• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陈德靓, 吴剑, 孔少飞, 董浩宇, 江惟缌, 祁士华, 2025. 武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变. 地球科学. doi: 10.3799/dqkx.2025.169
    引用本文: 陈德靓, 吴剑, 孔少飞, 董浩宇, 江惟缌, 祁士华, 2025. 武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变. 地球科学. doi: 10.3799/dqkx.2025.169
    Deliang CHEN, Jian WU, Shaofei KONG, Haoyu DONG, Weisi JIANG, Shihua QI, 2025. Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution. Earth Science. doi: 10.3799/dqkx.2025.169
    Citation: Deliang CHEN, Jian WU, Shaofei KONG, Haoyu DONG, Weisi JIANG, Shihua QI, 2025. Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution. Earth Science. doi: 10.3799/dqkx.2025.169

    武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变

    doi: 10.3799/dqkx.2025.169
    基金项目: 

    湖北省自然科学基金杰出青年项目(2022CFA040)

    国家重点研发计划(2023YFC3709802)

    详细信息
      作者简介:

      陈德靓(2000-),硕士研究生,主要研究方向为大气污染源排放清单的构建与应用,ORCID:0009-0007-2745-0123,E-mail:cliangliang0211@126.com.

      通讯作者:

      孔少飞(1986-),教授,博士生导师,主要从事大气污染源排放测量与定量表征研究,ORCID:0000-0001-9735-6852,E-mail:kongshaofei@cug.edu.cn.

    • 中图分类号: X513

    Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution

    • 摘要: 武汉城市圈的高时空分辨率大气细颗粒物(PM2.5)排放清单研究的暂时缺乏,制约着区域PM2.5污染的精确模拟和防控. 本研究采用排放因子法,融合高德地图兴趣点数据以及人口、路网和土地利用类型等代用指标,构建了2017-2023年该区域人为源排放PM2.5的高空间分辨率(1 km×1 km)的排放清单,评估其不确定性,揭示其时空演变规律. 结果表明,武汉城市圈PM2.5排放总量在2018年达峰值(164.59千吨),2020年因疫情降至137.15千吨,2023年反弹至149.97千吨. 各源类排放PM2.5的不确定性为-31.7%~42.2%,化石燃料燃烧源(-13.2%~35.8%)和工艺过程源(-15.2%~34.3%)不确定性较高,扬尘源不确定性最低(-8.2%~15.4%). 工艺过程源和扬尘源为主要贡献源,占PM2.5总排放的46.5%~52.6%和26.7%~31.8%. 区域内PM2.5排放强度在城市中心区为600~800 t/km2,是郊区、农村区域排放强度的40~50倍. 本研究可为大气化学数值模拟精度改进提供可靠的高精度清单数据支撑.

       

    • [1] Ali, Md. A., Huang, Z., Bilal, M., et al., 2023. Long-term PM2.5 Pollution over China: Identification of PM2.5 Pollution Hotspots and Source Contributions. Science of The Total Environment, 893: 164871. https://doi.org/ 10.1016/j.scitotenv.2023.164871
      [2] An, J., Huang, Y., Huang, C., et al., 2021. Emission Inventory of Air Pollutants and Chemical Speciation for Specific Anthropogenic Sources Based on Local Measurements in the Yangtze River Delta region, China.Atmospheric Chemistry and Physics, 21(3): 2003-2025. https://doi.org/10.5194/acp-21-2003-2021
      [3] Cao, J. J., Cui, L., 2021. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review.Journal of Geophysical Research: Atmospheres, 126(11): e2020JD034472. https://doi.org/ 10.1029/2020JD034472
      [4] Chen, J., Man, H., Cai, W., et al., 2023. Evaluating city road dust emission characteristics with a dynamic method: A case study in Luoyang, China.Science of The Total Environment, 898: 165520. https://doi.org/10.1016/ j.scitotenv.2023.165520
      [5] Chen, Y., Zhao, Y., Zhang, L., et al., 2025. High-Resolution Inventories for Reactive Nitrogen Emissions from China’s Livestock during 2005-2022.Scientific Data, 12(1): 1062. https://doi.org/10.1038/s41597-025-05394-x
      [6] Cheng, L., Wei, W., Cheng, S., et al., 2024. Reductions of multiple air pollutants from coking industry through technology improvements and their impacts on air quality and health risks in a highly industrialized region of China.Science of The Total Environment, 908: 168360. https://doi.org/10.1016/j.scitotenv.2023.168360
      [7] Dai, T., Dai, Q., Yin, J., et al., 2024. Spatial source apportionment of airborne coarse particulate matter using PMF-Bayesian receptor model.Science of The Total Environment, 917: 170235. https://doi.org/10.1016/j.scitotenv. 2024.170235
      [8] 代伶文,孟晶,李倩倩,等,2021. 长江经济带湖北省人为源VOCs排放清单及变化特征. 环境科学,42(03): 1039–1052.
      [9] 段文娇,郎建垒,程水源,等,2018. 京津冀地区钢铁行业污染物排放清单及对PM2.5影响. 环境科学,39(04): 1445–1454.
      [10] Feng, M., Ren, J., He, J., et al., 2022. Potency of the Pandemic on Air Quality: An Urban Resilience Perspective.Science of The Total Environment, 805: 150248. https://doi.org/10.1016/j.scitotenv.2021.150248
      [11] Feng, X., Tian, Y., Zhang, T., et al., 2024. High Spatial-Resolved Source-Specific Exposure and Risk in the City Scale: Influence of Spatial Interrelationship between PM2.5 Sources and Population on Exposure. Science of The Total Environment, 926: 171873. https://doi.org/10.1016/j.scitotenv.2024.171873
      [12] Gao, C., Li, S., Liu, M., et al., 2021. Impact of the COVID-19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors.Science of The Total Environment, 773: 145545. https://doi.org/10.1016/j.scitotenv.2021.145545
      [13] 高玉冰,邢有凯,何峰,等,2021. 中国钢铁行业节能减排措施的协同控制效应评估研究. 气候变化研究进展,17(04): 388–399.
      [14] Giglio, L., Justice, C., Boschetti, L., et al., 2021.MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V06. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/ MCD64A1.061
      [15] Gu, C., Zhang, L., Xu, Z., et al., 2023. High-Resolution Regional Emission Inventory Contributes to the Evaluation of Policy Effectiveness: A Case Study in Jiangsu Province, China.Atmospheric Chemistry and Physics, 23(7): 4247-4269. https://doi.org/10.5194/acp-23-4247-2023
      [16] 顾延生,李越南,谢树成,等,2023. 从湖泊演化角度谈武汉创建国际湿地城市. 地球科学,48(8): 3193-3204.
      [17] 郭文凯,李光耀,陈冰,等,2021. 兰州市高分辨率人为源排放清单建立及在WRF-Chem中应用评估. 环境科学,42(02): 634–642.
      [18] 何敏,王幸锐,韩丽,等,2015. 四川省秸秆露天焚烧污染物排放清单及时空分布特征. 环境科学,36(04): 1208–1216.
      [19] Hong, X., Zhang, C., Tian, Y., et al., 2023. Quantification and evaluation of atmospheric emissions from crop residue burning constrained by satellite observations in China during 2016–2020.Science of The Total Environment, 865: 161237. https://doi.org/10.1016/j.scitotenv.2022.161237
      [20] Hu, W., Zhao, T., Bai, Y., et al., 2022. Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5-year Observation Over Central China. Journal of Geophysical Research: Atmospheres, 127(13): e2021JD035937. https://doi.org/10.1029/2021JD035937
      [21] 19-09395-0
      [22] Huang, X., Ding, A., Gao, J., et al., 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China.National Science Review, 8(2). https://doi.org/10.1093/nsr/nwaa137
      [23] Huang, Y., Shen, H., Chen, H., et al., 2014. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 48(23): 13834–13843. https://doi.org/10.1021/es503696k
      [24] 黄宇,虎彩娇,成海容,等,2018. 武汉市扬尘源颗粒物排放清单及空间分布特征. 武汉大学学报(理学版),64(04): 354–362.
      [25] 3467-8
      [26] Jia, C., Li, W., Wu, T., et al., 2021. Road Traffic and Air Pollution: Evidence from a Nationwide Traffic Control during Coronavirus Disease 2019 Outbreak.Science of The Total Environment, 781: 146618. https://doi.org/10.1016/j.scitotenv.2021.146618
      [27] Jiang, P., Zhong, X., Li, L., 2020. On-Road Vehicle Emission Inventory and Its Spatio-Temporal Variations in North China Plain.Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639
      [28] Jin, Q., Luo, Y., Meng, X., et al., 2023. Short- and long-term impacts of the COVID-19 epidemic on urban PM2.5 variations: Evidence from a megacity, Chengdu. Atmospheric Environment, 294: 119479. https://doi.org/ 10.1016/j.atmosenv.2022.119479
      [29] Kuang, M., Li, Z., Liu, C., et al., 2013. Overall Evaluation of Combustion and NOx Emissions for a Down-Fired 600 MWe Supercritical Boiler with Multiple Injection and Multiple Staging. Environmental Science & Technology, 47(9): 4850–4858. https://doi.org/10.1021/es304492j
      [30] Lam, Y. F., Cheung, C. C., Zhang, X., et al., 2021. Development of a new emission reallocation method for industrial sources in China.Atmospheric Chemistry and Physics, 21(17): 12895–12908. https:// doi.org/10.5194/acp-21-12895-2021
      [31] Lei, T., Wang, D., Yu, X., et al., 2023. Global Iron and Steel Plant CO2 Emissions and Carbon-Neutrality Pathways. Nature, 622(7983): 514-520. https://doi.org/10.1038/s41586-023-06486-7
      [32] Li, B., Xu, Z., Liu, B., et al., 2024. Development of a Finer-Resolution Multi-Year Emission Inventory for Open Biomass Burning in Heilongjiang Province, China.Scientific Reports, 14(1): 29969. https://doi.org/ 10.1038/s41598-024-81092-9
      [33] Li, G., Fang, C., Wang, S., et al., 2016. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science & Technology, 50(21): 11452–11459. https://doi.org/10.1021/acs.est.6b02562
      [34] Li, R., Zhao, Y., Fu, H., et al., 2021. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs. meteorological influences.Atmospheric Chemistry and Physics, 21(11): 8677–8692. https://doi.org/10.5194/acp-21-8677-2021
      [35] Lian, X., Huang, J., Huang, R., et al., 2020. Impact of City Lockdown on the Air Quality of COVID-19-Hit of Wuhan City.Science of The Total Environment, 742: 140556. https://doi.org/10.1016/j.scitotenv.2020.140556
      [36] Liu, J., Tong, D., Zheng, Y., et al., 2021. Carbon and air pollutant emissions from China’s cement industry 1990–2015: Trends, evolution of technologies, and drivers.Atmospheric Chemistry and Physics, 21(3): 1627–1647. https://doi.org/10.5194/acp-21-1627-2021
      [37] Lu, Y., Shao, M., Zheng, C., et al., 2020. Air pollutant emissions from fossil fuel consumption in China: Current status and future predictions.Atmospheric Environment, 231: 117536. https://doi.org/10.1016/j.atmosenv. 2020.117536
      [38] Ma, J., Shen, J., Wang, P., et al., 2021. Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China.Atmospheric Chemistry and Physics, 21(9): 7343–7355. https://doi.org/10.5194/acp-21-7343-2021
      [39] Milne, A. E., Glendining, M. J., Bellamy, P., et al., 2014. Analysis of Uncertainties in the Estimates of Nitrous Oxide and Methane Emissions in the UK’s Greenhouse Gas Inventory for Agriculture.Atmospheric Environment, 82: 94-105. https://doi.org/10.1016/j.atmosenv. 2013.10.012
      [40] 倪紫琳,周亚端,张银菊,等,2021. 鄂州市高时空分辨率大气污染源排放清单的建立. 环境科学与技术,44(02): 90–96.
      [41] Puliafito, S. E., Allende, D., Pinto, S., et al., 2015. High Resolution Inventory of GHG Emissions of the Road Transport Sector in Argentina.Atmospheric Environment, 101: 303-311. https://doi.org/10.1016/j.atmosenv. 2014.11.040
      [42] Qi, J., Zheng, B., Li, M., et al., 2017. A High-Resolution Air Pollutants Emission Inventory in 2013 for the Beijing-Tianjin-Hebei Region, China.Atmospheric Environment, 170: 156-168. https://doi.org/10.1016/ j.atmosenv.2017.09.039
      [43] 覃思,孔少飞,吴剑,等,2020. 1996-2016年湖北省氨排放时空差异及影响因素. 中国环境科学,40(04): 1403–1413.
      [44] Qiu, P., Tian, H., Zhu, C., et al., 2014. An Elaborate High-Resolution Emission Inventory of Primary Air Pollutants for the Central Plain Urban Agglomeration of China.Atmospheric Environment, 86: 93-101. https://doi.org/ 10.1016/j.atmosenv.2013.11.062
      [45] 孙辰,詹领茜,尹珩,等,2018. 武汉市人为源挥发性有机物排放清单的建立. 环境科学与技术,41(04): 166–171.
      [46] Randerson, J. T., Chen, Y., van der Werf, G. R., et al., 2012. Global burned area and biomass burning emissions from small fires.Journal of Geophysical Research: Biogeosciences, 117(G4). https://doi.org/10.1029/ 2012JG002128
      [47] Sun, B., Li, J., 2025. Asymmetric Effects of Natural and Socioeconomic Factors on PM2.5 Pollution in Chinese Counties. Scientific Reports, 15(1): 19128. https://doi.org/10.1038/s41598-025-03138-w
      [48] Sun, X., Cheng, S., Lang, J., et al., 2018. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations.Science of The Total Environment, 625: 155–167. https://doi.org/10.1016/j.scitotenv.2017.12.103
      [49] Thompson, R. J., Li, J., Weyant, C. L., et al., 2019. Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories.Environmental Science & Technology, 53(6): 3323–3330. https://doi.org/10.1021/acs.est.8b07040
      [50] 田刚,黄玉虎,李钢,2009. 四维通量法施工扬尘排放模型的建立与应用. 环境科学,30(04): 1003–1007.
      [51] 王红丽,景盛翱,楼晟荣,等,2018. 餐饮行业细颗粒物(PM2.5)排放测算方法: 以上海市为例. 环境科学, 39(05): 1971–1977.
      [52] 王瑶,唐晓,陈科艺,等,2022. 新冠疫情期间武汉空气质量变化的多维观测分析. 气候与环境研究, 27(06): 756–768.
      [53] Wang, S., Wang, Q., Zhu, S., et al., 2022. Hourly organic tracers-based source apportionment of PM2.5 before and during the Covid-19 lockdown in suburban Shanghai, China: Insights into regional transport influences and response to urban emission reductions. Atmospheric Environment, 289: 119308. https://doi.org/10.1016/ j.atmosenv.2022.119308
      [54] Wang, S., Zhu, Y., Jang, J.-C., et al., 2024. Modeling assessment of air pollution control measures and COVID-19 pandemic on air quality improvements over Greater Bay Area of China.Science of The Total Environment, 926: 171951. https://doi.org/10.1016/j.scitotenv.2024.171951
      [55] Wu, J., Kong, S., Wu, F., et al., 2020. The Moving of High Emission for Biomass Burning in China: View from Multi-Year Emission Estimation and Human-Driven Forces.Environment International, 142: 105812. https://doi.org/10.1016/j.envint.2020.105812
      [56] Wu, J., Kong, S., Zeng, X., et al., 2021. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China.Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/ acs.est.0c06675
      [57] Wu, Y., You, Y., Wang, Z., et al., 2024. Establishment of a High Temporal-Spatial Resolution Anthropogenic Emission Inventory of Air Pollutants in 2017 for Macao, China.Atmospheric Environment, 337: 120735. https://doi.org/10.1016/j.atmosenv.2024.120735
      [58] Xia, L., Liu, R., Fan, W., et al., 2025. Emerging Carbon Dioxide Hotspots in East Asia Identified by a Top-Down Inventory.Communications Earth & Environment, 6(1): 10. https://doi.org/10.1038/s43247-024-01991-7
      [59] 熊江荷,孔少飞,郑煌,等,2023. 排放和气象对疫情前后武汉不同类型点位大气污染物的影响. 环境科学,44(02): 670–679.
      [60] Xiong, T., Jiang, W., Gao, W. 2016. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China.Atmospheric Environment, 124: 46–52. https://doi.org/10.1016/ j.atmosenv.2015.11.002
      [61] Xu, H., Chen, H. 2021. Impact of urban morphology on the spatial and temporal distribution of PM2.5 concentration: A numerical simulation with WRF/CMAQ model in Wuhan, China. Journal of Environmental Management, 290: 112427. https://doi.org/10.1016/j.jenvman.2021.112427
      [62] 闫东杰,丁毅飞,玉亚,等,2019. 西安市人为源一次PM2.5排放清单及减排潜力研究. 环境科学研究,32(05): 813–820.
      [63] 杨柳林,王雪梅,陈巧俊,2012. 区域间大气污染物相互影响研究的新方法探讨. 环境科学学报,32(03): 528–536.
      [64] Yuan, Q., Qi, B., Hu, D., et al., 2021. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China.Science of The Total Environment, 751: 141820. https://doi.org/10.1016/j.scitotenv.2020.141820
      [65] Zeng, C., Wu, S., Cheng, M., et al., 2024. High-Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects.Scientific Reports, 14(1): 20916. https://doi.org/10.1038/s41598-024-71836-y
      [66] Zhan, Y., Xie, M., Zhao, W., et al., 2023. Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: Characteristics, sources, and health risks. Atmospheric Chemistry and Physics, 23(17): 9837–9852. https://doi.org/10.5194/acp-23-9837-2023
      [67] Zhang, J., Chen, C., Su, Y., et al., 2024a. Characterization of summertime single aerosol particles in Chengdu (China): Interannual evolution and impact of COVID-19 lockdown.Science of The Total Environment, 907: 167765. https://doi.org/10.1016/j.scitotenv.2023.167765
      [68] Zhang, J., Huang, Y., Zhou, N., et al., 2024b. Contribution of Anthropogenic Emission Changes to the Evolution of PM2.5 Concentrations and Composition in the Pearl River Delta during the Period of 2006–2020. Atmospheric Environment, 318: 120228. https://doi.org/10.1016/j.atmosenv.2023.120228
      [69] Zhang, J., Liu, L., Zhao, Y., et al., 2020. Development of a High-Resolution Emission Inventory of Agricultural Machinery with a Novel Methodology: A Case Study for Yangtze River Delta Region.Environmental Pollution, 266: 115075. https://doi.org/10.1016/j.envpol.2020.115075
      [70] Zhang, J., Su, Y., Chen, C., et al., 2024. Chemical Composition, Sources and Formation Mechanism of Urban PM2.5 in Southwest China: A Case Study at the Beginning of 2023. Atmospheric Chemistry and Physics, 24(5): 2803–2820. https://doi.org/10.5194/acp-24-2803-2024
      [71] Zhang, L., Niu, M., Zhang, Z., et al., 2023. A New Method of Hotspot Analysis on the Management of CO2 and Air Pollutants, a Case Study in Guangzhou City, China. Science of The Total Environment, 856: 159040. https://doi.org/10.1016/j.scitotenv.2022.159040
      [72] Zhang, Q., Zheng, Y., Tong, D., et al., 2019. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. https://doi.org/10.1073/pnas.1907956116
      [73] 张雪纯,王文钜,王明娅,等,2022. 中国盆地城市人为源大气污染物排放清单及空间分布特征--以晋城市为例. 环境化学,41(12): 4016–4031.
      [74] 赵光帅,普政功,黄奇波,等,2024. 增温和降水改变对土壤CO2释放影响研究进展. 地球科学,49(12): 4608-4621.
      [75] Zhao, X., Wang, G., Wang, S., et al., 2021. Impacts of COVID-19 on air quality in mid-eastern China: An insight into meteorology and emissions.Atmospheric Environment, 266: 118750. https://doi.org/10.1016/j.atmosenv. 2021.118750
      [76] Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China.Atmospheric Chemistry and Physics, 11(5): 2295–2308. https://doi.org/10.5194/acp-11-2295-2011
      [77] Zheng, B., Cheng, J., Geng, G., et al., 2021. Mapping Anthropogenic Emissions in China at 1 km Spatial Resolution and Its Application in Air Quality Modeling.Science Bulletin, 66(6): 612-620. https:// doi.org/10.1016/j.scib.2020.12.008
      [78] Zheng, H., Cai, S., Wang, S., et al., 2019. Development of a Unit-Based Industrial Emission Inventory in the Beijing–Tianjin–Hebei Region and Resulting Improvement in Air Quality Modeling.Atmospheric Chemistry and Physics, 19(6): 3447–3462. https://doi.org/10.5194/acp-19-3447-2019
      [79] Zheng, H., Kong, S., Chen, N., et al., 2020. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan Since the City Lockdown Due to COVID-19. Science of The Total Environment, 739: 140000. https://doi.org/10.1016/j.scitotenv.2020.140000
      [80] Zhong, H., Zhao, Y., Muntean, M., et al., 2016. A High-Resolution Regional Emission Inventory of Atmospheric Mercury and Its Comparison with Multi-Scale Inventories: A Case Study of Jiangsu, China.Atmospheric Chemistry and Physics, 16(23): 15119–15134. https://doi.org/10.5194/acp-16-15119-2016
      [81] Zhong, Z., Zheng, J., Zhu, M., et al., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China.Science of The Total Environment, 627: 1080–1092. https://doi.org/10.1016/ j.scitotenv.2018.01.268
      [82] Zhou, H., Liu, T., Sun, B., et al., 2022. Chemical characteristics and sources of PM2.5 in Hohhot, a semi-arid city in northern China: Insight from the COVID-19 lockdown. Atmospheric Chemistry and Physics, 22(18): 12153–12166. https://doi.org/10.5194/acp-22-12153-2022
      [83] Zhou, Y., Xing, X., Lang, J., et al., 2017. A Comprehensive Biomass Burning Emission Inventory with High Spatial and Temporal Resolution in China.Atmospheric Chemistry and Physics, 17(4): 2839–2864. https://doi.org/10.5194/acp-17-2839-2017
      [84] Zhu, C., Qu, X., Qiu, M., et al., 2023. High spatiotemporal resolution vehicular emission inventory in Beijing-Tianjin-Hebei and its surrounding areas (BTHSA) during 2000–2020, China.Science of The Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389
    • 加载中
    计量
    • 文章访问数:  16
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-22
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回