• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    彭铭, 季思同, 孙蕊, 朱艳, 杨鸽, 曹子君, 白泽文, 2025. 考虑梯级坝级联溃决的生命损失评估与预警决策. 地球科学. doi: 10.3799/dqkx.2025.160
    引用本文: 彭铭, 季思同, 孙蕊, 朱艳, 杨鸽, 曹子君, 白泽文, 2025. 考虑梯级坝级联溃决的生命损失评估与预警决策. 地球科学. doi: 10.3799/dqkx.2025.160
    Ming Peng, Sitong Ji, Rui Sun, Yan Zhu, Ge Yang, Zijun Cao, Zewen Bai, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science. doi: 10.3799/dqkx.2025.160
    Citation: Ming Peng, Sitong Ji, Rui Sun, Yan Zhu, Ge Yang, Zijun Cao, Zewen Bai, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science. doi: 10.3799/dqkx.2025.160

    考虑梯级坝级联溃决的生命损失评估与预警决策

    doi: 10.3799/dqkx.2025.160
    基金项目: 

    国家自然科学基金-联合基金重点项目(U23A2044)

    国家自然科学基金-青年基金(42207238,42407242)

    广西重点研发计划项目(桂科AB25069121)

    详细信息
      作者简介:

      彭铭(1981—),男,教授,主要从事地质灾害、溃坝机理、风险评估与决策研究。E-mail:pengming@tongji.edu.cn,ORCID:0000-0001-9134-4391

      通讯作者:

      孙蕊(1993—),女,博士后,主要从事加筋土边坡动力响应及可靠度分析、地质灾害研究。E-mail:sr-tjut@tongji.edu.cn

    • 中图分类号: P694

    Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams

    • 摘要: 梯级坝级联溃决引发的洪水放大效应显著提升下游生命风险,亟需系统化的风险评估与预警决策方法。本文构建了融合“洪水演进模拟-生命损失评估-预警决策”的分析框架。基于不同类型坝体的溃口参数与地形数据,采用二维水动力模型模拟级联溃决过程,引入HURAM模型量化不同风险区域生命损失率,并构建预警疏散时间与总疏散损失的响应关系,确定“最优”预警决策。以清江流域为例,模拟假设发生千年一遇洪水并诱发三座梯级坝级联溃决场景。结果表明,该方法框架能系统性评估级联溃决的生命损失风险与制定合理的预警决策,级联溃决显著放大洪峰流量,隔河岩(8.29%),高坝洲(47.05%),同时受上游坝体结构与“U”型河谷地形影响,坝前水位提升而溃决洪水流量削弱;级联溃决二维模型较一维模型更精细刻画风险区,生命损失风险提高约5.3%;在高坝洲溃坝前3.4小时启动预警,可使疏散总损失降至最低(约8.70亿元)。级联溃决放大效应受地形与坝体结构共同调控,生命损失率受水深等致灾因子的非线性影响显著增强,相应成果为梯级坝级联溃决灾害的风险评估与应急管理提供了可行路径与理论支撑。

       

    • [1] Zhou,Y.,Guo,S.,Chang,F.J.,et al.,2018.Methodology that Improves Water Utilization and Hydropower Generation without Increasing Flood Risk in Mega Cascade Reservoirs.Energy,143:785-796. doi: 10.1016/j.energy.2017.11.035
      [2] Mehta,A.M.,Weeks,C.S.,Tyquin,E.,2020.Towards Preparedness for Dam Failure: An Evidence Base for Risk Communication for Downstream Communities.International Journal of Disaster Risk Reduction,50: 101820. doi: 10.1016/j.ijdrr.2020.101820
      [3] Wang,T.,Li,Z.,Ge,W.,et al.,2022.Calculation of Dam Risk Probability of Cascade Reservoirs Considering Risk Transmission and Superposition.Journal of Hydrology, 609: 127768. doi: 10.1016/j.jhydrol.2022.127768
      [4] Wang,T.,Li,Z.,Ge,W.,et al,.2023.Risk Consequence Assessment of Dam Breach in Cascade Reservoirs Considering Risk Transmission and Superposition.Energy,265:126315. doi: 10.1016/j.energy.2022.126315
      [5] Niu,Z.,Xu,W.,Li,N.,et al.,2012.Experimental Investigation of the Failure of Cascade Landslide Dams.Journal of Hydrodynamics,24(3):430-441. doi: 10.1016/S1001-6058(11)60264-3
      [6] Chen,H.Y.,Xu,W.L.,Deng,J,et al.,2014.Experimental Investigation of Pressure Load Exerted on A Downstream Dam by Dam-Break Flow.Journal of Hydraulic Engineering,140(2):199-207. doi: 10.1061/(ASCE)HY.1943-7900.0000743
      [7] Takayama,S.,Fujimoto,M.,Satofuka,Y.,2021.Amplification of Flood Discharge Caused by the Cascading Failure of Landslide Dams.International Journal of Sediment Research,36(3):430-438. doi: 10.1016/j.ijsrc.2020.10.007
      [8] Wu,W.,2016.Introduction to DLBreach-A Simplified Physically-based Dam/Levee Breach Model.Clarkson University, NY.
      [9] Dai,S.,He,Y.,Yang,J.,et al.,2020.Numerical Study of Cascading Dam-break Characteristics Using SWEs and RANS.Water Supply,20(1):348-360. doi: 10.2166/ws.2019.168
      [10] Santa Rita,L.C.S.,Oliveira,A.N.,Almeida,A.Q.,et al.,2023.Dam Safety in Sergipe: Jacarecica I and Jacarecica II hypothetical Cascade Dam-break Simulation.RBRH,28:e32. doi: 10.1590/2318-0331.282320230041
      [11] Ge,W.,Wang,X.,Li,Z.,et al,.2021.Interval Analysis of the Loss of Life Caused by Dam Failure.Journal of Water Resources Planning and Management,147(1):04020098. doi: 10.1061/(ASCE)WR.1943-5452.0001311
      [12] Jonkman,S.,Penning-Rowsell,E.,2008.Human Instability in Flood Flows.JAWRA Journal of the American Water Resources Association,44(5):1208-18. doi: 10.1111/j.1752-1688.2008.00217.x
      [13] Peng,M.,Zhang,L.M.,2012a.Analysis of Human Risks Due to Dam-break Floods-part 1: A New Model Based on Bayesian Networks.Natural Hazards,64(1):903-33. doi: 10.1007/s11069-012-0275-5
      [14] Brazdova,M.,Riha,J.,2014.A Simple Model for the Estimation of the Number of Fatalities Due to Floods in Central Europe.Natural Hazards and Earth System Sciences,14(7),1663-1676. doi: 10.5194/nhess-14-1663-2014
      [15] Zhu,Y.,Peng,M.,Zhang,P.,et al.,2021.Warning Decision-making for Landslide Dam Breaching Flood Using Influence Diagrams.Frontiers in Earth Science,9:679862. doi: 10.3389/feart.2021.679862
      [16] Xu,Y.,Zhang,L.M.,2009.Breaching Parameters for Earth and Rockfill Dams.Journal of Geotechnical and Geoenvironmental Engineering,135(12):1957-1970. doi: 10.1007/s10346-011-0271-y
      [17] Syafri,R.R.,Hadi,M.P.,Suprayogi,S.,2020.Hydrodynamic Modelling of Juwana River Flooding Using HEC-RAS 2D.Conference Series:Earth and Environmental Science. IOP Publishing,412(1):012028.
      [18] 21-01816-0
      [19] 23. doi: 10.1007/s11069-012-0336-9
      [20] Peng,M.,Zhang,L.,2013.Dynamic Decision Making for Dam-break Emergency Management-Part 1: Theoretical Framework.Natural Hazards and Earth System Sciences,13(2):425-37. doi: 10.5194/nhess-13-425-2013
      [21] Peng,M.,Zhang,L.,2013.Dynamic Decision Making for Dam-break Emergency Management-Part 2: Application to Tangjiashan Landslide Dam Failure.Natural Hazards and Earth System Sciences,13(2):439-54. doi: 10.5194/nhess-13-439-2013
      [22] 周洪福,聂德新,王春山,2015.水电工程坝基玄武岩体波速与变形模量关系.地球科学(中国地质大学学报),40(11):1904-1912.
      [23] 刘家宏,周晋军,王浩,2023.梯级水电枢纽群巨灾风险分析与防控研究综述.水利学报,54(1):34-44.
      [24] 于子波,向衍,孟颖,等,2021.梯级水库连溃风险分析及洪水演进模拟.人民珠江,42(8):11-16.
      [25] 崔鹏,王姣,王昊,等,2022.如何科学防控与预警巨灾风险?.地球科学,47(10):3897-3899.
      [26] 王建中,孙万光,李晓军,等,2025.梯级水库心墙坝连溃过程数值模拟.中国农村水利水电,(04): 7-13.
      [27] 杨泽文,吴兵兵,刘维明,等,2025.高能溃决洪水侵蚀机理与地貌效应研究进展.地球科学,50(02): 718-736.
      [28] 许唯临,2013.梯级库群的连锁溃决.中国水利水电出版社,01.
      [29] 周兴波,陈祖煜,黄跃飞,等,2015.特高坝及梯级水库群设计安全标准研究Ⅲ: 梯级土石坝连溃风险分析.水利学报,46(07):765-772.
      [30] 郭新蕾,周兴波,夏庆福,等,2017.梯级水库群控制梯级极端工况泄洪安全分析.水利学报,48(10):1157-1166.
      [31] 王霞,郑雄伟,陈志刚,2009.某梯级水库溃坝应急分析.水利规划与设计,(01):52-53+70.
      [32] 马黎,田耘,陈灵淳,等,2024.梯级水库群溃坝洪水风险分析-以澜沧江上游为例.河南科学,42(02):157-164.
      [33] 孟颖,唐玲玲,2022.考虑致灾后果的溃坝洪水风险评估与等级划分.长江科学院院报,39(10):61-65+96.
      [34] 胡良明,张志飞,李仟,等,2018.梯级水库土石坝连溃模拟及风险分析.水力发电学报,37(07):65-73.
      [35] 杨彦龙,沈海尧,黄维,2022.混凝土坝破坏模式及溃口几何参数探讨.大坝与安全,(03):1-9.
      [36] 李雷,王仁钟,盛金保,等,2006.大坝风险评价与风险管理.中国水利水电出版社,192.
    • 加载中
    计量
    • 文章访问数:  16
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-28
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回