Geochemical Behaviors of Nickel Isotope in Marine Sediments
-
摘要: 镍(Ni)同位素体系是研究海洋镍元素来源、迁移转化与循环过程的关键工具.海洋沉积物在镍的地球化学循环中扮演着重要的角色,既是镍的“源”,又是镍的“汇”,其镍同位素组成能够记录海水镍循环过程中的关键信息.系统地总结了海水以及海洋主要储库,包括河流输入、热液体系、不同类型海洋沉积物(如铁锰氧化沉积物、缺氧沉积物以及碳酸盐岩沉积物等)的镍同位素组成,分析了镍同位素组成及相互关系,深入探讨了沉积物与海水之间镍同位素的分馏机制及其对古海洋环境重建的指示意义.研究结果表明,镍同位素在示踪古海洋生产力变化、硫化环境演变以及全球镍循环质量平衡等方面具有独特的优势.Abstract: The nickel isotope system serves as a crucial tool for investigating the sources, migration, transformation, and cycling processes of nickel in the ocean. Marine sediments play a vital role in the geochemical cycling of nickel, functioning both as a "source" and a "sink" for the element. The nickel isotopic composition can record key information about the nickel cycling process in seawater. In this paper it systematically summarizes the nickel isotopic compositions of seawater and major marine reservoirs, including riverine inputs, hydrothermal systems, and diverse marine sediments (iron-manganese oxide deposits, anoxic sediments, and carbonate sediments). It analyzes nickel isotopic compositions and their interrelationships, and delves into the fractionation mechanisms of nickel isotopes between sediments and seawater and their implications for reconstructing palaeoceanographic environments. The findings demonstrate that nickel isotope possesses unique advantages in tracing changes in palaeoceanographic productivity, sulfur-rich environmental evolution, and the mass balance of the global nickel cycle.
-
Key words:
- nickel /
- isotopes /
- isotope fractionation /
- marine geochemical cycles /
- oceanography
-
图 1 实验室研究固液相之间的镍同位素分馏
数据来源于Wasylenki et al.(2015,2024)、Wang and Wasylenki(2017)、Gueguen et al.(2018)、Sorensen et al.(2020)、Parigi et al.(2022)
Fig. 1. Ni isotope fractionation in different processes
图 2 沉积物中镍同位素组成(δ60Ni)与镍含量的关系
数据来源于Gueguen et al.(2013,2016)、Ciscato et al.(2018)和Fleischmann et al.(2023)
Fig. 2. Relationship between Ni isotope composition (δ60Ni) and Ni concentration in sediments
图 3 不同大洋海水的Ni含量与δ60Ni之间的关系
灰色线代表最佳拟合曲线;数据来源于Takano et al.(2017,2022)、Wang et al.(2019a)、Yang et al.(2020,2021)、Archer et al.(2020)、Lemaitre et al.(2022)
Fig. 3. Relationship between Ni content and δ60Ni in seawater from different oceans
图 4 不同溶解氧环境下孔隙水的镍同位素组成(δ60Ni)与镍含量的关系
数据来源于He et al.(2023)、Bruggmann et al.(2024)、Fleischmann et al.(2025)
Fig. 4. Relationship between Ni isotope composition (δ60Ni) and Ni concentration in pore water under different dissolved oxygen conditions
-
Alvarez, C. C., Quitté, G., Schott, J., et al., 2021. Nickel Isotope Fractionation as a Function of Carbonate Growth Rate during Ni Coprecipitation with Calcite. Geochimica et Cosmochimica Acta, 299: 184-198. https://doi.org/10.1016/j.gca.2021.02.019 Archer, C., Vance, D., Milne, A., et al., 2020. The Oceanic Biogeochemistry of Nickel and Its Isotopes: New Data from the South Atlantic and the Southern Ocean Biogeochemical Divide. Earth and Planetary Science Letters, 535: 116118. https://doi.org/10.1016/j.epsl.2020.116118 Atkins, A. L., Shaw, S., Peacock, C. L., 2016. Release of Ni from Birnessite during Transformation of Birnessite to Todorokite: Implications for Ni Cycling in Marine Sediments. Geochimica et Cosmochimica Acta, 189: 158-183. https://doi.org/10.1016/j.gca.2016.06.007 Baransky, E. J., Hardisty, D. S., Rolison, J. M., et al., 2025. Assessing the Fidelity of Shallow-Water Carbonates as Records of the Ni Isotope Composition of Surface Seawater. Geochimica et Cosmochimica Acta, 402: 16-31. https://doi.org/10.1016/j.gca.2025.06.021 Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024a. Distribution and Cycling of Nickel and Nickel Isotopes in the Pacific Ocean. Geophysical Research Letters, 51(16): e2024GL111115. https://doi.org/10.1029/2024GL111115 Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024b. A Benthic Source of Isotopically Heavy Ni from Continental Margins and Implications for Global Ocean Ni Isotope Mass Balance. Earth and Planetary Science Letters, 645: 118951. https://doi.org/10.1016/j.epsl.2024.118951 Böning, P., Fröllje, H., Beck, M., et al., 2012. Underestimation of the Authigenic Fraction of Cu and Ni in Organic-Rich Sediments. Marine Geology, 323-325: 24-28. https://doi.org/10.1016/j.margeo.2012.07.004 Böning, P., Shaw, T., Pahnke, K., et al., 2015. Nickel as Indicator of Fresh Organic Matter in Upwelling Sediments. Geochimica et Cosmochimica Acta, 162: 99-108. https://doi.org/10.1016/j.gca.2015.04.027 Bruggmann, S., McManus, J., Archer, C., et al., 2024. Nickel's Behaviour in Marine Sediments under Aerobic to Anaerobic Diagenetic Conditions. Chemical Geology, 662: 122234. https://doi.org/10.1016/j.chemgeo.2024.122234 Cameron, V., Vance, D., 2014. Heavy Nickel Isotope Compositions in Rivers and the Oceans. Geochimica et Cosmochimica Acta, 128: 195-211. https://doi.org/10.1016/j.gca.2013.12.007 Cameron, V., Vance, D., Archer, C., et al., 2009. A Biomarker Based on the Stable Isotopes of Nickel. Proceedings of the National Academy of Sciences, 106(27): 10944-10948. https://doi.org/10.1073/pnas.0900726106 Charbonnier, Q., Rickli, J., Archer, C., et al., 2024. The Influence of Secondary Weathering Processes on Dissolved Nickel Isotope Compositions under Cold Climatic Conditions-Observations from the Mackenzie Basin. Geochimica et Cosmochimica Acta, 364: 10-21. https://doi.org/10.1016/j.gca.2023.10.026 Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002 Ciscato, E. R., Bontognali, T. R. R., Vance, D., 2018. Nickel and Its Isotopes in Organic-Rich Sediments: Implications for Oceanic Budgets and a Potential Record of Ancient Seawater. Earth and Planetary Science Letters, 494: 239-250. https://doi.org/10.1016/j.epsl.2018.04.061 Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020GC009385 Elliott, T., Steele, R. C. J., 2017. The Isotope Geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 82(1): 511-542. https://doi.org/10.2138/rmg.2017.82.12 Fleischmann, S., Du, J. H., Chatterjee, A., et al., 2023. The Nickel Output to Abyssal Pelagic Manganese Oxides: A Balanced Elemental and Isotope Budget for the Oceans. Earth and Planetary Science Letters, 619: 118301. https://doi.org/10.1016/j.epsl.2023.118301 Fleischmann, S., Scholz, F., Du, J. H., et al., 2025. Processes Controlling Nickel and Its Isotopes in Anoxic Sediments of a Seasonally Hypoxic Bay. Geochimica et Cosmochimica Acta, 391: 1-15. https://doi.org/10.1016/j.gca.2025.01.016 Fujii, T., Moynier, F., Dauphas, N., et al., 2011. Theoretical and Experimental Investigation of Nickel Isotopic Fractionation in Species Relevant to Modern and Ancient Oceans. Geochimica et Cosmochimica Acta, 75(2): 469-482. https://doi.org/10.1016/j.gca.2010.11.003 Gall, L., Williams, H. M., Siebert, C., et al., 2013. Nickel Isotopic Compositions of Ferromanganese Crusts and the Constancy of Deep Ocean Inputs and Continental Weathering Effects over the Cenozoic. Earth and Planetary Science Letters, 375: 148-155. https://doi.org/10.1016/j.epsl.2013.05.019 Gueguen, B., Rouxel, O., Ponzevera, E., et al., 2013. Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 37(3): 297-317. https://doi.org/10.1111/j.1751-908X.2013.00209.x Gueguen, B., Rouxel, O., Rouget, M. L., et al., 2016. Comparative Geochemistry of Four Ferromanganese Crusts from the Pacific Ocean and Significance for the Use of Ni Isotopes as Paleoceanographic Tracers. Geochimica et Cosmochimica Acta, 189: 214-235. https://doi.org/10.1016/j.gca.2016.06.005 Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al., 2018. Variable Ni Isotope Fractionation between Fe-Oxyhydroxides and Implications for the Use of Ni Isotopes as Geochemical Tracers. Chemical Geology, 481: 38-52. https://doi.org/10.1016/j.chemgeo.2018.01.023 Gueguen, B., Rouxel, O., Fouquet, Y., 2021. Nickel Isotopes and Rare Earth Elements Systematics in Marine Hydrogenetic and Hydrothermal Ferromanganese Deposits. Chemical Geology, 560: 119999. https://doi.org/10.1016/j.chemgeo.2020.119999 He, Z. W., Archer, C., Yang, S. Y., et al., 2023. Sedimentary Cycling of Zinc and Nickel and Their Isotopes on an Upwelling Margin: Implications for Oceanic Budgets and Paleoenvironment Proxies. Geochimica et Cosmochimica Acta, 343: 84-97. https://doi.org/10.1016/j.gca.2022.12.026 Hohl, S. V., Bian, X. P., Viehmann, S., et al., 2025. A Novel Biomarker for Deep-Time Methanogenesis- Perspectives from Nickel Isotope Fractionation in Modern Microbialites. Earth and Planetary Science Letters, 666: 119492. https://doi.org/10.1016/j.epsl.2025.119492 John, S. G., Kelly, R. L., Bian, X. P., et al., 2022. The Biogeochemical Balance of Oceanic Nickel Cycling. Nature Geoscience, 15(11): 906-912. https://doi.org/10.1038/s41561-022-01045-7 Little, S. H., Archer, C., McManus, J., et al., 2020. Towards Balancing the Oceanic Ni Budget. Earth and Planetary Science Letters, 547: 116461. https://doi.org/10.1016/j.epsl.2020.116461 Lemaitre, N., Du, J. H., de Souza, G. F., et al., 2022. The Essential Bioactive Role of Nickel in the Oceans: Evidence from Nickel Isotopes. Earth and Planetary Science Letters, 584: 117513. https://doi.org/10.1016/j.epsl.2022.117513 Parigi, R., Pakostova, E., Reid, J. W., et al., 2022. Nickel Isotope Fractionation as an Indicator of Ni Sulfide Precipitation Associated with Microbially Mediated Sulfate Reduction. Environmental Science & Technology, 56(12): 7954-7962. https://pubs.acs.org/doi/10.1021/acs.est.2c00523 doi: 10.1021/acs.est.2c00523 Porter, S. J., Selby, D., Cameron, V., 2014. Characterising the Nickel Isotopic Composition of Organic-Rich Marine Sediments. Chemical Geology, 387: 12-21. https://doi.org/10.1016/j.chemgeo.2014.07.017 Ragsdale, S. W., 2009. Nickel-Based Enzyme Systems. Journal of Biological Chemistry, 284(28): 18571-18575. https://doi.org/10.1074/jbc.R900020200 Revels, B. N., Rickli, J., Moura, C. A. V., et al., 2021. Nickel and Its Isotopes in the Amazon Basin: The Impact of the Weathering Regime and Delivery to the Oceans. Geochimica et Cosmochimica Acta, 293: 344-364. https://doi.org/10.1016/j.gca.2020.11.005 Sorensen, J. V., Gueguen, B., Stewart, B. D., et al., 2020. Large Nickel Isotope Fractionation Caused by Surface Complexation Reactions with Hexagonal Birnessite. Chemical Geology, 537: 119481. https://doi.org/10.1016/j.chemgeo.2020.119481 Spivak-Birndorf, L. J., Wang, S. J., Bish, D. L., et al., 2018. Nickel Isotope Fractionation during Continental Weathering. Chemical Geology, 476: 316-326. https://doi.org/10.1016/j.chemgeo.2017.11.028 Selden, C. R., Schilling, K., Basu, A., et al., 2025. Amino Acid Complexation Fractionates Nickel Isotopes: Implications for Tracing Nickel Cycling in the Environment. Environmental Science & Technology Letters, 12(3): 283-288. https://pubs.acs.org/doi/10.1021/acs.estlett.4c01060 doi: 10.1021/acs.estlett.4c01060 Takano, S., Liao, W. H., Ho, T. Y., et al., 2022. Isotopic Evolution of Dissolved Ni, Cu, and Zn along the Kuroshio through the East China Sea. Marine Chemistry, 243: 104135. https://doi.org/10.1016/j.marchem.2022.104135 Takano, S., Tanimizu, M., Hirata, T., et al., 2017. A Simple and Rapid Method for Isotopic Analysis of Nickel, Copper, and Zinc in Seawater Using Chelating Extraction and Anion Exchange. Analytica Chimica Acta, 967: 1-11. https://doi.org/10.1016/j.aca.2017.03.010 Vance, D., Little, S. H., Archer, C., et al., 2016. The Oceanic Budgets of Nickel and Zinc Isotopes: The Importance of Sulfidic Environments as Illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 374(2081): 20150294. https://doi.org/10.1098/rsta.2015.0294 Wasylenki, L. E., Howe, H. D., Spivak-Birndorf, L. J., et al., 2015. Ni Isotope Fractionation during Sorption to Ferrihydrite: Implications for Ni in Banded Iron Formations. Chemical Geology, 400: 56-64. https://doi.org/10.1016/j.chemgeo.2015.02.007 Wasylenki, L. E., Wells, R. M., Spivak-Birndorf, L. J., et al., 2024. Toward Mending the Marine Mass Balance Model for Nickel: Experimentally Determined Isotope Fractionation during Ni Sorption to Birnessite. Geochimica et Cosmochimica Acta, 379: 76-88. https://doi.org/10.1016/j.gca.2024.06.022 Wang, R. M., Archer, C., Bowie, A. R., et al., 2019a. Zinc and Nickel Isotopes in Seawater from the Indian Sector of the Southern Ocean: The Impact of Natural Iron Fertilization versus Southern Ocean Hydrography and Biogeochemistry. Chemical Geology, 511: 452-464. https://doi.org/10.1016/j.chemgeo.2018.09.010 Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019b. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561-019-0320-z Wang, S. J., Wasylenki, L. E., 2017. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations. Geochimica et Cosmochimica Acta, 206: 137-150. https://doi.org/10.1016/j.gca.2017.02.023 Yang, S. C., Hawco, N. J., Pinedo-González, P., et al., 2020. A New Purification Method for Ni and Cu Stable Isotopes in Seawater Provides Evidence for Widespread Ni Isotope Fractionation by Phytoplankton in the North Pacific. Chemical Geology, 547: 119662. https://doi.org/10.1016/j.chemgeo.2020.119662 Yang, S. C., Kelly, R. L., Bian, X. P., et al., 2021. Lack of Redox Cycling for Nickel in the Water Column of the Eastern Tropical North Pacific Oxygen Deficient Zone: Insight from Dissolved and Particulate Nickel Isotopes. Geochimica et Cosmochimica Acta, 309: 235-250. https://doi.org/10.1016/j.gca.2021.07.004 -




下载: