• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    郝君明, 钟积身, 贾佩钱, 吴通华, 陈杰, 2025. 热融滑塌形态特征、演化过程和稳定性模拟综述. 地球科学. doi: 10.3799/dqkx.2025.166
    引用本文: 郝君明, 钟积身, 贾佩钱, 吴通华, 陈杰, 2025. 热融滑塌形态特征、演化过程和稳定性模拟综述. 地球科学. doi: 10.3799/dqkx.2025.166
    Hao Junming, Zhong Jishen, Jia Peiqian, Wu Tonghua, Chen Jie, 2025. A Review of RTS Characteristics, Evolution, and Permafrost Stability Analysis Methods. Earth Science. doi: 10.3799/dqkx.2025.166
    Citation: Hao Junming, Zhong Jishen, Jia Peiqian, Wu Tonghua, Chen Jie, 2025. A Review of RTS Characteristics, Evolution, and Permafrost Stability Analysis Methods. Earth Science. doi: 10.3799/dqkx.2025.166

    热融滑塌形态特征、演化过程和稳定性模拟综述

    doi: 10.3799/dqkx.2025.166
    基金项目: 

    中国科学院“西部之光-西部交叉团队”重点实验室专项(xbzg-zdsys-202304)

    国家自然科学基金(42461019)

    甘肃省科技重大专项(23ZDFA007)

    甘肃省科技专员专项(24CXGA063)

    兰州市青年科技人才创新项目(2024-QN-170)

    详细信息
      作者简介:

      郝君明(1981—) ,男,博士,副教授,主要从事冻土灾害机理和监测研究,E-mail:haojm198@lzb.ac.cn,ROCID:0000-0002-9172-9344

      通讯作者:

      郝君明(1981—) ,男,博士,副教授,主要从事冻土灾害机理和监测研究,E-mail:haojm198@lzb.ac.cn,ROCID:0000-0002-9172-9344

    • 中图分类号: p694

    A Review of RTS Characteristics, Evolution, and Permafrost Stability Analysis Methods

    • 摘要: 在全球气候变暖的背景下,加速退化的多年冻土降低了边坡稳定性,诱发热融滑塌等冻土灾害,严重威胁寒区的工程稳定性和生态环境安全。然而,当前学界对热融滑塌形态特征与演化过程的认知仍不充分,且模型模拟方法体系和适用性缺乏系统综述。因此,本文结合多年野外考察和文献资料,从热融滑塌的形态特征、演化过程、失稳机理和模拟方法四个方面进行了综述。研究发现:(1)热融滑塌形态特征可以划分为11种不同的类型,其空间分布与地形地貌、冻土环境条件和发育过程相关;(2)热融滑塌演化过程经历了地表裂缝、活动层剥离滑动、多旋回性退缩和逐渐趋于稳定等四个阶段,主要受到地下冰和极端气候事件影响;(3)热融滑塌失稳是热-水-力场相互作用的结果,应力场作用下影响水热传导,温度场和水分场决定空隙水压力来影响应力场,改变边坡稳定性;(4)极限平衡、数值模拟和不确定性是主要的冻土稳定性模拟方法,各有优缺点。本研究有助于认识和理解热融滑塌的现象和过程,对揭示冻土-气候-地貌交互机制具有重要意义,为寒区地貌学、冻土力学等学科理论体系的完善提供支撑。

       

    • [1] Abrahams, A.D., Li, G., Parsons, A.J., 1996. Rill hydraulics on a semiarid hillslope, southern Arizona.Earth Surf Process Landf, 21(1):35-47. https://doi.org/10.1002/(SICI)1096-9837(199601)21:1<35::AID-ESP539>3.0.CO;2-T
      [2] Balser, A.W., Jones, J.B., Gens, R., 2014. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA.Journal of Geophysical Research: Earth Surface, 119(5):1106-1120. https://doi.org/10.1002/2013JF002889
      [3] Brooker, A., Fraser, R.H., Olthof, I., et al., 2014. Mapping the Activity and Evolution of Retrogressive Thaw Slumps by Tasselled Cap Trend Analysis of a Landsat Satellite Image Stack.Permafrost and Periglacial Processes, 25(4):243-256. https://doi.org/10.1002/ppp.1819
      [4] Burn, C.R., Friele, P.A., 1989. Geomorphology, Vegetation Succession, Soil Characteristics and Permafrost in Retrogressive Thaw Slumps near Mayo, Yukon Territory.Arctic, 42(1):31-40. https://doi.org/10.14430/arctic1637
      [5] Burn, C.R., Lewkowicz, A.G., 1990. CANADIAN LANDFORM EXAMPLES - 17 RETROGRESSIVE THAW SLUMPS.Canadian Geographies / Géographies canadiennes, 34(3):273-276. https://doi.org/10.1111/j.1541-0064.1990.tb01092.x
      [6] Campanella Richard, G., Mitchell James, K., 1968. Influence of Temperature Variations on Soil Behavior.Journal of the Soil Mechanics and Foundations Division, 94(3):709-734. https://doi.org/10.1061/JSFEAQ.0001136
      [7] Chandler Richard, J., 1972. Periglacial mudslides in Vestspitsbergen and their bearing on the origin of fossil ‘solifluction’ shears in low angled clay slopes.Quarterly Journal of Engineering Geology, 5(3):223-241. https://doi.org/10.1144/GSL.QJEG.1972.005.03.02
      [8] Chen, X., Liu, J.K., Xie, N., et al., 2015. Probabilistic Analysis of Embankment Slope Stability in Frozen Ground Regions based on Random Finite Element Method.Sci Cold Arid Reg, 7(4):0354-0364. http://www.scar.ac.cn/CN/10.3724/SP.J.1226.2015.00354
      [9] Cheng, G.D., 1982. The Formation of Thick Layers of Underground Ice. SCIENCE IN CHINA Ser. D Earth Sciences, 3): 281-288 (in Chinese).
      [10] Cheng, Y.C., Ge, Q., He, F., 2010. Experimental Research on Critical Depth of Slip Surface of Soil Slope in Seasonal Frozen Area. Rock and Soil Mechanics, 31(4): 1042-1046 (in Chinese with English abstract).
      [11] Cui, K., Qin, X.T., 2023. Landslide Risk Assessment of Frozen Soil Slope in Qinghai Tibet Plateau during Spring Thawing Period under the Coupling Effect of Moisture and Heat.Natural Hazards, 115(3):2399-2416. https://doi.org/10.1007/s11069-022-05646-8
      [12] Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit design.Quarterly of applied mathematics, 10(2):157-165. https://doi.org/10.1090/QAM/48291
      [13] Duan, D.M., Shen, Y.P., Xu, Z.Y., et al., 2008. Stability of the Slope Embankment of Andou Test Section on Qingha-i Tibet Railway in Permafrost Area. China Railway Science, 29(2): 6-11 (in Chinese with English abstract).
      [14] Fellenius, W.K.A., 1927. Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen. W. Ernst & Sohn, Berlin, 1-20.
      [15] Gong, W., Darrow, M.M., Meyer, F.J., et al., 2019. Reconstructing Movement History of Frozen Debris Lobes in Northern Alaska Using Satellite Radar Interferometry.Remote Sens Environ, 221:722-740. https://doi.org/10.1016/j.rse.2018.12.014
      [16] Günther, A., Reichenbach, P., Malet, J.-P., et al., 2013. Tier-based approaches for landslide susceptibility assessment in Europe.Landslides, 10(5):529-546. https://doi.org/10.1007/s10346-012-0349-1
      [17] Han, B.X., Yin, C., Yuan, W., et al., 2025. Numerical Simulation of the Stability of Frozen Soil Slopes in Permafrost Regions Based on an Enhanced Hydrothermal Coupling Model. Journal of Glaciology and Geocryology, 47(02): 417-429 (in Chinese with English abstract).
      [18] Hao, J.M., Jia, P., Wu, T., et al., 2023. Numerical Analysis of The Impacts of Rainfall on Permafrost-Related Slope Stability on the Qinghai–Tibet Plateau.Journal of Hydrology: Regional Studies, 47:101439. https://doi.org/10.1016/j.ejrh.2023.101439
      [19] Harlan, R.L., 1973. Analysis of coupled heat-fluid transport in partially frozen soil.Water Resources Research, 9(5):1314-1323. https://doi.org/10.1029/WR009i005p01314
      [20] Harris, C., Rea, B., Davies, M., 2001. Scaled physical modelling of mass movement processes on thawing slopes.Permafrost and Periglacial Processes, 12(1):125-135. https://doi.org/10.1002/ppp.373
      [21] Hjort, J., Karjalainen, O., Aalto, J., et al., 2018. Degrading Permafrost Puts Arctic Infrastructure at Risk by Mid-Century.Nat Commun, 9(1):5147. https://doi.org/10.1038/s41467-018-07557-4
      [22] Hutchinson, J.N., 1974. Periglacial solifluxion: an approximate mechanism for clayey soils.Géotechnique, 24(3):438-443. https://doi.org/10.1680/geot.1974.24.3.438
      [23] Jiang, L., Wang, L.J., 2008. Stability Study on Swampy Sloping Roadbed in Permafrost Regions of Qinghai-Tibet Railway. Chinese Journal of Geotechnical Engineering, 30(1): 138-142 (in Chinese with English abstract).
      [24] Jin, D.W., Niu, F.J., Chen, Z.X., et al., 2004. The Environmental Geochemistry Information of the Coal Mine Acid Mining Drainage. COAL GEOLOGY &EXPLORATION, 03): 49-52 (in Chinese with English abstract).
      [25] Jin, D.W., Sun, J.F., Fu, S.L., 2005. Discussion on Landslide Hazard Mechanism of Two Kinds of Low-Angle Slope in Permafrost Region of Qinghai-Tibet Plateau. Rock and Soil Mechanics, 26(5): 774-778 (in Chinese with English abstract).
      [26] Jin, H.J., Huang, Y.D., Bense, V.F., et al., 2022. Permafrost Degradation and Its Hydrogeological Impacts.Water, 14(3):372. https://doi.org/10.3390/w14030372
      [27] Jones, M.K.W., Pollard, W.H., Jones, B.M., 2019. Rapid Initialization of Retrogressive Thaw Slumps in the Canadian High Arctic and Their Response to Climate and Terrain Factors.Environ Res Lett, 14(5):055006. https://doi.org/10.1088/1748-9326/ab12fd
      [28] Kokelj, S.V., Lewkowicz, A.G., 1999. Salinization of Permafrost Terrain Due to Natural Geomorphic Disturbance, Fosheim Peninsula, Ellesmere Island.Arctic, 52(4):372-385. https://doi.org/10.14430/arctic942
      [29] Kokelj, S.V., Tunnicliffe, J., Lacelle, D., et al., 2015. Increased Precipitation Drives Mega Slump Development and Destabilization of Ice-Rich Permafrost Terrain, Northwestern Canada.Global and Planetary Change, 129:56-68. https://doi.org/10.1016/j.gloplacha.2015.02.008
      [30] Lacelle, D., Bjornson, J., Lauriol, B., 2010. Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada.Permafrost and Periglacial Processes, 21(1):1-15. https://doi.org/10.1002/ppp.666
      [31] Lantuit, H., Pollard, W.H., 2008. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada.Geomorphology, 95(1):84-102. https://doi.org/10.1016/j.geomorph.2006.07.040
      [32] Lantuit, H., Pollard, W.H., 2005. Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory.Nat Hazards Earth Syst Sci, 5(3):413-423. https://doi.org/10.5194/nhess-5-413-2005
      [33] Lewkowicz, A.G., 1987. Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories.Canadian Journal of Earth Sciences, 24(6):1077-1085. https://doi.org/10.1139/e87-105
      [34] Lewkowicz, A.G., 1987. Nature and importance of thermokarst processes, Sand Hills moraine, Banks Island, Canada.Geografiska Annaler: Series A, Physical Geography, 69(2):321-327. https://doi.org/10.2307/521192
      [35] Lewkowicz, A.G., Harris, C., 2005. Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada.Geomorphology, 69(1):275-297. https://doi.org/10.1016/j.geomorph.2005.01.011
      [36] Lewkowicz, A.G., Way, R.G., 2019. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment.Nat Commun, 10:11. https://doi.org/10.1038/s41467-019-09314-7
      [37] Li, N., Chen, B., Chen, F.X., 2003. Heat-Moisture-Deformation Coupled for Composite Foundation in Cold Zone. China civil engineering journal, 10): 66-71 (in Chinese with English abstract).
      [38] Li, Y., Jin, H.J., Wen, Z., et al., 2022. Stability of Permafrost Slopes: A Review. Journal of Glaciology and Geocryology, 44(1): 203-216 (in Chinese with English abstract).
      [39] Liu, H.J., Wang, P.X., 2006. Stability Analysis of Loss of Stability Caused by Freeze and Melt of Earthen Side Slopes of Highways. Journal of Harbin Institute of Technology, 05): 764-766 (in Chinese with English abstract).
      [40] Liu, Z.Y., Chen, J.B., Jin, L., 2014. Development of Slope Stability Evaluation Process of Permafrost Embankment. Science Technology and Engineering, 14(13): 272-277 (in Chinese with English abstract).
      [41] Luo, D.L., Liu, J., Chen, F.F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081 (in Chinese with English abstract).
      [42] Luo, J., Niu, F.J., Lin, Z.J., et al., 2019. Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau: An Example from the Beiluhe Region.Geomorphology, 341:79-85. https://doi.org/10.1016/j.geomorph.2019.05.020
      [43] Luo, J., Niu, F.J., Lin, Z.J., et al., 2022. Inventory and Frequency of Retrogressive Thaw Slumps in Permafrost Region of the Qinghai–Tibet Plateau.Geophys Res Lett, 49(23):e2022GL099829. https://doi.org/10.1029/2022GL099829
      [44] Ma, W.D., Liu, F.G., Zhou, Q., et al., 2020. Characteristics of Extreme Precipitation Over the Qinghai-Tibet Plateau From 1961 to 2017. Journal of Natural Resources, 35(12): 3039-3050 (in Chinese with English abstract).
      [45] Mackay, J.R., 1966. Segregated epigenetic ice and slumps in permafrost, Mackenzie Delta area, NWT.Geographical Bulletin, 8:59-80.
      [46] Mamot, P., Weber, S., Eppinger, S., et al., 2021. A Temperature-Dependent Mechanical Model to Assess the Stability of Degrading Permafrost Rock Slopes.Earth Surf Dynam, 9(5):1125-1151. https://doi.org/10.5194/esurf-9-1125-2021
      [47] Mao, X.S., Li, N., Wang, B.G., et al., 2006. Coupling Model and Numerical Simulation of Moisture-Heat-Stress Fields in Permafrost Embankment. Journal of Chang’an University (Natural Science Edition), 26(4): 16-19 (in Chinese with English abstract).
      [48] Mcroberts, E., Morgenstern, N.R., 1974. The stability of thawing slopes.Canadian Geotechnical Journal, 11(4):447-469. https://doi.org/10.1139/t74-052
      [49] Mou, C.C., Zhang, T.J., Cao, B., et al., 2013. Study of the Organic Carbon Storage in the Active Layer of Permafrost over the Eboling Mountain in the Upper Reaches of the Heihe River in the Eastern Qilian Mountains. Journal of Glaciology and Geocryology, 35(01): 1-9 (in Chinese with English abstract).
      [50] Mu, C.C., Shang, J.G., Zhang, T.J., et al., 2020. Acceleration of Thaw Slump during 1997–2017 in the Qilian Mountains of the Northern Qinghai-Tibetan Plateau.Landslides, 17(5):1051-1062. https://doi.org/10.1007/s10346-020-01344-3
      [51] Nan, Z.T., Li, S.X., Cheng, G.D., 2004. Prediction of Permafrost Distribution on the Qinghai-Tibet Plateau in the Next 50 and 100 Years. SCIENCE IN CHINA Ser. D Earth Sciences, 34(6): 528-534 (in Chinese).
      [52] Nesterova, N., Leibman, M., Kizyakov, A., et al., 2024. Review Article: Retrogressive Thaw Slump Characteristics and Terminology.The Cryosphere, 18(10):4787-4810. https://doi.org/10.5194/tc-18-4787-2024
      [53] Niu, F.J., Luo, J., Lin, Z.J., et al., 2012. Development and thermal regime of a thaw slump in the Qinghai–Tibet plateau.Cold Regions Science and Technology, 83-84:131-138. https://doi.org/10.1016/j.coldregions.2012.07.007
      [54] Niu, F.J., Ma, L.F., Jin, D.W., 2006. Stability Evaluation Issues of Slopes in Permafrost Regions. Journal of Geotechnical Inwv estigation & Surveying, 6): 1-3 (in Chinese with English abstract).
      [55] Nomleni, I.A., Hung, W.-Y., Soegianto, D.P., 2023. Dynamic Performance of Root-Reinforced Slopes by Centrifuge Modeling Tests.Landslides, 20(6):1187-1210. https://doi.org/10.1007/s10346-023-02035-5
      [56] O'neill, K., Miller, R.D., 1985. Exploration of a Rigid Ice Model of Frost Heave.Water Resources Research, 21(3):281-296. https://doi.org/10.1029/WR021i003p00281
      [57] Obu, J., Lantuit, H., Fritz, M., et al., 2016. Relation between planimetric and volumetric measurements of permafrost coast erosion: a case study from Herschel Island, western Canadian Arctic.Polar Research, 35(1):30313. https://doi.org/10.3402/polar.v35.30313
      [58] Pepin, N., Bradley, R.S., Diaz, H.F., et al., 2015. Elevation-Dependent Warming in Mountain Regions of the World.Nat Clim Chang, 5(5):424-430. https://doi.org/10.1038/nclimate2563
      [59] Philip, J., De Vries, D.D., 1957. Moisture movement in porous materials under temperature gradients.Eos, Transactions American Geophysical Union, 38(2):222-232. https://doi.org/10.1029/TR038i002p00222
      [60] Pufahl, D.E., Morgenstern, N.R., 1979. Stabilization of planar landslides in permafrost.Canadian Geotechnical Journal, 16(4):734-747. https://doi.org/10.1139/t79-019
      [61] Qin, Y., Wu, T., Zhao, L., et al., 2017. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau.Journal of Geophysical Research: Atmospheres, 122(21):11,604-611,620. https://doi.org/10.1002/2017JD026858
      [62] Santander, R.E., Bubnovich, V., 2002. Assessment of mass and heat transfer mechanisms in unsaturated soil.International Communications in Heat and Mass Transfer, 29(4):531-545. https://doi.org/10.1016/S0735-1933(02)00350-0
      [63] Shen, Y.P., Xu, Z.Y., Wang, L.J., 2005. Analysis of Stability of Thawing Slopes on Roadbed of Qing-tibet Railway. China Safety Science Journal, 07): 97-100 (in Chinese with English abstract).
      [64] Song, Y.Q., Zheng, J.J., Li, X.S., et al., 2020. Effects of Freezing-Thawing Cycles on Stability of Soil Slope. Science Technology and Engineering, 20(19): 7885-7890 (in Chinese with English abstract).
      [65] Sordo, B., Rathje, E., Kumar, K., 2024. Sequential Hybrid Finite Element and Material Point Method to Simulate Slope Failures.Computers and Geotechnics, 173:106525. https://doi.org/10.1016/j.compgeo.2024.106525
      [66] Swanson, D.K., 2021. Permafrost thaw-related slope failures in Alaska’s Arctic National Parks, c. 1980–2019.Permafrost and Periglacial Processes, 32(3):392-406. https://doi.org/10.1002/ppp.2098
      [67] Swanson, D.K., Nolan, M., 2018. Growth of Retrogressive Thaw Slumps in the Noatak Valley, Alaska, 2010-2016, Measured by Airborne Photogrammetry.Remote Sens, 10(7):25. https://doi.org/10.3390/rs10070983
      [68] Taber, S., 1930. The Mechanics of Frost Heaving.The Journal of Geology, 38(4):303-317. https://doi.org/10.1086/623720
      [69] Taylor, G.S., Luthin, J.N., 1978. A model for coupled heat and moisture transfer during soil freezing.Canadian Geotechnical Journal, 15(4):548-555. https://doi.org/10.1139/t78-058
      [70] Teufel, B., Sushama, L., 2019. Abrupt Changes Across the Arctic Permafrost Region Endanger Northern Development.Nat Clim Chang, 9(11):858-862. https://doi.org/10.1038/s41558-019-0614-6
      [71] Ugai, K., Leshchinsky, D., 1995. Three-dimensional limit equilibrium and finite element analyses: a comparison of results.Soils and foundations, 35(4):1-7. https://doi.org/10.3208/sandf.35.4_1
      [72] Vallejo, L.E., 1980. A new approach to the stability analysis of thawing slopes.Canadian Geotechnical Journal, 17(4):607-612. https://doi.org/10.1139/t80-068
      [73] Wang, C., Hu, X.S., Lu, H.J., et al., 2024. Study on Shear Characteristics of Herbs Plant Root–Soil Composite System in Beiluhe Permafrost Regions under Freeze–Thaw Cycles, Qinghai–Tibet Highway, China.Sustainability, 16(7):2907. https://doi.org/10.3390/su16072907
      [74] Wang, L.X., Zhao, L., Zhou, H.Y., et al., 2023. Evidence of Ground Ice Melting Detected by InSAR and in Situ Monitoring over Permafrost Terrain on the Qinghai-Xizang (Tibet) Plateau.Permafrost Periglacial Processes, 34(1):52-67. https://doi.org/10.1002/ppp.2171
      [75] Wang, M., Meng, S.J., Yuan, X.M., et al., 2018. Research on Freezing-Thawing Correction Coefficients of Shear Strength Parameters of Seasonal Frozen Soil. Chinese Journal of Rock Mechanics and Engineering, 37(A01): 3756-3764 (in Chinese with English abstract).
      [76] Wang, S.L., 1990. Thaw Slumping in Fenghuo Mountain Area Along Qinghai-Xizang Highway. Journal of Glaciology and Geocryology, 12(1): 63-70 (in Chinese with English abstract).
      [77] Wang, W.L., Wang, L.M., Zheng, L., 2013. The Freeze-thaw Cycling Effects on Slope Stability in Earthquake. Technology for Earthquake Disaster Prevention, 8(2): 156-163 (in Chinese with English abstract).
      [78] Wang, X.J., Pang, G.J., Yang, M.X., et al., 2017. Evaluation of Climate on the Tibetan Plateau Using Era-Interim Reanalysis and Gridded Observations during the Period 1979–2012.Quaternary International, 444:76-86. https://doi.org/10.1016/j.quaint.2016.12.041
      [79] Weeks, A.G., 1969. The stability of natural slopes in south-east England as affected by periglacial activity.Quarterly Journal of Engineering Geology and Hydrogeology, 2(1):49-61. https://doi.org/10.1144/GSL.QJEG.1969.002.01.04
      [80] Wu, H., Gao, W., Wang, G.F., et al., 2005. Study on Causes of Slide and Stability Technology of Artificial Soil-Cutting Side Slope in Frost Area. Journal of Heilongjiang Institute of Technology, 19(2): 1-4 (in Chinese with English abstract).
      [81] Wu, T.H., 1984. Soil movements on permafrost slopes near Fairbanks, Alaska.Canadian Geotechnical Journal, 21(4):699-709. https://doi.org/10.1139/t84-076
      [82] Xu, J., Yang, G.S., Liu, H., 2007. Evaluation of Permafrost Slope with Monte Carlo Simulation Method and Program Design. Chinese Journal of Underground Space and Engineering, z2): 1433-1437 (in Chinese with English abstract).
      [83] Zhang, S.J., Lai, Y.M., Li, S.Y., et al., 2008. Dynamic Strength of Frozen Soils. Chinese Journal of Geotechnical Engineering, 30(4): 595-599 (in Chinese with English abstract).
      [84] Zhang, T.J., 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview.Reviews of Geophysics, 43(4) https://doi.org/10.1029/2004RG000157
      [85] Zhang, Y., Dong, J.H., Dong, X.G., et al., 2017. Analysis of Freezing and Thawing of Slope Improved by Soil Nailing Structure in Seasonal Frozen Soil Region. Rock and Soil Mechanics, 38(2): 574-582 (in Chinese with English abstract).
      [86] Zhang, Y., Michalowski Radoslaw, L., 2015. Thermal-Hydro-Mechanical Analysis of Frost Heave and Thaw Settlement.Journal of Geotechnical and Geoenvironmental Engineering, 141(7):04015027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305
      [87] Zhang, Y.S., Chang, M.J., Liu, Y.H., et al., 2025. Cut Slope Stability Prediction in Permafrost Region Based on Ensemble Learning. Joumnal of Highway and Transportation Researeh and Development, 42(01): 131-139.
      [88] Zhao, L., Wu, Q.B., Marchenko, S.S., et al., 2010. Thermal state of permafrost and active layer in Central Asia during the international polar year.Permafrost and Periglacial Processes, 21(2):198-207. https://doi.org/10.1002/ppp.688
      [89] Zheng, Y.R., 2012. Development and Application of Numerical Limit Analysis for Geological Materials. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1297-1316 (in Chinese with English abstract).
      [90] Zhou, B., Zhang, Y.L., Wei, S.L.J., et al., 2022. Slope Instability Analysis in Permafrost Regions by Shear Strength Parameters and Numerical Simulation.Sustainability, 14(15):9401. https://doi.org/10.3390/su14159401
      [91] Chen, Y.C., 2006. Preliminary Study on Rock and Soil Slope Stability under the Freezing-thawing Condition(Thesis). Xi'an University of Science and Technology, Xi’an (in Chinese with English abstract).
      [92] Jin, W.Y., 2019. Coupled Analysis of Water and Heat under Freezing and Thawing Conditions of Soil Slope in Seasonal Frozen Area(Thesis). Northeast Agricultural University, Harbin (in Chinese with English abstract).
      [93] Li, Z.M., 2017. Study on Mechanism of Moisture-Heat-Stress Coupling for Frozen Soil and Engineering Application(Thesis). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      [94] Liang, R.J., 2007. Research on Frozen Soil Water Migration Based on Neural Network Technique(Thesis). Lanzhou University, Lanzhou (in Chinese with English abstract).
      [95] Zhao, G., 2010. Mechanism of Shallow Slide on Highway Cutting Slope During Spring in Cold Region(Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      [96] 程国栋, 1982. 厚层地下冰的形成过程. 中国科学(B辑 化学 生物学 农学 医学 地学), (3): 281-288.
      [97] 程永春, 葛琪, 何锋, 2010. 季冻区土质边坡滑动界面临界深度的试验研究. 岩土力学, 31(4): 1042-1046.
      [98] 段东明, 沈宇鹏, 许兆义, 等, 2008. 青藏铁路安多试验段多年冻土斜坡路基的稳定性. 中国铁道科学, 29(2): 6-11.
      [99] 韩炳鑫, 尹超, 袁维, 等, 2025. 基于改进水热耦合模型的冻土边坡稳定性数值模拟. 冰川冻土, 47(02): 417-429.
      [100] 姜龙, 王连俊, 2008. 青藏铁路多年冻土区沼泽化斜坡路基稳定性研究. 岩土工程学报, 30(1): 138-142.
      [101] 靳德武, 牛富俊, 陈志新, 等, 2004. 青藏高原融冻泥流型滑坡灾害及其稳定性评价方法. 煤田地质与勘探, (03): 49-52.
      [102] 靳德武, 孙剑锋, 付少兰, 2005. 青藏高原多年冻土区两类低角度滑坡灾害形成机理探讨. 岩土力学, 26(5): 774-778.
      [103] 李宁, 陈波, 陈飞熊, 2003. 寒区复合地基的温度场、水分场与变形场三场耦合模型. 土木工程学报, (10): 66-71.
      [104] 李艳, 金会军, 温智, 等, 2022. 多年冻土区斜坡稳定性研究综述. 冰川冻土, 44(1): 203-216.
      [105] 刘志云, 陈建兵, 金龙, 2014. 冻土路基边坡稳定性计算程序开发. 科学技术与工程, 14(13):
      [106] 罗栋梁, 刘佳, 陈方方, 等, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081.
      [107] 毛雪松, 李宁, 王秉纲, 等, 2006. 多年冻土路基水-热-力耦合理论模型及数值模拟. 长安大学学报: 自然科学版, 26(4): 16-19.
      [108] 南卓铜, 李述训, 程国栋, 2004. 未来 50 与 100a 青藏高原多年冻土变化情景预测. 中国科学, 34(6): 528-534.
      [109] 牛富俊, 马立峰, 靳德武, 2006. 多年冻土地区斜坡稳定性评价问题. 工程勘察, (6): 1-3.
      [110] 沈宇鹏, 许兆义, 王连俊, 2005. 青藏铁路路基中正融土斜坡稳定性分析. 中国安全科学学报, (07): 97-100+101.
      [111] 宋彦琦, 郑俊杰, 李向上, 等, 2020. 冻融循环作用对土质边坡稳定性的影响. 科学技术与工程, 20(19): 7885-7890.
      [112] 王淼, 孟上九, 袁晓铭, 等, 2018. 季冻区典型土类抗剪强度冻融修正系数研究. 岩石力学与工程学报, 37(A01): 3756-3764.
      [113] 王绍令, 1990. 青藏公路风火山地区的热融滑塌. 冰川冻土, 12(1): 63-70.
      [114] 王文丽, 王兰民, 郑龙, 2013. 冻融循环作用下边坡地震动稳定性研究. 震灾防御技术, 8(2): 156-163.
      [115] 武鹤, 高伟, 王国峰, 等, 2005. 寒区路堑人工土质边坡滑塌原因与稳定技术研究. 黑龙江工程学院学报, 19(2): 1-4.
      [116] 徐江, 杨更社, 刘慧, 2007. 基于蒙特卡洛模拟法的冻土边坡可靠度评价. 地下空间与工程学报, (z2): 1433-1437.
      [117] 张淑娟, 赖远明, 李双洋, 等, 2008. 冻土动强度特性试验研究. 岩土工程学报, 30(4): 595-599.
      [118] 张媛, 董建华, 董旭光, 等, 2017. 季节性冻土区土钉边坡支护结构冻融反应分析. 岩土力学, 38(2): 574-582.
      [119] 张永顺, 常明军, 刘宇航, 等, 2025. 基于集成学习的多年冻土区路堑边坡稳定性预测. 公路交通科技, 42(01): 131-139.
      [120] 郑颖人, 2012. 岩土数值极限分析方法的发展与应用. 岩石力学与工程学报, 31(7): 1297-1316.
      [121] 陈玉超, 2006. 冻融环境下岩土边坡稳定性研究初探(硕士学位论文). 西安: 西安科技大学.
      [122] 靳婉莹, 2019. 季冻区渠道土质边坡冻融条件下水热耦合分析(硕士学位论文). 哈尔滨: 东北农业大学.
      [123] 李智明, 2017. 冻土水热力场耦合机理研究与工程应用(硕士学位论文). 哈尔滨: 哈尔滨工业大学.
      [124] 梁若筠, 2007. 基于神经网络方法的冻土水分迁移研究(硕士学位论文). 兰州: 兰州大学.
      [125] 刘红军, 王丕祥, 2006. 公路土质边坡冻融失稳稳定性分析. 哈尔滨工业大学学报, (05): 764-766.
      [126] 马伟东, 刘峰贵, 周强, 等, 2020. 1961-2017年青藏高原极端降水特征分析. 自然资源学报, 35(12): 3039-3050.
      [127] 牟翠翠, 张廷军, 曹斌, 等, 2013. 祁连山区黑河上游俄博岭多年冻土区活动层碳储量研究. 冰川冻土, 35(01): 1-9.
      [128] 赵刚, 2010. 寒区高等级公路路堑边坡春季浅层滑塌机理研究(博士学位论文). 哈尔滨: 哈尔滨工业大学.
    • 加载中
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-16
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回