• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑梯级坝级联溃决的生命损失评估与预警决策

    彭铭 季思同 孙蕊 朱艳 杨鸽 曹子君 白泽文

    彭铭, 季思同, 孙蕊, 朱艳, 杨鸽, 曹子君, 白泽文, 2025. 考虑梯级坝级联溃决的生命损失评估与预警决策. 地球科学, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160
    引用本文: 彭铭, 季思同, 孙蕊, 朱艳, 杨鸽, 曹子君, 白泽文, 2025. 考虑梯级坝级联溃决的生命损失评估与预警决策. 地球科学, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160
    Peng Ming, Ji Sitong, Sun Rui, Zhu Yan, Yang Ge, Cao Zijun, Bai Zewen, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160
    Citation: Peng Ming, Ji Sitong, Sun Rui, Zhu Yan, Yang Ge, Cao Zijun, Bai Zewen, 2025. Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams. Earth Science, 50(10): 3776-3794. doi: 10.3799/dqkx.2025.160

    考虑梯级坝级联溃决的生命损失评估与预警决策

    doi: 10.3799/dqkx.2025.160
    基金项目: 

    国家自然科学基金-联合基金重点项目 U23A2044

    广西重点研发计划项目 桂科AB25069121

    国家自然科学基金-青年基金 42207238

    国家自然科学基金-青年基金 42407242

    详细信息
      作者简介:

      彭铭(1981-),男,教授,主要从事地质灾害、溃坝机理、风险评估与决策研究. ORCID:0000-0001-9134-4391. E-mail:pengming@tongji.edu.cn

      通讯作者:

      孙蕊(1993-),女,博士后,E-mail: sr-tjut@tongji.edu.cn

    • 中图分类号: P642

    Assessment of Life Loss and Early Warning Strategies under Cascading Failures of Cascade Dams

    • 摘要:

      梯级坝级联溃决引发的洪水放大效应显著提升下游生命风险,亟需系统化的风险评估与预警决策方法.构建了融合“洪水演进模拟-生命损失评估-预警决策”的分析框架.基于不同类型坝体的溃口参数与地形数据,采用二维水动力模型模拟级联溃决过程,引入HURAM模型量化不同风险区域生命损失率,并构建预警疏散时间与总疏散损失的响应关系,确定“最优”预警决策.以清江流域为例,模拟假设发生千年一遇洪水并诱发三座梯级坝级联溃决场景.结果表明,该方法框架能系统性评估级联溃决的生命损失风险与制定合理的预警决策,级联溃决显著放大洪峰流量,隔河岩(8.29%),高坝洲(47.05%),同时受上游坝体结构与“U”型河谷地形影响,坝前水位提升而溃决洪水流量削弱;级联溃决二维模型较一维模型更精细刻画风险区,生命损失风险提高约5.3%;在高坝洲溃坝前3.4 h启动预警,可使疏散总损失降至最低(约8.70亿元).级联溃决放大效应受地形与坝体结构共同调控,生命损失率受水深等致灾因子的非线性影响显著增强,相应成果为梯级坝级联溃决灾害的风险评估与应急管理提供了可行路径与理论支撑.

       

    • 图  1  梯级坝级联溃决空间示意图

      Fig.  1.  Schematic diagram of cascading failure in cascade dams

      图  2  研究方法的框架和流程

      Fig.  2.  The framework and flowchart of the proposed method

      图  3  土石坝溃口演化过程

      a.溃口发展;b.溃决时程曲线

      Fig.  3.  Breach development in earth-rock dams

      图  4  模型试验与数值模型对比

      a.水槽试验;b.2D数值模型

      Fig.  4.  Comparison between physical experiment and numerical model

      图  5  上下游坝前流量过程曲线

      a.上游坝;b.下游坝

      Fig.  5.  Flow process curves before upstream and downstream dams

      图  6  生命损失风险评估HURAM模型

      Fig.  6.  HURAM model for life loss risk assessment

      图  7  预警疏散时间与损失价值关系

      Fig.  7.  Relationship between warning evacuation time and loss value

      图  8  清江干流梯级水库及其影像图

      Fig.  8.  Cascade reservoirs along the mainstream of the Qingjiang River and their satellite images

      图  9  梯级坝溃口示意图

      a.水布垭;b.隔河岩;c.高坝洲

      Fig.  9.  Schematic diagram of cascade dam breaches

      图  10  数值模型

      a.一维快速模型;b.二维精细化模型

      Fig.  10.  Numerical model

      图  11  一维模型下级联溃决洪水淹没区演进过程

      a.高坝洲溃决前水位分布;b.高坝洲溃决11 h后下游淹没阶段;c.高坝洲溃决40 h退水阶段

      Fig.  11.  Evolution of flood inundation area under one-dimensional model of cascade failure

      图  12  二维模型下级联溃决洪水淹没区演进过程

      a.高坝洲溃决前水位分布;b.高坝洲溃决11 h后下游淹没阶段;c.高坝洲溃决40 h后退水阶段

      Fig.  12.  Evolution of flood inundation area under two-dimensional model of cascade failure

      图  13  一维模型城镇中心典型河道断面简化图

      Fig.  13.  Simplified cross-section of a typical river channel at the town center in the one-dimensional model

      图  14  一维模型下危险区R7生命损失率评估示意图

      Fig.  14.  Schematic diagram of fatality rate assessment in high-risk zone R7 under one-dimensional model

      图  15  淹没区的洪水特征参数占比

      a.水深;b.疏散距离;c.流速

      Fig.  15.  Distribution proportions of key hydraulic parameters in inundated zones

      图  16  二维模型下危险区生命损失率评估示意图

      Fig.  16.  Estimated fatality rates in high-risk zones based on the two-dimensional model

      图  17  预警时间-价值成本曲线

      Fig.  17.  Warning time vs. cost-value curve

      图  18  梯级坝溃口峰值流量分布

      a.水布垭;b.隔河岩;c.高坝洲

      Fig.  18.  Distribution of peak discharges at cascade dam breaches

      图  19  洪水特征对生命损失的敏感图

      a.洪水深度;b.疏散距离;c.洪水流速

      Fig.  19.  Sensitivity of life loss to flood characteristics

      图  20  不同时间对生命损失的敏感图

      a.溃坝持续时间;b.预警时间

      Fig.  20.  Sensitivity of life loss to different time factors

      表  1  溃坝参数经验公式

      Table  1.   Empirical formulas for dam failure parameters

      参数 公式
      溃口深度Hb
      溃口顶部宽度Bt
      平均溃口宽度Bave
      溃口峰值流量Qp
      溃决失效时间Tf
      $ {Y}_{1}={H}_{\mathrm{b}}/{H}_{\mathrm{d}} $
      $ {Y}_{2}={B}_{\mathrm{t}}/{H}_{\mathrm{b}} $
      $ {Y}_{3}={B}_{\mathrm{a}\mathrm{v}\mathrm{e}}/{H}_{\mathrm{b}} $
      $ {Y}_{4}={Q}_{\mathrm{p}}/\sqrt{g{{V}_{\mathrm{w}}}^{5/3}} $
      $ {Y}_{5}={T}_{\mathrm{f}}/{T}_{\mathrm{r}} $
      注:Vw为库容,Hd为原始坝高,Tr单位时间,g为重力加速度.
      下载: 导出CSV

      表  2  清江梯级坝体参数

      Table  2.   Parameters of cascade dams in the Qingjiang River

      坝高(m) 坝长(m) 水位
      (m)
      库容
      (亿m3)
      类型
      水布垭 233 660 400 43.1 面板
      堆石坝
      高坝洲 151 653 200 34.5 混凝土重力坝
      隔河岩 57 419 80 4.3 重力
      拱坝
      下载: 导出CSV

      表  3  梯级坝溃口参数计算表

      Table  3.   Parameters of the breach models

      溃口参数 Hb (m) Qp (m3/s) Bt (m) Bave (m) Tf (h)
      水布垭
      隔河岩
      高坝洲
      143
      151
      47
      115 930
      289 389
      72 816
      696
      188
      410
      584
      188
      200
      3.5
      0.3
      0.05
      下载: 导出CSV

      表  4  级联溃决洪水危险区间划分

      Table  4.   Classification of hazard zones for cascade failure floods

      区间 水深(m) 疏散距离(m)
      R0 0 0
      R1 0~1.0 0~100
      R2 1.0~1.5 100~153
      R3 1.5~3.0 153~311
      R4 3.0~4.5 311~462
      R5 4.5~4.8 462~500
      R6 4.8~6.0 500~631
      R7 > 6.0 > 631
      下载: 导出CSV

      表  5  洪水风险区间生命损失率

      Table  5.   Fatality rates in flood risk zones

      区域 R0 R1 R2 R3 R4 R5 R6 R7 总计
      人口数 202 965 23 935 12 781 37 721 36 141 9 095 31 354 4 308 35.83万
      损失(%)
      死亡人数
      0
      0
      0
      0
      0
      0
      0
      0
      0.06
      22
      0.15
      14
      0.24
      75
      1.35
      58
      -
      169
      下载: 导出CSV

      表  6  预警时间与损失价值关系表

      Table  6.   Relationship between warning time and loss value

      时间(h) 基本疏散(106) 生命损失(106) 可移动损失(106) 总疏散(106)
      0.0
      1.0
      2.0
      3.0
      4.0
      5.0
      6.0
      7.0
      8.0
      9.0
      10
      379.0
      570.0
      690.7
      807.6
      924.5
      1 041.4
      1 158.3
      1 275.2
      1 392.1
      1 509.0
      1 625.9
      133 119
      28 787
      4 002
      60
      6
      0
      0
      0
      0
      0
      0
      1 932
      603
      100
      10
      2
      0
      0
      0
      0
      0
      0
      135 430.0
      29 960.0
      4 792.7
      877.6
      932.5
      1 041.4
      1 158.3
      1 275.2
      1 392.1
      1 509.0
      1 625.9
      下载: 导出CSV

      表  7  梯级坝峰值流量对比

      Table  7.   Comparison of peak discharge among cascade dams

      类型 模拟值
      (m3/s)
      计算值
      (m3/s)
      放大效应
      (%)
      水布垭 145 590 115 930 -
      隔河岩
      高坝洲
      313 385
      107 079
      289 389
      72 816
      8.29
      47.05
      下载: 导出CSV
    • Brazdova, M., Riha, J., 2014. A Simple Model for the Estimation of the Number of Fatalities Due to Floods in Central Europe. Natural Hazards and Earth System Sciences, 14(7): 1663-1676. https://doi.org/10.5194/nhess-14-1663-2014
      Chen, H. Y., Xu, W. L., Deng, J., et al., 2014. Experimental Investigation of Pressure Load Exerted on a Downstream Dam by Dam-Break Flow. Journal of Hydraulic Engineering, 140(2): 199-207. https://doi.org/10.1061/(asce)hy.1943-7900.0000743
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent and Warn the Catastrophe Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
      Dai, S. B., He, Y., Yang, J. J., et al., 2020. Numerical Study of Cascading Dam-Break Characteristics Using SWEs and RANS. Water Supply, 20(1): 348-360. https://doi.org/10.2166/ws.2019.168
      Souza, L. D. C. S. R., de Oliveira, A. N., de Almeida, A. Q., et al., 2023. Dam Safety in Sergipe: Jacarecica Ⅰ and Jacarecica Ⅱ Hypothetical Cascade Dam-Break Simulation. RBRH, 28: e32. https://doi.org/10.1590/2318-0331.282320230041
      Ge, W., Wang, X. W., Li, Z. K., et al., 2021. Interval Analysis of the Loss of Life Caused by Dam Failure. Journal of Water Resources Planning and Management, 147: 04020098. https://doi.org/10.1061/(asce)wr.1943-5452.0001311
      Guo, X. L., Zhou, X. B., Xia, Q. F., et al., 2017. Safety Analysis of Flood Discharge Structures of the Control Cascade Reservoir under Extreme Operating Condition. Journal of Hydraulic Engineering, 48(10): 1157-1166(in Chinese with English abstract).
      Hu, L. M., Zhang, Z. F., Li, Q., et al., 2018. Sequential Dam Break Simulation and Risk Analysis of Earth-Rock Dams of Cascade Reservoirs. Journal of Hydroelectric Engineering, 37(7): 65-73(in Chinese with English abstract).
      Jonkman, S. N., Penning-Rowsell, E., 2008. Human Instability in Flood Flows. JAWRA Journal of the American Water Resources Association, 44(5): 1208-1218. https://doi.org/10.1111/j.1752-1688.2008.00217.x
      Li, L., Wang, R. Z., Sheng, J. B., et al., 2006. Dam Risk Assessment and Risk Management. China Water & Power Press, Beijing (in Chinese).
      Liu, J. H., Zhou, J. J., Wang, H., 2023. Review on Catastrophe Risk Analysis and Mitigation of Cascade Hydropower Complexes. Journal of Hydraulic Engineering, 54(1): 34-44(in Chinese with English abstract).
      Ma, L., Tian, Y., Chen, L. C., et al., 2024. Dam-Break Flood Risk for Cascade Reservoirs: A Case Study of the Upper Lancangjiang River. Henan Science, 42(2): 157-164(in Chinese with English abstract).
      Mehta, A. M., Weeks, C. S., Tyquin, E., 2020. Towards Preparedness for Dam Failure: An Evidence Base for Risk Communication for Downstream Communities. International Journal of Disaster Risk Reduction, 50: 101820. https://doi.org/10.1016/j.ijdrr.2020.101820
      Meng, Y., Tang, L. L., 2022. Risk Assessment and Rating of Dam-Break Flood in Consideration of Disaster Consequences. Journal of Yangtze River Scientific Research Institute, 39(10): 61-65, 96(in Chinese with English abstract).
      Niu, Z. P., Xu, W. L., Li, N. W., et al., 2012. Experimental Investigation of the Failure of Cascade Landslide Dams. Journal of Hydrodynamics, Ser. B, 24(3): 430-441. https://doi.org/10.1016/S1001-6058(11)60264-3
      Peng, M., Zhang, L. M., 2012a. Analysis of Human Risks Due to Dam-Break Floods: Part 1: A New Model Based on Bayesian Networks. Natural Hazards, 64(1): 903-933. https://doi.org/10.1007/s11069-012-0275-5
      Peng, M., Zhang, L. M., 2012b. Analysis of Human Risks Due to Dam Break Floods—Part 2: Application to Tangjiashan Landslide Dam Failure. Natural Hazards, 64(2): 1899-1923. https://doi.org/10.1007/s11069-012-0336-9
      Peng, M., Zhang, L. M., 2013a. Dynamic Decision Making for Dam-Break Emergency Management—Part 1: Theoretical Framework. Natural Hazards and Earth System Sciences, 13(2): 425-437. https://doi.org/10.5194/nhess-13-425-2013
      Peng, M., Zhang, L. M., 2013b. Dynamic Decision Making for Dam-Break Emergency Management—Part 2: Application to Tangjiashan Landslide Dam Failure. Natural Hazards and Earth System Sciences, 13(2): 439-454. https://doi.org/10.5194/nhess-13-439-2013
      Syafri, R. R., Hadi, M. P., Suprayogi, S., 2020. Hydrodynamic Modelling of Juwana River Flooding Using HEC-RAS 2D. IOP Conference Series: Earth and Environmental Science, 412(1): 012028. https://doi.org/10.1088/1755-1315/412/1/012028
      Takayama, S., Fujimoto, M., Satofuka, Y., 2021. Amplification of Flood Discharge Caused by the Cascading Failure of Landslide Dams. International Journal of Sediment Research, 36(3): 430-438. https://doi.org/10.1016/j.ijsrc.2020.10.007
      Wang, J. Z., Sun, W. G., Li, X. J., et al., 2025. Numerical Simulation of the Successive Breach Process of the Core Wall Dam in Cascade Reservoirs. China Rural Water and Hydropower, (4): 7-13(in Chinese with English abstract).
      Wang, T., Li, Z. K., Ge, W., et al., 2022. Calculation of Dam Risk Probability of Cascade Reservoirs Considering Risk Transmission and Superposition. Journal of Hydrology, 609: 127768. https://doi.org/10.1016/j.jhydrol.2022.127768
      Wang, T., Li, Z. K., Ge, W., et al., 2023. Risk Consequence Assessment of Dam Breach in Cascade Reservoirs Considering Risk Transmission and Superposition. Energy, 265: 126315. https://doi.org/10.1016/j.energy.2022.126315
      Wang, X., Zheng, X. W., Chen, Z. G., 2009. Emergency Analysis of Dam Break of a Cascade Reservoir. Water Resources Planning and Design, (1): 52-53, 70(in Chinese with English abstract).
      Wu, W., 2016. Introduction to DLBreach: A Simplified Physically-Based Dam/Levee Breach Model. Clarkson University, NY.
      Xu, W. L., Chen, H. Y., Xue, Y., et al., 2013. Chain of Dam Break in Cascade Reservoirs. China Water & Power Press, Beijing (in Chinese with English abstract).
      Xu, Y., Zhang, L. M., 2009. Breaching Parameters for Earth and Rockfill Dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12): 1957-1970. https://doi.org/10.1061/(asce)gt.1943-5606.0000162
      Yang, Y. L., Shen, H. Y., Huang, W., 2022. Discussion on Failure Modes of Concrete Dams and Geometric Parameters of Dam Break. Dam & Safety, (3): 1-9(in Chinese with English abstract).
      Yang, Z. W., Wu, B. B., Liu, W. M., et al., 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736(in Chinese with English abstract).
      Yu, Z. B., Xiang, Y., Meng, Y., et al., 2021. Risk Analysis of Sequential Dam Break of Cascade Reservoirs and Simulation of Flood Routing. Pearl River, 42(8): 11-16 (in Chinese with English abstract).
      Zheng, H. C., Shi, Z. M., Peng, M., et al., 2022. Amplification Effect of Cascading Breach Discharge of Landslide Dams. Landslides, 19(3): 573-587. https://doi.org/10.1007/s10346-021-01816-0
      Zhou, H. F., Nie, D. X., Wang, C. S., 2015. Correlation between Wave Velocity and Deformation Modulus of Basalt Masses as Dam Foundation in Hydropower Projects. Earth Science, 40(11): 1904-1912(in Chinese with English abstract).
      Zhou, X. B., Chen, Z. Y., Huang, Y. F., et al., 2015. Evaluations on the Safety Design Standards for Dams with Extra Height or Cascade Impacts. Part Ⅲ: Risk Analysis of Embankment Break in Cascade. Journal of Hydraulic Engineering, 46(7): 765-772(in Chinese with English abstract).
      Zhou, Y. L., Guo, S. L., Chang, F. J., et al., 2018. Methodology That Improves Water Utilization and Hydropower Generation without Increasing Flood Risk in Mega Cascade Reservoirs. Energy, 143: 785-796. https://doi.org/10.1016/j.energy.2017.11.035
      Zhu, Y., Peng, M., Zhang, P., et al., 2021. Warning Decision-Making for Landslide Dam Breaching Flood Using Influence Diagrams. Frontiers in Earth Science, 9: 679862. https://doi.org/10.3389/feart.2021.679862
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险? 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      郭新蕾, 周兴波, 夏庆福, 等, 2017. 梯级水库群控制梯级极端工况泄洪安全分析. 水利学报, 48(10): 1157-1166.
      胡良明, 张志飞, 李仟, 等, 2018. 梯级水库土石坝连溃模拟及风险分析. 水力发电学报, 37(7): 65-73.
      李雷, 王仁钟, 盛金保, 等, 2006. 大坝风险评价与风险管理. 北京: 中国水利水电出版社.
      刘家宏, 周晋军, 王浩, 2023. 梯级水电枢纽群巨灾风险分析与防控研究综述. 水利学报, 54(1): 34-44.
      马黎, 田耘, 陈灵淳, 等, 2024. 梯级水库群溃坝洪水风险分析: 以澜沧江上游为例. 河南科学, 42(2): 157-164.
      孟颖, 唐玲玲, 2022. 考虑致灾后果的溃坝洪水风险评估与等级划分. 长江科学院院报, 39(10): 61-65, 96.
      王建中, 孙万光, 李晓军, 等, 2025. 梯级水库心墙坝连溃过程数值模拟. 中国农村水利水电(4): 7-13.
      王霞, 郑雄伟, 陈志刚, 2009. 某梯级水库溃坝应急分析. 水利规划与设计(1): 52-53, 70.
      许唯临, 陈华勇, 薛阳, 等, 2013. 梯级库群的连锁溃决. 北京: 中国水利水电出版社.
      杨彦龙, 沈海尧, 黄维, 2022. 混凝土坝破坏模式及溃口几何参数探讨. 大坝与安全(3): 1-9.
      杨泽文, 吴兵兵, 刘维明, 等, 2025. 高能溃决洪水侵蚀机理与地貌效应研究进展. 地球科学, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
      于子波, 向衍, 孟颖, 等, 2021. 梯级水库连溃风险分析及洪水演进模拟. 人民珠江, 42(8): 11-16.
      周洪福, 聂德新, 王春山, 2015. 水电工程坝基玄武岩体波速与变形模量关系. 地球科学, 40(11): 1904-1912. doi: 10.3799/dqkx.2015.171
      周兴波, 陈祖煜, 黄跃飞, 等, 2015. 特高坝及梯级水库群设计安全标准研究Ⅲ: 梯级土石坝连溃风险分析. 水利学报, 46(7): 765-772.
    • 加载中
    图(20) / 表(7)
    计量
    • 文章访问数:  81
    • HTML全文浏览量:  4
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-28
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回