract). Gerl, T., Kreibich, H., Franco, G., et al., 2016. A Review of Flood Loss Models as Basis for Harmonization and Benchmarking. PLoS One, 11(7): e0159791. https://doi.org/10.1371/journal.pone.0159791 Hasanzadeh Nafari, R., Amadio, M., Ngo, T., et al., 2017. Flood Loss Modelling with FLF-IT: A New Flood Loss Function for Italian Residential Structures. Natural Hazards and Earth System Sciences, 17(7): 1047-1059. https://doi.org/10.5194/nhess-17-1047-2017 Hu, X. W., Huang, R. Q., Shi, Y. B., et al., 2009. Analysis of Blocking River Mechanism of Tangjiashan Landslide and Dam-Breaking Mode of Its Barrier Dam. Chinese Journal of Rock Mechanics and Engineering, 28(1): 181-189(in Chinese with English abstract). Jin, J. J., Pan, M., Li, T. F., 2007. Regional Landslide Disaster Risk Assessment Methods. Journal of Mountain Science, 25(2): 197-201(in Chinese with English abstract). Liu, C. K., Ma, R., Zhang, L., et al., 2020. Research on Flood Simulation and Loss Evaluation Based on 3DGIS. Water Resources and Hydropower Engineering, 51(12): 204-209(in Chinese with English abstract). Mahmud, S., 2021. Inundation and Hazard Mapping Due to Breaching and Over-Topping of Flood Control Embankments in Harirampur (Dissertation). Bangladesh University of Engineering and Technology, Dhaka. McBean, E. A., Gorrie, J., Fortin, M., et al., 1988. Adjustment Factors for Flood Damage Curves. Journal of Water Resources Planning and Management, 114(6): 635-646. https://doi.org/10.1061/(asce)0733-9496(1988)114:6(635) Nirwansyah, A. W., Braun, B., Demirdag, I., et al., 2023. Method for Economic Loss Estimation in Traditional Coastal Salt Farming towards Tidal Inundation. MethodsX, 10: 102176. https://doi.org/10.1016/j.mex.2023.102176 Oliveri, E., Santoro, M., 2000. Estimation of Urban Structural Flood Damages: The Case Study of Palermo. Urban Water, 2(3): 223-234. https://doi.org/10.1016/S1462-0758(00)00062-5 Peng, M., Ma, F. J., Shen, D. Y., et al., 2024. A Method for Estimating Human Loss of Life in Dam-Breach Flood Considering Human-Fluid Interaction. Advanced Engineering Sciences, 56(1): 127-137(in Chinese with English abstract). Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y Shi, Z. M., Xiong, Y. F., Peng, M., et al., 2016. An Efficient Risk Assessment Method for Landslide Dam breach: Taking the Hongshiyan Landslide Dam Formed by the 2014 Ludian Earthquake as an Example. Journal of Hydraulic Engineering, 47(6): 742-751(in Chinese with English abstract). Verkade, J., 2008. The Value of Flood Warning Systems. Delft, Deltares. Wang, S., 2022. Study on Risk Probability Evaluation of Backwater Flooded Area of Baige Landslide Blocking River Disaster (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). Wu, X. H., Zhou, L., Gao, G., et al., 2016. Urban Flood Depth-Economic Loss Curves and Their Amendment Based on Resilience: Evidence from Lizhong Town in Lixia River and Houbai Town in Jurong River of China. Natural Hazards, 82(3): 1981-2000. https://doi.org/10.1007/s11069-016-2281-5 Xiang, S. Y., Chen, J., Wei, W. Q., 1995. Urban Flood Submerging Simulation Analysis Based on GIS. Earth Science, 20(5): 575-580(in Chinese with English abstract). Xie, Q. M., Liu, P., Xia, Y. Y., 2004. Study on Risk Evaluation of Landslide Hazard. Metal Mine, (3): 58-61(in Chinese with English abstract). Yan, Z. W., Wei, Y. Q., Cai, H., 2009. Seepage Stability Assessment on Barrier Dams. Journal of Yangtze River Scientific Research Institute, 26(10): 122-125(in Chinese with English abstract). Yang, Z. W., Wu, B. B., Liu, W. M., et al., 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736(in Chinese with English abstract). Zeng, P., Wang, S., Sun, X. P., et al., 2022. Probabilistic Hazard Assessment of Landslide-Induced River Damming. Engineering Geology, 304: 106678. https://doi.org/10.1016/j.enggeo.2022.106678 Zeng, T. R., Yin, K. L., Gui, L., et al., 2023. Quantitative Vulnerability Analysis of Buildings Based on Landslide Intensity Prediction. Earth Science, 48(5): 1807-1824(in Chinese with English abstract). Zhang, J. X., 2009. Hydrologic Analysis and Emergency Application of Barrier Lake Breaking (Dissertation). Tsinghua University, Beijing (in Chinese with English abstract). 曹波, 蒋乃明, 熊进, 2008. 唐家山堰塞湖应急处置施工技术和施工组织. 人民长江, 39(22): 4-6, 51. 戴兴建, 殷跃平, 邢爱国, 2019. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析. 中国地质灾害与防治学报, 30(5): 1-8. 冯文凯, 张国强, 白慧林, 等, 2019. 金沙江"10·11" 白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 27(2): 415-425. 胡卸文, 黄润秋, 施裕兵, 等, 2009. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析. 岩石力学与工程学报, 28(1): 181-189. 金江军, 潘懋, 李铁锋, 2007. 区域滑坡灾害风险评价方法研究. 山地学报, 25(2): 197-201. 刘成堃, 马瑞, 张力, 等, 2020.3DGIS支持下的洪水淹没模拟与快速损失评估研究. 水利水电技术, 51(12): 204-209. 彭铭, 马福军, 沈丹祎, 等, 2024. 考虑人体与水流相互作用的溃坝洪水生命损失评估模型. 工程科学与技术, 56(1): 127-137. 石振明, 熊永峰, 彭铭, 等, 2016. 堰塞湖溃坝快速定量风险评估方法: 以2014年鲁甸地震形成的红石岩堰塞湖为例. 水利学报, 47(6): 742-751. 王升, 2022. 白格滑坡堵江灾害回水淹没区危险性概率评价研究(硕士学位论文). 成都: 成都理工大学. 向素玉, 陈军, 魏文秋, 1995. 基于GIS城市洪水淹没模拟分析. 地球科学, 20(5): 575-580. http://www.earth-science.net/article/id/331 谢全敏, 刘鹏, 夏元友, 2004. 滑坡灾害风险评价研究. 金属矿山, (3): 58-61. 严祖文, 魏迎奇, 蔡红, 2009. 堰塞坝渗透稳定性评估. 长江科学院院报, 26(10): 122-125. 杨泽文, 吴兵兵, 刘维明, 等, 2025. 高能溃决洪水侵蚀机理与地貌效应研究进展. 地球科学, 50(2): 718-736. doi: 10.3799/dqkx.2024.009 曾韬睿, 殷坤龙, 桂蕾, 等, 2023. 基于滑坡致灾强度预测的建筑物易损性定量评价. 地球科学, 48(5): 1807-1824. doi: 10.3799/dqkx.2022.429 张建新, 2009. 堰塞湖溃决水文分析与应急应用研究(博士学位论文). 北京: 清华大学.  - 
						
						
						
						
						
					 
		            
		        



 
							
							
下载: