[1] |
Ali, Md. A., Huang, Z., Bilal, M., et al., 2023. Long-term PM2.5 Pollution over China: Identification of PM2.5 Pollution Hotspots and Source Contributions. Science of The Total Environment, 893: 164871. https://doi.org/ 10.1016/j.scitotenv.2023.164871 |
[2] |
An, J., Huang, Y., Huang, C., et al., 2021. Emission Inventory of Air Pollutants and Chemical Speciation for Specific Anthropogenic Sources Based on Local Measurements in the Yangtze River Delta region, China.Atmospheric Chemistry and Physics, 21(3): 2003-2025. https://doi.org/10.5194/acp-21-2003-2021 |
[3] |
Cao, J. J., Cui, L., 2021. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review.Journal of Geophysical Research: Atmospheres, 126(11): e2020JD034472. https://doi.org/ 10.1029/2020JD034472 |
[4] |
Chen, J., Man, H., Cai, W., et al., 2023. Evaluating city road dust emission characteristics with a dynamic method: A case study in Luoyang, China.Science of The Total Environment, 898: 165520. https://doi.org/10.1016/ j.scitotenv.2023.165520 |
[5] |
Chen, Y., Zhao, Y., Zhang, L., et al., 2025. High-Resolution Inventories for Reactive Nitrogen Emissions from China’s Livestock during 2005-2022.Scientific Data, 12(1): 1062. https://doi.org/10.1038/s41597-025-05394-x |
[6] |
Cheng, L., Wei, W., Cheng, S., et al., 2024. Reductions of multiple air pollutants from coking industry through technology improvements and their impacts on air quality and health risks in a highly industrialized region of China.Science of The Total Environment, 908: 168360. https://doi.org/10.1016/j.scitotenv.2023.168360 |
[7] |
Dai, T., Dai, Q., Yin, J., et al., 2024. Spatial source apportionment of airborne coarse particulate matter using PMF-Bayesian receptor model.Science of The Total Environment, 917: 170235. https://doi.org/10.1016/j.scitotenv. 2024.170235 |
[8] |
代伶文,孟晶,李倩倩,等,2021. 长江经济带湖北省人为源VOCs排放清单及变化特征. 环境科学,42(03): 1039–1052. |
[9] |
段文娇,郎建垒,程水源,等,2018. 京津冀地区钢铁行业污染物排放清单及对PM2.5影响. 环境科学,39(04): 1445–1454. |
[10] |
Feng, M., Ren, J., He, J., et al., 2022. Potency of the Pandemic on Air Quality: An Urban Resilience Perspective.Science of The Total Environment, 805: 150248. https://doi.org/10.1016/j.scitotenv.2021.150248 |
[11] |
Feng, X., Tian, Y., Zhang, T., et al., 2024. High Spatial-Resolved Source-Specific Exposure and Risk in the City Scale: Influence of Spatial Interrelationship between PM2.5 Sources and Population on Exposure. Science of The Total Environment, 926: 171873. https://doi.org/10.1016/j.scitotenv.2024.171873 |
[12] |
Gao, C., Li, S., Liu, M., et al., 2021. Impact of the COVID-19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors.Science of The Total Environment, 773: 145545. https://doi.org/10.1016/j.scitotenv.2021.145545 |
[13] |
高玉冰,邢有凯,何峰,等,2021. 中国钢铁行业节能减排措施的协同控制效应评估研究. 气候变化研究进展,17(04): 388–399. |
[14] |
Giglio, L., Justice, C., Boschetti, L., et al., 2021.MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V06. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/ MCD64A1.061 |
[15] |
Gu, C., Zhang, L., Xu, Z., et al., 2023. High-Resolution Regional Emission Inventory Contributes to the Evaluation of Policy Effectiveness: A Case Study in Jiangsu Province, China.Atmospheric Chemistry and Physics, 23(7): 4247-4269. https://doi.org/10.5194/acp-23-4247-2023 |
[16] |
顾延生,李越南,谢树成,等,2023. 从湖泊演化角度谈武汉创建国际湿地城市. 地球科学,48(8): 3193-3204. |
[17] |
郭文凯,李光耀,陈冰,等,2021. 兰州市高分辨率人为源排放清单建立及在WRF-Chem中应用评估. 环境科学,42(02): 634–642. |
[18] |
何敏,王幸锐,韩丽,等,2015. 四川省秸秆露天焚烧污染物排放清单及时空分布特征. 环境科学,36(04): 1208–1216. |
[19] |
Hong, X., Zhang, C., Tian, Y., et al., 2023. Quantification and evaluation of atmospheric emissions from crop residue burning constrained by satellite observations in China during 2016–2020.Science of The Total Environment, 865: 161237. https://doi.org/10.1016/j.scitotenv.2022.161237 |
[20] |
Hu, W., Zhao, T., Bai, Y., et al., 2022. Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5-year Observation Over Central China. Journal of Geophysical Research: Atmospheres, 127(13): e2021JD035937. https://doi.org/10.1029/2021JD035937 |
[21] |
19-09395-0 |
[22] |
Huang, X., Ding, A., Gao, J., et al., 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China.National Science Review, 8(2). https://doi.org/10.1093/nsr/nwaa137 |
[23] |
Huang, Y., Shen, H., Chen, H., et al., 2014. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 48(23): 13834–13843. https://doi.org/10.1021/es503696k |
[24] |
黄宇,虎彩娇,成海容,等,2018. 武汉市扬尘源颗粒物排放清单及空间分布特征. 武汉大学学报(理学版),64(04): 354–362. |
[25] |
3467-8 |
[26] |
Jia, C., Li, W., Wu, T., et al., 2021. Road Traffic and Air Pollution: Evidence from a Nationwide Traffic Control during Coronavirus Disease 2019 Outbreak.Science of The Total Environment, 781: 146618. https://doi.org/10.1016/j.scitotenv.2021.146618 |
[27] |
Jiang, P., Zhong, X., Li, L., 2020. On-Road Vehicle Emission Inventory and Its Spatio-Temporal Variations in North China Plain.Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639 |
[28] |
Jin, Q., Luo, Y., Meng, X., et al., 2023. Short- and long-term impacts of the COVID-19 epidemic on urban PM2.5 variations: Evidence from a megacity, Chengdu. Atmospheric Environment, 294: 119479. https://doi.org/ 10.1016/j.atmosenv.2022.119479 |
[29] |
Kuang, M., Li, Z., Liu, C., et al., 2013. Overall Evaluation of Combustion and NOx Emissions for a Down-Fired 600 MWe Supercritical Boiler with Multiple Injection and Multiple Staging. Environmental Science & Technology, 47(9): 4850–4858. https://doi.org/10.1021/es304492j |
[30] |
Lam, Y. F., Cheung, C. C., Zhang, X., et al., 2021. Development of a new emission reallocation method for industrial sources in China.Atmospheric Chemistry and Physics, 21(17): 12895–12908. https:// doi.org/10.5194/acp-21-12895-2021 |
[31] |
Lei, T., Wang, D., Yu, X., et al., 2023. Global Iron and Steel Plant CO2 Emissions and Carbon-Neutrality Pathways. Nature, 622(7983): 514-520. https://doi.org/10.1038/s41586-023-06486-7 |
[32] |
Li, B., Xu, Z., Liu, B., et al., 2024. Development of a Finer-Resolution Multi-Year Emission Inventory for Open Biomass Burning in Heilongjiang Province, China.Scientific Reports, 14(1): 29969. https://doi.org/ 10.1038/s41598-024-81092-9 |
[33] |
Li, G., Fang, C., Wang, S., et al., 2016. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science & Technology, 50(21): 11452–11459. https://doi.org/10.1021/acs.est.6b02562 |
[34] |
Li, R., Zhao, Y., Fu, H., et al., 2021. Substantial changes in gaseous pollutants and chemical compositions in fine particles in the North China Plain during the COVID-19 lockdown period: Anthropogenic vs. meteorological influences.Atmospheric Chemistry and Physics, 21(11): 8677–8692. https://doi.org/10.5194/acp-21-8677-2021 |
[35] |
Lian, X., Huang, J., Huang, R., et al., 2020. Impact of City Lockdown on the Air Quality of COVID-19-Hit of Wuhan City.Science of The Total Environment, 742: 140556. https://doi.org/10.1016/j.scitotenv.2020.140556 |
[36] |
Liu, J., Tong, D., Zheng, Y., et al., 2021. Carbon and air pollutant emissions from China’s cement industry 1990–2015: Trends, evolution of technologies, and drivers.Atmospheric Chemistry and Physics, 21(3): 1627–1647. https://doi.org/10.5194/acp-21-1627-2021 |
[37] |
Lu, Y., Shao, M., Zheng, C., et al., 2020. Air pollutant emissions from fossil fuel consumption in China: Current status and future predictions.Atmospheric Environment, 231: 117536. https://doi.org/10.1016/j.atmosenv. 2020.117536 |
[38] |
Ma, J., Shen, J., Wang, P., et al., 2021. Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China.Atmospheric Chemistry and Physics, 21(9): 7343–7355. https://doi.org/10.5194/acp-21-7343-2021 |
[39] |
Milne, A. E., Glendining, M. J., Bellamy, P., et al., 2014. Analysis of Uncertainties in the Estimates of Nitrous Oxide and Methane Emissions in the UK’s Greenhouse Gas Inventory for Agriculture.Atmospheric Environment, 82: 94-105. https://doi.org/10.1016/j.atmosenv. 2013.10.012 |
[40] |
倪紫琳,周亚端,张银菊,等,2021. 鄂州市高时空分辨率大气污染源排放清单的建立. 环境科学与技术,44(02): 90–96. |
[41] |
Puliafito, S. E., Allende, D., Pinto, S., et al., 2015. High Resolution Inventory of GHG Emissions of the Road Transport Sector in Argentina.Atmospheric Environment, 101: 303-311. https://doi.org/10.1016/j.atmosenv. 2014.11.040 |
[42] |
Qi, J., Zheng, B., Li, M., et al., 2017. A High-Resolution Air Pollutants Emission Inventory in 2013 for the Beijing-Tianjin-Hebei Region, China.Atmospheric Environment, 170: 156-168. https://doi.org/10.1016/ j.atmosenv.2017.09.039 |
[43] |
覃思,孔少飞,吴剑,等,2020. 1996-2016年湖北省氨排放时空差异及影响因素. 中国环境科学,40(04): 1403–1413. |
[44] |
Qiu, P., Tian, H., Zhu, C., et al., 2014. An Elaborate High-Resolution Emission Inventory of Primary Air Pollutants for the Central Plain Urban Agglomeration of China.Atmospheric Environment, 86: 93-101. https://doi.org/ 10.1016/j.atmosenv.2013.11.062 |
[45] |
孙辰,詹领茜,尹珩,等,2018. 武汉市人为源挥发性有机物排放清单的建立. 环境科学与技术,41(04): 166–171. |
[46] |
Randerson, J. T., Chen, Y., van der Werf, G. R., et al., 2012. Global burned area and biomass burning emissions from small fires.Journal of Geophysical Research: Biogeosciences, 117(G4). https://doi.org/10.1029/ 2012JG002128 |
[47] |
Sun, B., Li, J., 2025. Asymmetric Effects of Natural and Socioeconomic Factors on PM2.5 Pollution in Chinese Counties. Scientific Reports, 15(1): 19128. https://doi.org/10.1038/s41598-025-03138-w |
[48] |
Sun, X., Cheng, S., Lang, J., et al., 2018. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations.Science of The Total Environment, 625: 155–167. https://doi.org/10.1016/j.scitotenv.2017.12.103 |
[49] |
Thompson, R. J., Li, J., Weyant, C. L., et al., 2019. Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories.Environmental Science & Technology, 53(6): 3323–3330. https://doi.org/10.1021/acs.est.8b07040 |
[50] |
田刚,黄玉虎,李钢,2009. 四维通量法施工扬尘排放模型的建立与应用. 环境科学,30(04): 1003–1007. |
[51] |
王红丽,景盛翱,楼晟荣,等,2018. 餐饮行业细颗粒物(PM2.5)排放测算方法: 以上海市为例. 环境科学, 39(05): 1971–1977. |
[52] |
王瑶,唐晓,陈科艺,等,2022. 新冠疫情期间武汉空气质量变化的多维观测分析. 气候与环境研究, 27(06): 756–768. |
[53] |
Wang, S., Wang, Q., Zhu, S., et al., 2022. Hourly organic tracers-based source apportionment of PM2.5 before and during the Covid-19 lockdown in suburban Shanghai, China: Insights into regional transport influences and response to urban emission reductions. Atmospheric Environment, 289: 119308. https://doi.org/10.1016/ j.atmosenv.2022.119308 |
[54] |
Wang, S., Zhu, Y., Jang, J.-C., et al., 2024. Modeling assessment of air pollution control measures and COVID-19 pandemic on air quality improvements over Greater Bay Area of China.Science of The Total Environment, 926: 171951. https://doi.org/10.1016/j.scitotenv.2024.171951 |
[55] |
Wu, J., Kong, S., Wu, F., et al., 2020. The Moving of High Emission for Biomass Burning in China: View from Multi-Year Emission Estimation and Human-Driven Forces.Environment International, 142: 105812. https://doi.org/10.1016/j.envint.2020.105812 |
[56] |
Wu, J., Kong, S., Zeng, X., et al., 2021. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China.Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/ acs.est.0c06675 |
[57] |
Wu, Y., You, Y., Wang, Z., et al., 2024. Establishment of a High Temporal-Spatial Resolution Anthropogenic Emission Inventory of Air Pollutants in 2017 for Macao, China.Atmospheric Environment, 337: 120735. https://doi.org/10.1016/j.atmosenv.2024.120735 |
[58] |
Xia, L., Liu, R., Fan, W., et al., 2025. Emerging Carbon Dioxide Hotspots in East Asia Identified by a Top-Down Inventory.Communications Earth & Environment, 6(1): 10. https://doi.org/10.1038/s43247-024-01991-7 |
[59] |
熊江荷,孔少飞,郑煌,等,2023. 排放和气象对疫情前后武汉不同类型点位大气污染物的影响. 环境科学,44(02): 670–679. |
[60] |
Xiong, T., Jiang, W., Gao, W. 2016. Current status and prediction of major atmospheric emissions from coal-fired power plants in Shandong Province, China.Atmospheric Environment, 124: 46–52. https://doi.org/10.1016/ j.atmosenv.2015.11.002 |
[61] |
Xu, H., Chen, H. 2021. Impact of urban morphology on the spatial and temporal distribution of PM2.5 concentration: A numerical simulation with WRF/CMAQ model in Wuhan, China. Journal of Environmental Management, 290: 112427. https://doi.org/10.1016/j.jenvman.2021.112427 |
[62] |
闫东杰,丁毅飞,玉亚,等,2019. 西安市人为源一次PM2.5排放清单及减排潜力研究. 环境科学研究,32(05): 813–820. |
[63] |
杨柳林,王雪梅,陈巧俊,2012. 区域间大气污染物相互影响研究的新方法探讨. 环境科学学报,32(03): 528–536. |
[64] |
Yuan, Q., Qi, B., Hu, D., et al., 2021. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China.Science of The Total Environment, 751: 141820. https://doi.org/10.1016/j.scitotenv.2020.141820 |
[65] |
Zeng, C., Wu, S., Cheng, M., et al., 2024. High-Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects.Scientific Reports, 14(1): 20916. https://doi.org/10.1038/s41598-024-71836-y |
[66] |
Zhan, Y., Xie, M., Zhao, W., et al., 2023. Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: Characteristics, sources, and health risks. Atmospheric Chemistry and Physics, 23(17): 9837–9852. https://doi.org/10.5194/acp-23-9837-2023 |
[67] |
Zhang, J., Chen, C., Su, Y., et al., 2024a. Characterization of summertime single aerosol particles in Chengdu (China): Interannual evolution and impact of COVID-19 lockdown.Science of The Total Environment, 907: 167765. https://doi.org/10.1016/j.scitotenv.2023.167765 |
[68] |
Zhang, J., Huang, Y., Zhou, N., et al., 2024b. Contribution of Anthropogenic Emission Changes to the Evolution of PM2.5 Concentrations and Composition in the Pearl River Delta during the Period of 2006–2020. Atmospheric Environment, 318: 120228. https://doi.org/10.1016/j.atmosenv.2023.120228 |
[69] |
Zhang, J., Liu, L., Zhao, Y., et al., 2020. Development of a High-Resolution Emission Inventory of Agricultural Machinery with a Novel Methodology: A Case Study for Yangtze River Delta Region.Environmental Pollution, 266: 115075. https://doi.org/10.1016/j.envpol.2020.115075 |
[70] |
Zhang, J., Su, Y., Chen, C., et al., 2024. Chemical Composition, Sources and Formation Mechanism of Urban PM2.5 in Southwest China: A Case Study at the Beginning of 2023. Atmospheric Chemistry and Physics, 24(5): 2803–2820. https://doi.org/10.5194/acp-24-2803-2024 |
[71] |
Zhang, L., Niu, M., Zhang, Z., et al., 2023. A New Method of Hotspot Analysis on the Management of CO2 and Air Pollutants, a Case Study in Guangzhou City, China. Science of The Total Environment, 856: 159040. https://doi.org/10.1016/j.scitotenv.2022.159040 |
[72] |
Zhang, Q., Zheng, Y., Tong, D., et al., 2019. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. https://doi.org/10.1073/pnas.1907956116 |
[73] |
张雪纯,王文钜,王明娅,等,2022. 中国盆地城市人为源大气污染物排放清单及空间分布特征--以晋城市为例. 环境化学,41(12): 4016–4031. |
[74] |
赵光帅,普政功,黄奇波,等,2024. 增温和降水改变对土壤CO2释放影响研究进展. 地球科学,49(12): 4608-4621. |
[75] |
Zhao, X., Wang, G., Wang, S., et al., 2021. Impacts of COVID-19 on air quality in mid-eastern China: An insight into meteorology and emissions.Atmospheric Environment, 266: 118750. https://doi.org/10.1016/j.atmosenv. 2021.118750 |
[76] |
Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China.Atmospheric Chemistry and Physics, 11(5): 2295–2308. https://doi.org/10.5194/acp-11-2295-2011 |
[77] |
Zheng, B., Cheng, J., Geng, G., et al., 2021. Mapping Anthropogenic Emissions in China at 1 km Spatial Resolution and Its Application in Air Quality Modeling.Science Bulletin, 66(6): 612-620. https:// doi.org/10.1016/j.scib.2020.12.008 |
[78] |
Zheng, H., Cai, S., Wang, S., et al., 2019. Development of a Unit-Based Industrial Emission Inventory in the Beijing–Tianjin–Hebei Region and Resulting Improvement in Air Quality Modeling.Atmospheric Chemistry and Physics, 19(6): 3447–3462. https://doi.org/10.5194/acp-19-3447-2019 |
[79] |
Zheng, H., Kong, S., Chen, N., et al., 2020. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan Since the City Lockdown Due to COVID-19. Science of The Total Environment, 739: 140000. https://doi.org/10.1016/j.scitotenv.2020.140000 |
[80] |
Zhong, H., Zhao, Y., Muntean, M., et al., 2016. A High-Resolution Regional Emission Inventory of Atmospheric Mercury and Its Comparison with Multi-Scale Inventories: A Case Study of Jiangsu, China.Atmospheric Chemistry and Physics, 16(23): 15119–15134. https://doi.org/10.5194/acp-16-15119-2016 |
[81] |
Zhong, Z., Zheng, J., Zhu, M., et al., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China.Science of The Total Environment, 627: 1080–1092. https://doi.org/10.1016/ j.scitotenv.2018.01.268 |
[82] |
Zhou, H., Liu, T., Sun, B., et al., 2022. Chemical characteristics and sources of PM2.5 in Hohhot, a semi-arid city in northern China: Insight from the COVID-19 lockdown. Atmospheric Chemistry and Physics, 22(18): 12153–12166. https://doi.org/10.5194/acp-22-12153-2022 |
[83] |
Zhou, Y., Xing, X., Lang, J., et al., 2017. A Comprehensive Biomass Burning Emission Inventory with High Spatial and Temporal Resolution in China.Atmospheric Chemistry and Physics, 17(4): 2839–2864. https://doi.org/10.5194/acp-17-2839-2017 |
[84] |
Zhu, C., Qu, X., Qiu, M., et al., 2023. High spatiotemporal resolution vehicular emission inventory in Beijing-Tianjin-Hebei and its surrounding areas (BTHSA) during 2000–2020, China.Science of The Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389 |