• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球变暖背景下海洋浮游生物群落长期变化

    张武昌 赵苑 刘红斌 孙军

    张武昌, 赵苑, 刘红斌, 孙军, 2025. 全球变暖背景下海洋浮游生物群落长期变化. 地球科学, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163
    引用本文: 张武昌, 赵苑, 刘红斌, 孙军, 2025. 全球变暖背景下海洋浮游生物群落长期变化. 地球科学, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163
    Zhang Wuchang, Zhao Yuan, Liu Hongbin, Sun Jun, 2025. Long-Term Changes in Plankton Communities in Context of Global Warming. Earth Science, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163
    Citation: Zhang Wuchang, Zhao Yuan, Liu Hongbin, Sun Jun, 2025. Long-Term Changes in Plankton Communities in Context of Global Warming. Earth Science, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163

    全球变暖背景下海洋浮游生物群落长期变化

    doi: 10.3799/dqkx.2025.163
    基金项目: 

    国家重点研发项目 2022YFC3105301

    国家自然科学基金项目 42476143

    国家自然科学基金项目 42076139

    详细信息
      作者简介:

      张武昌(1973-),男,研究员,博士,从事海洋浮游生物生态学研究. ORCID:0000-0001-7534-8368. E-mail:wuchangzhang@qdio.ac.cn

      通讯作者:

      赵苑,ORCID:0000-0002-8892-2100. E-mail:yuanzhao@qdio.ac.cn

    • 中图分类号: P735

    Long-Term Changes in Plankton Communities in Context of Global Warming

    • 摘要: 浮游生物是海洋生态系统的基础,其群落结构和物候变化影响生态功能和生物地理格局.全球变暖驱动海表升温,导致浮游生物分布区极向移动,其中分布区前缘移动较明显,核心和后缘变化较小.升温还促使部分物种出现春季现象提前、秋季现象延后的物候变化.不同浮游生物的分布区和物候变化幅度存在差异,影响群落边缘区的结构,但群落核心优势种类尚无显著变化.若未来海洋环流格局保持稳定,热带至亚极区的浮游生物群落核心发生剧变风险较低,极地群落优势物种在近百年内也难有变化.我国海区长期系统观测不足,关键海域数据缺乏.综合极地与近海证据,本文预测在升温不超过2 ℃的情形下,我国近海浮游生物群落核心区位置可能发生调整,但其结构实质性改变的风险较低.

       

    • 图  1  全球海洋浮游生物群落研究的代表性站区与海域

      五角星为各研究选取的典型海区,阴影表示已开展CPR长期采样的监测区域(据本文引用文献绘制)

      Fig.  1.  Representative study sites and regions of marine planktonic community research worldwide

      图  2  生物的热性能曲线模式(改绘自Kefford et al., 2022

      Fig.  2.  Schematic diagram of thermal performance curve of organisms (adapted from Kefford et al., 2022)

      图  3  目前和未来全球不同纬度陆地和海洋生物的温度安全裕度(改绘自Pinsky et al., 2019

      Fig.  3.  Current and future global thermal safety margins for terrestrial and marine biota at different latitudes (adapted from Pinsky et al., 2019)

      图  4  2014—2020年间亚北极号角虫(Salpingella subarctica)分布区前缘的扩张(改绘自Wang et al., 2022a

      Fig.  4.  Expansion of the leading edge of tintinnid Salpingella subarctica between 2014 and 2020 (adapted from Wang et al., 2022a)

      图  5  分布区向极移动和物候变化对浮游生物群集的影响

      Fig.  5.  Effects of poleward shifts in distribution areas and phenology changes on plankton assemblages

    • Aarflot, J. M., Skjoldal, H. R., Dalpadado, P., et al., 2018. Contribution of Calanus Species to the Mesozooplankton Biomass in the Barents Sea. ICES Journal of Marine Science, 75(7): 2342-2354. https://doi.org/10.1093/icesjms/fsx221
      Aberle, N., Bauer, B., Lewandowska, A., et al., 2012. Warming Induces Shifts in Microzooplankton Phenology and Reduces Time-Lags between Phytoplankton and Protozoan Production. Marine Biology, 159(11): 2441-2453. https://doi.org/10.1007/s00227-012-1947-0
      Alcaraz, M., Felipe, J., Grote, U., et al., 2014. Life in a Warming Ocean: Thermal Thresholds and Metabolic Balance of Arctic Zooplankton. Journal of Plankton Research, 36(1): 3-10. https://doi.org/10.1093/plankt/fbt111
      Atkinson, A., Hill, S. L., Pakhomov, E. A., et al., 2019. Krill (Euphausia Superba) Distribution Contracts Southward during Rapid Regional Warming. Nature Climate Change, 9(2): 142-147. https://doi.org/10.1038/s41558-018-0370-z
      Atkinson, A., Hill, S. L., Reiss, C. S., et al., 2022. Stepping Stones towards Antarctica: Switch to Southern Spawning Grounds Explains an Abrupt Range Shift in Krill. Global Change Biology, 28(4): 1359-1375. https://doi.org/10.1111/gcb.16009
      Atkinson, A., Siegel, V., Pakhomov, E., et al., 2004. Long-Term Decline in Krill Stock and Increase in Salps within the Southern Ocean. Nature, 432(7013): 100-103. https://doi.org/10.1038/nature02996
      Balch, W. M., Gordon, H. R., Bowler, B. C., et al., 2005. Calcium Carbonate Measurements in the Surface Global Ocean Based on Moderate-Resolution Imaging Spectroradiometer Data. Journal of Geophysical Research: Oceans, 110(C7): 2004JC002560. https://doi.org/10.1029/2004JC002560
      Basedow, S. L., Sundfjord, A., von Appen, W. J., et al., 2018. Seasonal Variation in Transport of Zooplankton into the Arctic Basin through the Atlantic Gateway, Fram Strait. Frontiers in Marine Science, 5: 194. https://doi.org/10.3389/fmars.2018.00194
      Batchelder, H. P., Mackas, D. L., O'Brien, T. D., 2012. Spatial-Temporal Scales of Synchrony in Marine Zooplankton Biomass and Abundance Patterns: A World-Wide Comparison. Progress in Oceanography, 97/98/99/100: 15-30. https://doi.org/10.1016/j.pocean.2011.11.010
      Batten, S. D., Abu-Alhaija, R., Chiba, S., et al., 2019. A Global Plankton Diversity Monitoring Program. Frontiers in Marine Science, 6: 321. https://doi.org/10.3389/fmars.2019.00321
      Batten, S. D., Walne, A. W., 2011. Variability in Northwards Extension of Warm Water Copepods in the NE Pacific. Journal of Plankton Research, 33(11): 1643-1653. https://doi.org/10.1093/plankt/fbr065
      Beaugrand, G., 2004. The North Sea Regime Shift: Evidence, Causes, Mechanisms and Consequences. Progress in Oceanography, 60(2/3/4): 245-262. https://doi.org/10.1016/j.pocean.2004.02.018
      Beaugrand, G., Reid, P. C., Ibañez, F., et al., 2002. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 296(5573): 1692-1694. https://doi.org/10.1126/science.1071329
      Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., et al., 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC, ed., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, 447-588. https://doi.org/10.1017/9781009157964.007
      Borkman, D. G., Fofonoff, P., Smayda, T. J., et al., 2018. Changing Acartia spp. Phenology and Abundance during a Warming Period in Narragansett Bay, Rhode Island, USA: 1972-1990. Journal of Plankton Research, 40(5): 580-594. https://doi.org/10.1093/plankt/fby029
      Both, C., Van Asch, M., Bijlsma, R. G., et al., 2009. Climate Change and Unequal Phenological Changes across Four Trophic Levels: Constraints or Adaptations? Journal of Animal Ecology, 78(1): 73-83. https://doi.org/10.1111/j.1365-2656.2008.01458.x
      Brown, M., Kawaguchi, S., Candy, S., et al., 2010. Temperature Effects on the Growth and Maturation of Antarctic Krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 57(7/8): 672-682. https://doi.org/10.1016/j.dsr2.2009.10.016
      Chaikin, S., Dubiner, S., Belmaker, J., 2022. Cold-Water Species Deepen to Escape Warm Water Temperatures. Global Ecology and Biogeography, 31(1): 75-88. https://doi.org/10.1111/geb.13414
      Chavez, F. P., Ryan, J., Lluch-Cota, S. E., et al., 2003. From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean. Science, 299(5604): 217-221. https://doi.org/10.1126/science.1075880
      Chivers, W. J., Edwards, M., Hays, G. C., 2020. Phenological Shuffling of Major Marine Phytoplankton Groups over the Last Six Decades. Diversity and Distributions, 26(5): 536-548. https://doi.org/10.1111/ddi.13028
      Chivers, W. J., Walne, A. W., Hays, G. C., 2017. Mismatch between Marine Plankton Range Movements and the Velocity of Climate Change. Nature Communications, 8: 14434. https://doi.org/10.1038/ncomms14434
      Chust, G., Castellani, C., Licandro, P., et al., 2014. Are Calanus spp. Shifting Poleward in the North Atlantic? A Habitat Modelling Approach. ICES Journal of Marine Science, 71(2): 241-253. https://doi.org/10.1093/icesjms/fst147
      Conversi, A., Dakos, V., Gårdmark, A., et al., 2015. A Holistic View of Marine Regime Shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659): 20130279. https://doi.org/10.1098/rstb.2013.0279
      Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., et al., 2012. Climate Effects on Barents Sea Ecosystem Dynamics. ICES Journal of Marine Science, 69(7): 1303-1316. https://doi.org/10.1093/icesjms/fss063
      Davis, A. J., Jenkinson, L. S., Lawton, J. H., et al., 1998. Making Mistakes When Predicting Shifts in Species Range in Response to Global Warming. Nature, 391(6669): 783-786. https://doi.org/10.1038/35842
      Deutsch, C. A., Tewksbury, J. J., Huey, R. B., et al., 2008. Impacts of Climate Warming on Terrestrial Ectotherms across Latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18): 6668-6672. https://doi.org/10.1073/pnas.0709472105
      Dulvy, N. K., Rogers, S. I., Jennings, S., et al., 2008. Climate Change and Deepening of the North Sea Fish Assemblage: A Biotic Indicator of Warming Seas. Journal of Applied Ecology, 45(4): 1029-1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x
      Duarte, C. M., Cebrián, J., Marbà, N., 1992. Uncertainty of Detecting Sea Change. Nature, 356(6366): 190. https://doi.org/10.1038/356190a0
      Dupont, N., Bagøien, E., Melle, W., 2017. Inter-Annual Variability in Spring Abundance of Adult Calanus finmarchicus from the Overwintering Population in the Southeastern Norwegian Sea. Progress in Oceanography, 152: 75-85. https://doi.org/10.1016/j.pocean.2017.02.004
      Edwards, M., Richardson, A. J., 2004. Impact of Climate Change on Marine Pelagic Phenology and Trophic Mismatch. Nature, 430(7002): 881-884. https://doi.org/10.1038/nature02808
      Ekman, S., 1953. Zoogeography of the Sea, vol. 9. Sidgwick & Jackson, London, 417.
      Ershova, E. A., Kosobokova, K. N., Banas, N. S., et al., 2021. Sea Ice Decline Drives Biogeographical Shifts of Key Calanus Species in the Central Arctic Ocean. Global Change Biology, 27(10): 2128-2143. https://doi.org/10.1111/gcb.15562
      Falkenhaug, T., Broms, C., Bagøien, E., et al., 2022. Temporal Variability of Co-Occurring Calanus finmarchicus and C. helgolandicus in Skagerrak. Frontiers in Marine Science, 9: 779335. https://doi.org/10.3389/fmars.2022.779335
      Field, C., Behrenfeld, M., Randerson, J., et al., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374): 237-240. https://doi.org/10.1126/science.281.5374.237
      Fox-Kemper, B., Hewitt, H. T., Xiao, C., et al., 2021. Ocean, Cryosphere and Sea Level Change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1211-1362. https://doi.org/10.1017/9781009157896.011
      García-Soto, C., Caesar, L., Cazenave, A., et al., 2021. Chapter 05 Trends in the Physical and Chemical State of the Ocean. In: United Nations, ed., World Ocean Assessment Ⅱ. United Nations, New York, 83-103. https://doi.org/10.18356/9789216040062
      Grandremy, N., Bourriau, P., Daché, E., et al., 2024. Metazoan Zooplankton in the Bay of Biscay: A 16-Year Record of Individual Sizes and Abundances Obtained Using the ZooScan and ZooCAM Imaging Systems. Earth System Science Data, 16(3): 1265-1282. https://doi.org/10.5194/essd-16-1265-2024
      Gushing, D. H., Dickson, R. R., 1977. The Biological Response in the Sea to Climatic Changes. In: Russell, F. S., Yonge, M., eds., Advances in Marine Biology, vol. 14. Academic Press, Cambridge, 1-122. https://doi.org/10.1016/S0065-2881(08)60446-0
      Hampton, S. E., Gray, D. K., Izmest'eva, L. R., et al., 2014. The Rise and Fall of Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia. PLoS One, 9(2): e88920. https://doi.org/10.1371/journal.pone.0088920
      Hare, S. R., Mantua, N. J., 2000. Empirical Evidence for North Pacific Regime Shifts in 1977 and 1989. Progress in Oceanography, 47(2-4): 103-145. https://doi.org/10.1016/S0079-6611(00)00033-1
      Hastings, R. A., Rutterford, L. A., Freer, J. J., et al., 2020. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology, 30(8): 1572-1577. https://doi.org/10.1016/j.cub.2020.02.043
      Hays, G. C., Richardson, A. J., Robinson, C., 2005. Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20(6): 337-344. https://doi.org/10.1016/j.tree.2005.03.004
      Helaouët, P., Beaugrand, G., 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and Adjacent Seas. Marine Ecology Progress Series, 345: 147-165. https://doi.org/10.3354/meps06775
      Henson, S. A., Cole, H. S., Hopkins, J., et al., 2018. Detection of Climate Change-Driven Trends in Phytoplankton Phenology. Global Change Biology, 24(1): e101-e111. https://doi.org/10.1111/gcb.13886
      Henson, S. A., Sarmiento, J. L., Dunne, J. P., et al., 2010. Detection of Anthropogenic Climate Change in Satellite Records of Ocean Chlorophyll and Productivity. Biogeosciences, 7(2): 621-640. https://doi.org/10.5194/bg-7-621-2010
      Hinder, S. L., Gravenor, M. B., Edwards, M., et al., 2014. Multi-Decadal Range Changes vs. Thermal Adaptation for North East Atlantic Oceanic Copepods in the Face of Climate Change. Global Change Biology, 20(1): 140-146. https://doi.org/10.1111/gcb.12387
      Hinder, S. L., Manning, J. E., Gravenor, M. B., et al., 2012. Long-Term Changes in Abundance and Distribution of Microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 34(1): 83-91. https://doi.org/10.1093/plankt/fbr087
      Hirche, H. J., Kosobokova, K., 2007. Distribution of Calanus finmarchicus in the Northern North Atlantic and Arctic Ocean-Expatriation and Potential Colonization. Deep Sea Research Part II: Topical Studies in Oceanography, 54(23-26): 2729-2747. https://doi.org/10.1016/j.dsr2.2007.08.006
      Hoover, B. A., García-Reyes, M., Batten, S. D., et al., 2021. Spatio-Temporal Persistence of Zooplankton Communities in the Gulf of Alaska. PLoS One, 16(1): e0244960. https://doi.org/10.1371/journal.pone.0244960
      Hu, S. N., Fedorov, A. V., 2020. Indian Ocean Warming as a Driver of the North Atlantic Warming Hole. Nature Communications, 11: 4785. https://doi.org/10.1038/s41467-020-18522-5
      Jahn, A., Holland, M. M., 2013. Implications of Arctic Sea Ice Changes for North Atlantic Deep Convection and the Meridional Overturning Circulation in CCSM4-CMIP5 Simulations. Geophysical Research Letters, 40(6): 1206-1211. https://doi.org/10.1002/grl.50183
      Jahn, A., Holland, M. M., Kay, J. E., 2024. Projections of an Ice-Free Arctic Ocean. Nature Reviews Earth & Environment, 5(3): 164-176. https://doi.org/10.1038/s43017-023-00515-9
      Ji, R. B., Edwards, M., Mackas, D. L., et al., 2010. Marine Plankton Phenology and Life History in a Changing Climate: Current Research and Future Directions. Journal of Plankton Research, 32(10): 1355-1368. https://doi.org/10.1093/plankt/fbq062
      Johannesen, E., Ingvaldsen, R. B., Bogstad, B., et al., 2012. Changes in Barents Sea Ecosystem State, 1970-2009: Climate Fluctuations, Human Impact, and Trophic Interactions. ICES Journal of Marine Science, 69(5): 880-889. https://doi.org/10.1093/icesjms/fss046
      Jonkers, L., Hillebrand, H., Kucera, M., 2019. Global Change Drives Modern Plankton Communities away from the Pre-Industrial State. Nature, 570(7761): 372-375. https://doi.org/10.1038/s41586-019-1230-3
      Jorda, G., Marbà, N., Bennett, S., et al., 2020. Ocean Warming Compresses the Three-Dimensional Habitat of Marine Life. Nature Ecology & Evolution, 4(1): 109-114. https://doi.org/10.1038/s41559-019-1058-0
      Kaiser, P., Hagen, W., Bode-Dalby, M., et al., 2022. Tolerant but Facing Increased Competition: Arctic Zooplankton versus Atlantic Invaders in a Warming Ocean. Frontiers in Marine Science, 9: 908638. https://doi.org/10.3389/fmars.2022.908638
      Kefford, B. J., Ghalambor, C. K., Dewenter, B., et al., 2022. Acute, Diel, and Annual Temperature Variability and the Thermal Biology of Ectotherms. Global Change Biology, 28(23): 6872-6888. https://doi.org/10.1111/gcb.16453
      Kléparski, L., Beaugrand, G., Edwards, M., et al., 2022. Morphological Traits, Niche-Environment Interaction and Temporal Changes in Diatoms. Progress in Oceanography, 201: 102747. https://doi.org/10.1016/j.pocean.2022.102747
      Kosobokova, K. N., 1999. The Reproductive Cycle and Life History of the Arctic Copepod Calanus Glacialis in the White Sea. Polar Biology, 22(4): 254-263. https://doi.org/10.1007/s003000050418
      Kraft, A., Bauerfeind, E., Nöthig, E. M., 2011. Amphipod Abundance in Sediment Trap Samples at the Long-Term Observatory HAUSGARTEN (Fram Strait, ~79°N/4°E). Variability in Species Community Patterns. Marine Biodiversity, 41(3): 353-364. https://doi.org/10.1007/s12526-010-0052-1
      Kraft, A., Bauerfeind, E., Nöthig, E. M., et al., 2012. Size Structure and Life Cycle Patterns of Dominant Pelagic Amphipods Collected as Swimmers in Sediment Traps in the Eastern Fram Strait. Journal of Marine Systems, 95: 1-15. https://doi.org/10.1016/j.jmarsys.2011.12.006
      Kraft, A., Nöthig, E. M., Bauerfeind, E., et al., 2013. First Evidence of Reproductive Success in a Southern Invader Indicates Possible Community Shifts among Arctic Zooplankton. Marine Ecology Progress Series, 493: 291-296. https://doi.org/10.3354/meps10507
      Kromkamp, J. C., van Engeland, T., 2010. Changes in Phytoplankton Biomass in the Western Scheldt Estuary during the Period 1978-2006. Estuaries and Coasts, 33(2): 270-285. https://doi.org/10.1007/s12237-009-9215-3
      Kvile, K. Ø., Ashjian, C., Feng, Z. X., et al., 2018. Pushing the Limit: Resilience of an Arctic Copepod to Environmental Fluctuations. Global Change Biology, 24(11): 5426-5439. https://doi.org/10.1111/gcb.14419
      Li, H. B., Xu, Z. Q., Zhang, W. C., et al., 2016. Boreal Tintinnid Assemblage in the Northwest Pacific and Its Connection with the Japan Sea in Summer 2014. PLoS One, 11(4): e0153379. https://doi.org/10.1371/journal.pone.0153379
      Lindley, J. A., Daykin, S., 2005. Variations in the Distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the North-Eastern Atlantic Ocean and Western European Shelf Waters. ICES Journal of Marine Science, 62(5): 869-877. https://doi.org/10.1016/j.icesjms.2005.02.009
      Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.036
      Longhurst, A. R., 2001. Pelagic Biogeography. In: Steele, J. H., Thorpe, S. A., Turekian, K. K., eds., Encyclopedia of Ocean Sciences, vol. 4. Academic Press, San Diego, 356-363. https://doi.org/10.1016/B978-012374473-9.00288-5
      Mackas, D. L., Batten, S., Trudel, M., 2007. Effects on Zooplankton of a Warmer Ocean: Recent Evidence from the Northeast Pacific. Progress in Oceanography, 75(2): 223-252. https://doi.org/10.1016/j.pocean.2007.08.010
      Mackas, D. L., Goldblatt, R., Lewis, A. G., 1998. Interdecadal Variation in Developmental Timing of Neocalanus plumchrus Populations at Ocean Station P in the Subarctic North Pacific. Canadian Journal of Fisheries and Aquatic Sciences, 55(8): 1878-1893. https://doi.org/10.1139/f98-080
      Mackas, D. L., Greve, W., Edwards, M., et al., 2012. Changing Zooplankton Seasonality in a Changing Ocean: Comparing Time Series of Zooplankton Phenology. Progress in Oceanography, 97/98/99/100: 31-62. https://doi.org/10.1016/j.pocean.2011.11.005
      Melle, W., Runge, J., Head, E., et al., 2014. The North Atlantic Ocean as Habitat for Calanus finmarchicus: Environmental Factors and Life History Traits. Progress in Oceanography, 129: 244-284. https://doi.org/10.1016/j.pocean.2014.04.026
      Mészáros, L., van der Meulen, F., Jongbloed, G., et al., 2021. Climate Change Induced Trends and Uncertainties in Phytoplankton Spring Bloom Dynamics. Frontiers in Marine Science, 8: 669951. https://doi.org/10.3389/fmars.2021.669951
      Michael, K., Suberg, L. A., Wessels, W., et al., 2021. Facing Southern Ocean Warming: Temperature Effects on Whole Animal Performance of Antarctic Krill (Euphausia superba). Zoology, 146: 125910. https://doi.org/10.1016/j.zool.2021.125910
      Møller, E. F., Nielsen, T. G., 2020. Borealization of Arctic Zooplankton-Smaller and Less Fat Zooplankton Species in Disko Bay, Western Greenland. Limnology and Oceanography, 65(6): 1175-1188. https://doi.org/10.1002/lno.11380
      Neukermans, G., Oziel, L., Babin, M., 2018. Increased Intrusion of Warming Atlantic Water Leads to Rapid Expansion of Temperate Phytoplankton in the Arctic. Global Change Biology, 24(6): 2545-2553. https://doi.org/10.1111/gcb.14075
      Niehoff, B., Hirche, H. J., 2005. Reproduction of Calanus glacialis in the Lurefjord (Western Norway): Indication for Temperature-Induced Female Dormancy. Marine Ecology Progress Series, 285: 107-115. https://doi.org/10.3354/meps285107
      Oliver, E. C. J., Burrows, M. T., Donat, M. G., et al., 2019. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 6: 734. https://doi.org/10.3389/fmars.2019.00734
      Ono, A., Moteki, M., 2017. Spatial Distribution of Salpa thompsoni in the High Antarctic Area off Adélie Land, East Antarctica during the Austral Summer 2008. Polar Science, 12: 69-78. https://doi.org/10.1016/j.polar.2016.11.005
      Oziel, L., Sirven, J., Gascard, J. C., 2016. The Barents Sea Frontal Zones and Water Masses Variability (1980-2011). Ocean Science, 12(1): 169-184. https://doi.org/10.5194/os-12-169-2016
      Parmesan, C., Yohe, G., 2003. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421(6918): 37-42. https://doi.org/10.1038/nature01286
      Pata, P. R., Galbraith, M., Young, K., et al., 2022. Persistent Zooplankton Bioregions Reflect Long-Term Consistency of Community Composition and Oceanographic Drivers in the NE Pacific. Progress in Oceanography, 206: 102849. https://doi.org/10.1016/j.pocean.2022.102849
      Pata, P. R., Galbraith, M., Young, K., et al., 2024. Data-Driven Determination of Zooplankton Bioregions and Robustness Analysis. MethodsX, 12: 102676. https://doi.org/10.1016/j.mex.2024.102676
      Perry, A. L., Low, P. J., Ellis, J. R., et al., 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308(5730): 1912-1915. https://doi.org/10.1126/science.1111322
      Piñones, A., Fedorov, A. V., 2016. Projected Changes of Antarctic Krill Habitat by the End of the 21st Century. Geophysical Research Letters, 43(16): 8580-8589. https://doi.org/10.1002/2016GL069656
      Pinsky, M. L., Eikeset, A. M., McCauley, D. J., et al., 2019. Greater Vulnerability to Warming of Marine versus Terrestrial Ectotherms. Nature, 569(7754): 108-111. https://doi.org/10.1038/s41586-019-1132-4
      Poloczanska, E. S., Brown, C. J., Sydeman, W. J., et al., 2013. Global Imprint of Climate Change on Marine Life. Nature Climate Change, 3(10): 919-925. https://doi.org/10.1038/nclimate1958
      Poloczanska, E. S., Burrows, M. T., Brown, C. J., et al., 2016. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 3: 62. https://doi.org/10.3389/fmars.2016.00062
      Polyakov, I. V., Alkire, M. B., Bluhm, B. A., et al., 2020. Borealization of the Arctic Ocean in Response to Anomalous Advection from Sub-Arctic Seas. Frontiers in Marine Science, 7: 491. https://doi.org/10.3389/fmars.2020.00491
      Qi, Z. H., Shi, R. J., Dai, M., et al., 2021. A Review on Ecological Characteristics of Creseis acicula and Preliminary Analysis on Its Outbreak Triggers in Daya Bay. Journal of Tropical Oceanography, 40(5): 147-152 (in Chinese with English abstract). https://doi.org/10.11978/2020112
      Richardson, A. J., 2008. In Hot Water: Zooplankton and Climate Change. ICES Journal of Marine Science, 65(3): 279-295. https://doi.org/10.1093/icesjms/fsn028
      Schlüter, M. H., Kraberg, A., Wiltshire, K. H., 2012. Long-Term Changes in the Seasonality of Selected Diatoms Related to Grazers and Environmental Conditions. Journal of Sea Research, 67(1): 91-97. https://doi.org/10.1016/j.seares.2011.11.001
      Schröter, F., Havermans, C., Kraft, A., et al., 2019. Pelagic Amphipods in the Eastern Fram Strait with Continuing Presence of Themisto Compressa Based on Sediment Trap Time Series. Frontiers in Marine Science, 6: 311. https://doi.org/10.3389/fmars.2019.00311
      Schultz, M., Choquet, M., Tverberg, V., et al., 2023. Calanus helgolandicus-More Than a Guest in the North? Journal of Plankton Research, 45(1): 33-36. https://doi.org/10.1093/plankt/fbac070
      Schultz, M., Nielsen, T. G., Møller, E. F., 2020. The Importance of Temperature and Lipid Accumulation for Initiation and Duration of Calanus hyperboreus Spawning. Journal of Plankton Research, 42(2): 159-171. https://doi.org/10.1093/plankt/fbaa003
      Schwartzlose, R. A., Alheit, J., Bakun, A., et al., 1999. Worldwide Large-Scale Fluctuations of Sardine and Anchovy Populations. South African Journal of Marine Science, 21(1): 289-347. https://doi.org/10.2989/025776199784125962
      Sheng, G. L., Tao, H. L., Song, S. W., et al., 2025. Applications of Ancient DNA Research in the Field of Geobiology. Earth Science, 50(3): 1105-1121 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.155
      Shevchenko, O. G., Shulgina, M. A., Shulkin, V. M., et al., 2020. The Long-Term Dynamics and Morphology of the Diatom Thalassiosira Nordenskioeldii Cleve, 1873 (Bacillariophyta) from the Coastal Waters of Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 46(4): 284-291. https://doi.org/10.1134/S1063074020040069
      Shi, Y. Q., Liu, Y. J., Shan, X. J., et al., 2025. Climate Change Induced First Record of Porpita porpita (Linnaeus, 1758) in the Yellow Sea, China. Marine Pollution Bulletin, 210: 117333. https://doi.org/10.1016/j.marpolbul.2024.117333
      Słomska, A. W., Panasiuk, A., 2022. Environmental Conditions for the Successful Development of Salpa Thompsoni (Tunicata: Thaliaceae) Blastozooids and Embryos in the Atlantic Sector of the Southern Ocean. Marine Biology, 169(11): 138. https://doi.org/10.1007/s00227-022-04125-9
      Słomska, A. W., Panasiuk, A., Weydmann-Zwolicka, A., et al., 2021. Historical Abundance and Distributions of Salpa Thompsoni Hot Spots in the Southern Ocean and Projections for Further Ocean Warming. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8): 2095-2102. https://doi.org/10.1002/aqc.3443
      Southward, A. J., 1980. The Western English Channel-An Inconstant Ecosystem? Nature, 285(5764): 361-366. https://doi.org/10.1038/285361a0
      Staten, P. W., Lu, J., Grise, K. M., et al., 2018. Re-Examining Tropical Expansion. Nature Climate Change, 8(9): 768-775. https://doi.org/10.1038/s41558-018-0246-2
      Sunday, J. M., Bates, A. E., Dulvy, N. K., 2011. Global Analysis of Thermal Tolerance and Latitude in Ectotherms. Proceedings Biological Sciences, 278(1713): 1823-1830. https://doi.org/10.1098/rspb.2010.1295
      Sunday, J. M., Pecl, G. T., Frusher, S., et al., 2015. Species Traits and Climate Velocity Explain Geographic Range Shifts in an Ocean-Warming Hotspot. Ecology Letters, 18(9): 944-953. https://doi.org/10.1111/ele.12474
      Swadling, K. M., Constable, A. J., Fraser, A. D., et al., 2023. Biological Responses to Change in Antarctic Sea Ice Habitats. Frontiers in Ecology and Evolution, 10: 1073823. https://doi.org/10.3389/fevo.2022.1073823
      Tachibana, A., Nomura, H., Ishimaru, T., 2019. Impacts of Long-Term Environmental Variability on Diapause Phenology of Coastal Copepods in Tokyo Bay, Japan. Limnology and Oceanography, 64(S1): S273-S283. https://doi.org/10.1002/lno.11030
      Tarling, G. A., Freer, J. J., Banas, N. S., et al., 2022. Can a Key Boreal Calanus Copepod Species Now Complete Its Life-Cycle in the Arctic? Evidence and Implications for Arctic Food-Webs. Ambio, 51(2): 333-344. https://doi.org/10.1007/s13280-021-01667-y
      Thackeray, S. J., Henrys, P. A., Hemming, D., et al., 2016. Phenological Sensitivity to Climate across Taxa and Trophic Levels. Nature, 535(7611): 241-245. https://doi.org/10.1038/nature18608
      Thoman, R. L., Moon, T. A., Druckenmiller, M. L., 2023. Arctic Report Card 2023. NOAA, Washington D. C. . https://doi.org/10.25923/5vfa-k694
      Usov, N. V., Khaitov, V. M., Kutcheva, I. P., et al., 2021. Phenological Responses of the Arctic, Ubiquitous, and Boreal Copepod Species to Long-Term Changes in the Annual Seasonality of the Water Temperature in the White Sea. Polar Biology, 44(5): 959-976. https://doi.org/10.1007/s00300-021-02851-2
      Wang, C. F., Wang, X. Y., Xu, Z. Q., et al., 2022a. Planktonic Tintinnid Community Structure Variations in Different Water Masses of the Arctic Basin. Frontiers in Marine Science, 8: 775653. https://doi.org/10.3389/fmars.2021.775653
      Wang, C. F., Xu, Z. Q., He, Y., et al., 2022b. Neritic Tintinnid Community Structure and Mixing with Oceanic Tintinnids in Shelf Waters of the Pacific Arctic Region during Summer. Continental Shelf Research, 239: 104720. https://doi.org/10.1016/j.csr.2022.104720
      Wang, C. F., Xu, Z. Q., Liu, C. G., et al., 2019. Vertical Distribution of Oceanic Tintinnid (Ciliophora: Tintinnida) Assemblages from the Bering Sea to Arctic Ocean through Bering Strait. Polar Biology, 42(11): 2105-2117. https://doi.org/10.1007/s00300-019-02585-2
      Wiltshire, K. H., Malzahn, A. M., Wirtz, K., et al., 2008. Resilience of North Sea Phytoplankton Spring Bloom Dynamics: An Analysis of Long-Term Data at Helgoland Roads. Limnology and Oceanography, 53(4): 1294-1302. https://doi.org/10.4319/lo.2008.53.4.1294
      Winder, M., Berger, S. A., Lewandowska, A., et al., 2012. Spring Phenological Responses of Marine and Freshwater Plankton to Changing Temperature and Light Conditions. Marine Biology, 159(11): 2491-2501. https://doi.org/10.1007/s00227-012-1964-z
      Woillez, M., Rivoirard, J., Petitgas, P., 2009. Notes on Survey-Based Spatial Indicators for Monitoring Fish Populations. Aquatic Living Resources, 22(2): 155-164. https://doi.org/10.1051/alr/2009017
      Woodgate, R. A., Aagaard, K., Weingartner, T. J., 2005. Monthly Temperature, Salinity, and Transport Variability of the Bering Strait through Flow. Geophysical Research Letters, 32(4): 2004GL021880. https://doi.org/10.1029/2004GL021880
      Xu, Z. L., Gao, Q., 2009. Labidocera Euchaeta: Its Distribution in Yangtze River Estuary and Responses to Global Warming. Chinese Journal of Applied Ecology, 20(5): 1196-1201 (in Chinese with English abstract).
      Yamaguchi, R., Rodgers, K. B., Timmermann, A., et al., 2022. Trophic Level Decoupling Drives Future Changes in Phytoplankton Bloom Phenology. Nature Climate Change, 12(5): 469-476. https://doi.org/10.1038/s41558-022-01353-1
      Yang, H., Lohmann, G., Krebs-Kanzow, U., et al., 2020. Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate. Geophysical Research Letters, 47(5): e2019GL085868. https://doi.org/10.1029/2019GL085868
      Yoshiki, T. M., Chiba, S., Sasaki, Y., et al., 2015. Northerly Shift of Warm-Water Copepods in the Western Subarctic North Pacific: Continuous Plankton Recorder Samples (2001-2013). Fisheries Oceanography, 24(5): 414-429. https://doi.org/10.1111/fog.12119
      Zanna, L., Khatiwala, S., Gregory, J. M., et al., 2019. Global Reconstruction of Historical Ocean Heat Storage and Transport. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1126-1131. https://doi.org/10.1073/pnas.1808838115
      Zhang, W., Li, J., Li, H., et al., 2025. A New Tintinnid Ciliate of Salpingella (Ciliophora: Spirotrichea) from the Subarctic North Pacific Ocean to Arctic Ocean, with Notes on Its Habitat. Zoological Systematics, 50(4): 293—301. https://doi.org/10.11865/zs.2025402
      Zhang, W. C., Zhao, Y., Dong, Y., et al., 2021. Biogeography of Epipelagic Marine Plankton. Oceanologia et Limnologia Sinica, 52(2): 332-345 (in Chinese with English abstract). https://doi.org/10.11693/hyhz20200100211
      刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
      齐占会, 史荣君, 戴明, 等, 2021. 尖笔帽螺(Creseis acicula)研究进展及其在大亚湾暴发机制初探. 热带海洋学报, 40(5): 147-152.
      盛桂莲, 陶华林, 宋世文, 等, 2025. 古DNA研究在地球生物学领域的应用. 地球科学, 50(3): 1105-1121. doi: 10.3799/dqkx.2024.155
      徐兆礼, 高倩, 2009. 长江口海域真刺唇角水蚤的分布及其对全球变暖的响应. 应用生态学报, 20(5): 1196-1201.
      张武昌, 赵苑, 董逸, 等, 2021. 上层海洋浮游生物地理分布. 海洋与湖沼, 52(2): 332-345.
    • 加载中
    图(5)
    计量
    • 文章访问数:  183
    • HTML全文浏览量:  25
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-03-14
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回