• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变

    陈德靓 吴剑 孔少飞 董浩宇 江惟缌 祁士华

    陈德靓, 吴剑, 孔少飞, 董浩宇, 江惟缌, 祁士华, 2025. 武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变. 地球科学, 50(9): 3488-3505. doi: 10.3799/dqkx.2025.169
    引用本文: 陈德靓, 吴剑, 孔少飞, 董浩宇, 江惟缌, 祁士华, 2025. 武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变. 地球科学, 50(9): 3488-3505. doi: 10.3799/dqkx.2025.169
    Chen Deliang, Wu Jian, Kong Shaofei, Dong Haoyu, Jiang Weisi, Qi Shihua, 2025. Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution. Earth Science, 50(9): 3488-3505. doi: 10.3799/dqkx.2025.169
    Citation: Chen Deliang, Wu Jian, Kong Shaofei, Dong Haoyu, Jiang Weisi, Qi Shihua, 2025. Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution. Earth Science, 50(9): 3488-3505. doi: 10.3799/dqkx.2025.169

    武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变

    doi: 10.3799/dqkx.2025.169
    基金项目: 

    湖北省自然科学基金杰出青年项目 2022CFA040

    国家重点研发计划 2023YFC3709802

    详细信息
      作者简介:

      陈德靓(2000-),女,硕士研究生,主要研究方向为大气污染源排放清单的构建与应用.ORCID:0009-0007-2745-0123. E-mail:cliangliang0211@126.com

      通讯作者:

      孔少飞,ORCID: 0000-0001-9735-6852. E-mail: kongshaofei@cug.edu.cn

    • 中图分类号: P402

    Estimation of Emission Inventory with High-Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial-Temporal Evolution

    • 摘要:

      武汉城市圈的高时空分辨率大气细颗粒物(PM2.5)排放清单研究的暂时缺乏,制约着区域PM2.5污染的精确模拟和防控. 本研究采用排放因子法,融合高德地图兴趣点数据以及人口、路网和土地利用类型等代用指标,构建了2017-2023年该区域人为源排放PM2.5的高空间分辨率(1 km×1 km)排放清单,评估其不确定性,揭示其时空演变规律. 结果表明,武汉城市圈PM2.5排放总量在2018年达峰值(164.59 kt),2020年因疫情降至137.15 kt,2023年反弹至149.97 kt. 各源类排放PM2.5的不确定性为-31.7%~42.2%,化石燃料燃烧源(-13.2%~35.8%)和工艺过程源(-15.2%~34.3%)不确定性较高,扬尘源不确定性最低(-8.2%~15.4%). 工艺过程源和扬尘源为主要贡献源,占PM2.5总排放的46.5%~52.6%和26.7%~31.8%. 区域内PM2.5排放强度在城市中心区为600~800 t/km2,是郊区、农村区域排放强度的40~50倍. 本研究可为改进大气化学数值模拟精度提供可靠的高精度清单数据支撑.

       

    • 图  1  人为排放源分类

      Fig.  1.  Classification of anthropogenic emission sources of PM2.5

      图  2  各二级源活动水平数据推算指标

      Fig.  2.  Indicators for estimating activity level data of secondary emission sources

      图  3  武汉城市圈2017-2023年人为源PM2.5排放量

      a. 人为源排放总量;b. 化石燃料燃烧源排放量;c. 工艺过程源排放量;d. 生物质燃烧源排放量;e. 移动源排放量;f. 扬尘源排放量;g. 餐饮源排放量

      Fig.  3.  Anthropogenic PM2.5 emissions in Wuhan metropolitan area from 2017 to 2023

      图  4  武汉城市圈2017、2020和2023年各二级源PM2.5排放量变化

      Fig.  4.  Changes in PM2.5 emissions from secondary sources in Wuhan metropolitan area in 2017, 2020 and 2023

      图  5  武汉城市圈2017-2023年人为源PM2.5排放强度分布的演变

      图a~g分别对应2017、2018、2019、2020、2021、2022和2023年

      Fig.  5.  Evolution of the distribution of anthropogenic PM2.5 emission intensity in the Wuhan metropolitan area from 2017 to 2023

      图  6  武汉城市圈2017-2020年(a)和2020-2023年(b)PM2.5排放强度变化

      Fig.  6.  Changes in PM2.5 emission intensity in the Wuhan metropolitan area from 2017 to 2020 (a) and from 2020 to 2023 (b)

      表  1  化石燃料燃烧源PM2.5排放因子

      Table  1.   Emission factors of PM2.5 for fossil fuel combustion sources

      燃料 EF(1)
      原煤 7.35 g/kg
      洗精煤 2.97 g/kg
      其他洗煤 2.97 g/kg
      型煤 2.97 g/kg
      柴油 0.5 g/kg
      燃料油 0.62 g/kg
      煤油 0.9 g/kg
      天然气 0.03 g/m3
      液化石油气 0.17 g/m3
      其他气体 0.03 g/m3
      注:(1)参考前人研究中估算方法部分关于排放因子的选取(Xiong et al., 2016; 闫东杰等, 2019; 张雪纯等, 2022),本研究排放因子来自《城市大气污染物排放清单编制技术手册(T-CSES 144-2024)》、《大气细颗粒物一次源排放清单编制技术指南(试行)(000014672/2014-01379)》和《PM2.5排放量核算技术规范(火电厂、水泥工业企业)(征求意见稿)》.
      下载: 导出CSV

      表  2  工艺过程源PM2.5排放因子

      Table  2.   Emission factors of PM2.5 for process source

      产品 $ EF $
      烧结矿(2) 2.52 g/kg
      球团矿(2) 1.8 g/kg
      生铁(2) 5.25 g/kg
      (2) 8.26 g/kg
      水泥(3) 21.61 g/kg
      石灰(3) 1.4 g/kg
      炼焦(3) 5.2 g/kg
      原油生产(3) 0.1 g/kg
      化肥(3) 1.86 g/kg
      (3) 1.44 g/kg
      注:(2)数据来自高玉冰等(2021)的研究. (3)参考前人研究中估算方法部分关于排放因子的选取(Xiong et al., 2016; 张雪纯等, 2022),本研究排放因子来自《城市大气污染物排放清单编制技术手册(T-CSES 144-2024)》和《PM2.5排放量核算技术规范(火电厂、水泥工业企业)(征求意见稿)》.
      下载: 导出CSV

      表  3  生物质锅炉源和生物质炉灶源PM2.5排放因子和燃烧效率

      Table  3.   Emission factors and combustion efficiency of PM2.5 for biomass boiler sources and biomass cooker sources

      生物质 $ EF $ $ CE $
      生物质成型燃料 1.15 g/kg(4)
      玉米 6.87 g/kg(4) 0.92(5)
      水稻 9.14 g/kg(4) 0.93(5)
      小麦 8.24 g/kg(4) 0.92(5)
      油菜籽 7.46 g/kg(4) 0.804(5)
      大豆 11.2 g/kg(4) 0.68(5)
      马铃薯 7.15 g/kg(4) 0.68(5)
      花生 9.05 g/kg(4) 0.82(5)
      棉花 4.87 g/kg(4) 0.804(5)
      甘蔗 5.26 g/kg(4) 0.68(5)
      芝麻 3.59 g/kg(4) 0.804(5)
      甜菜 7.15 g/kg(4) 0.804(5)
      烟草 7.15 g/kg(4) 0.804(5)
      大麻 7.15 g/kg(4) 0.804(5)
      薪柴 5.22 g/kg(4)
      牲畜粪便 8.22 g/kg(4) 0.2(6)
      注:(4)数据来自Wu et al. (2020)的研究.(5)数据来自何敏等(2015)的研究.(6)数据来自Zhou et al. (2017)的研究.
      下载: 导出CSV

      表  4  生物质开放燃烧源PM2.5排放因子和燃烧效率

      Table  4.   Emission factors and combustion efficiency of PM2.5 for biomass open combustion sources

      生物质 $ EF $ $ CE $
      玉米 11.7 g/kg(7) 0.92(8)
      水稻 5.67 g/kg(7) 0.93(8)
      小麦 7.58 g/kg(7) 0.92(8)
      油菜籽 6.79 g/kg(7) 0.804(8)
      大豆 6.79 g/kg(7) 0.68(8)
      马铃薯 6.79 g/kg(7) 0.68(8)
      花生 6.79 g/kg(7) 0.82(8)
      棉花 11.7 g/kg(7) 0.804(8)
      甘蔗 6.79 g/kg(7) 0.68(8)
      芝麻 6.79 g/kg(7) 0.804(8)
      甜菜 6.79 g/kg(7) 0.804(8)
      烟草 6.79 g/kg(7) 0.804(8)
      大麻 6.79 g/kg(7) 0.804(8)
      草地 5.4 g/kg(7) 0.25(8)
      灌木丛 7.9 g/kg(7) 0.95(8)
      注:(7)数据来自Wu et al.(2020)的研究.(8)数据来自何敏等(2015)的研究.
      下载: 导出CSV

      表  5  道路移动源PM2.5排放系数(g/km)

      Table  5.   Emission factors of PM2.5 from road mobile sources (g/km)

      燃料 车型/种类 无控 国1 国2 国3 国4
      汽油 重型载货汽车 0.10 0.03 0.02 0.01 0.01
      中型载货汽车 0.10 0.03 0.02 0.01 0.01
      轻型载货汽车 0.12 0.04 0.03 0.02 0.01
      微型载货汽车 0.12 0.04 0.03 0.02 0.01
      大型载客汽车 0.10 0.03 0.02 0.01 0.01
      中型载客汽车 0.10 0.03 0.02 0.01 0.01
      小型载客汽车 0.004 0.003 0.003 0.001 0.001
      微型载客汽车 0.004 0.003 0.003 0.001 0.001
      摩托车 0.31 0.17 0.09 0.09 0.09
      柴油 重型载货汽车 2.00 1.00 0.40 0.30 0.06
      中型载货汽车 0.60 0.60 0.13 0.09 0.02
      轻型载货汽车 0.30 0.20 0.07 0.05 0.03
      微型载货汽车 0.30 0.20 0.07 0.05 0.03
      大型载客汽车 2.00 1.00 0.40 0.30 0.06
      中型载客汽车 0.60 0.60 0.13 0.09 0.02
      小型载客汽车 0.30 0.20 0.07 0.05 0.03
      微型载客汽车 0.30 0.20 0.07 0.05 0.03
      注:数据来自《道路机动车大气污染物排放清单编制技术指南(试行)(000014672/2014-01379)》.
      下载: 导出CSV

      表  6  各排放源空间分配参数

      Table  6.   Parameters for spatial allocation of emission sources

      二级源 分配参数
      电力供热源 电力、热力和燃气生产及供应企业的点源数量
      工业锅炉源 工业企业的点源数量
      钢铁源 钢铁厂的点源数量
      石化与化工源 石化厂和化工厂的点源数量
      建材源 其他金属冶炼厂、水泥厂和石灰厂的点源数量
      其他工业源 其他工业企业的点源数量
      生物质锅炉源 生物质能源企业的点源数量
      民用燃烧和生物质炉灶源 农村人口密度
      生物质开放燃烧源 开放燃烧火点的点源数量
      非道路移动源 河流长度
      道路移动和道路扬尘源 道路长度
      堆场扬尘源 石材厂的点源数量
      工地扬尘源 土地利用类型:建筑用地面积
      土壤扬尘源 所有网格的数量
      餐饮源 餐饮企业的点源数量
      下载: 导出CSV

      表  7  不同区域PM2.5源排放贡献率与本研究对比

      Table  7.   Contribution of PM2.5 source emissions from different regions compared to this study

      年份 区域 源贡献率 研究来源
      化石燃料燃烧源 工艺过程源 生物质燃烧源 移动源 扬尘源 餐饮源
      2017-2023 武汉
      城市圈
      5.4%~7.4% 46.5%~52.6% 4.2%~7.5% 4.7%~5.7% 26.7%~31.8% 2.9%~4.9% 本研究
      2017-2020 珠三角 5%~10% 18%~20% 10% 18%~20% 8%~10% Zhang et al., 2024b
      2017-2019 江苏省 10% 60% 20% 10% Gu et al., 2023
      2023 成都市 15.4% 6.5% 3.5% 25.6% 8.5% Zhang et al., 2024c
      2018 西安市 20.6% 3.1% 24.4% 10.5% 12.5% Cao and Cui, 2021
      2018 广州市 3% 19% 10% 10% 45% Zhang et al., 2023
      2017 长三角 5% 40% 15% 10% 30% An et al., 2021
      下载: 导出CSV

      表  8  95%置信区间下各类源PM2.5排放的不确定性

      Table  8.   Uncertainties in PM2.5 emissions from various sources under 95% confidence interval

      二级源 不确定性
      电力供热源 -23.1%~35.8%
      工业锅炉源 -19.7%~30.3%
      民用燃烧源 -13.2%~25.6%
      钢铁源 -21.6%~34.3%
      石化与化工源 -20.1%~31.2%
      建材源 -18.3%~32.4%
      其他工业源 -15.2%~28.9%
      生物质锅炉源 -16.8%~17.5%
      生物质炉灶源 -17.7%~18.2%
      生物质开放燃烧源 -9.8%~16.8%
      道路移动源 -31.7%~42.2%
      非道路移动源 -17.5%~20.4%
      道路扬尘源 -8.2%~13.7%
      土壤扬尘源 -14.8%~15.4%
      工地扬尘源 -13.3%~12.1%
      堆场扬尘源 -10.9%~13.3%
      餐饮源 -13.2%~26.7%
      下载: 导出CSV
    • Ali, M. A., Huang, Z. W., Bilal, M., et al., 2023. Long-Term PM2.5 Pollution over China: Identification of PM2.5 Pollution Hotspots and Source Contributions. Science of the Total Environment, 893: 164871. https://doi.org/10.1016/j.scitotenv.2023.164871
      An, J. Y., Huang, Y. W., Huang, C., et al., 2021. Emission Inventory of Air Pollutants and Chemical Speciation for Specific Anthropogenic Sources Based on Local Measurements in the Yangtze River Delta Region, China. Atmospheric Chemistry and Physics, 21(3): 2003-2025. https://doi.org/10.5194/acp-21-2003-2021
      Cao, J. J., Cui, L., 2021. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. Journal of Geophysical Research: Atmospheres, 126(11): e2020JD034472. https://doi.org/10.1029/2020JD034472
      Chen, J. W., Man, H. Y., Cai, W. Y., et al., 2023. Evaluating City Road Dust Emission Characteristics with a Dynamic Method: A Case Study in Luoyang, China. Science of the Total Environment, 898: 165520. https://doi.org/10.1016/j.scitotenv.2023.165520
      Chen, Y. F., Zhao, Y. H., Zhang, L., et al., 2025. High-Resolution Inventories for Reactive Nitrogen Emissions from China's Livestock during 2005-2022. Scientific Data, 12: 1062. https://doi.org/10.1038/s41597-025-05394-x
      Cheng, L., Wei, W., Cheng, S. Y., et al., 2024. Reductions of Multiple Air Pollutants from Coking Industry through Technology Improvements and Their Impacts on Air Quality and Health Risks in a Highly Industrialized Region of China. Science of the Total Environment, 908: 168360. https://doi.org/10.1016/j.scitotenv.2023.168360
      Dai, L. W., Meng, J., Li, Q. Q., et al., 2021. VOCs Emission Inventory and Variation Characteristics of Artificial Sources in Hubei Province in the Yangtze River Economic Belt. Environmental Science, 42(3): 1039-1052 (in Chinese with English abstract).
      Dai, T. J., Dai, Q. L., Yin, J. C., et al., 2024. Spatial Source Apportionment of Airborne Coarse Particulate Matter Using PMF-Bayesian Receptor Model. Science of the Total Environment, 917: 170235. https://doi.org/10.1016/j.scitotenv.2024.170235
      Duan, W. J., Lang, J. L., Cheng, S. Y., et al., 2018. Air Pollutant Emission Inventory from Iron and Steel Industry in the Beijing-Tianjin-Hebei Region and Its Impact on PM2.5. Environmental Science, 39(4): 1445-1454 (in Chinese with English abstract).
      Feng, M. L., Ren, J. F., He, J., et al., 2022. Potency of the Pandemic on Air Quality: An Urban Resilience Perspective. Science of the Total Environment, 805: 150248. https://doi.org/10.1016/j.scitotenv.2021.150248
      Feng, X. Y., Tian, Y. Z., Zhang, T. F., et al., 2024. High Spatial-Resolved Source-Specific Exposure and Risk in the City Scale: Influence of Spatial Interrelationship between PM2.5 Sources and Population on Exposure. Science of the Total Environment, 926: 171873. https://doi.org/10.1016/j.scitotenv.2024.171873
      Gao, C. C., Li, S. H., Liu, M., et al., 2021. Impact of the COVID-19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors. Science of the Total Environment, 773: 145545. https://doi.org/10.1016/j.scitotenv.2021.145545
      Gao, Y. B., Xing, Y. K., He, F., et al., 2021. Research on Co-Control Effectiveness Evaluation of Energy Saving and Emission Reduction Measures in China's Iron and Steel Industry. Climate Change Research, 17(4): 388-399 (in Chinese with English abstract).
      Giglio, L., Justice, C., Boschetti, L., et al., 2021. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V06. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD64A1.061
      Gu, C., Zhang, L., Xu, Z. D., et al., 2023. High-Resolution Regional Emission Inventory Contributes to the Evaluation of Policy Effectiveness: A Case Study in Jiangsu Province, China. Atmospheric Chemistry and Physics, 23(7): 4247-4269. https://doi.org/10.5194/acp-23-4247-2023
      Gu, Y. S., Li, Y. N., Xie, S. C., et al., 2023. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Science, 48(8): 3193-3204 (in Chinese with English abstract).
      Guo, W. K., Li, G. Y., Chen, B., et al., 2021. Establishment of a High-Resolution Anthropogenic Emission Inventory and Its Evaluation Using the WRF-Chem Model for Lanzhou. Environmental Science, 42(2): 634-642 (in Chinese with English abstract).
      He, M., Wang, X. R., Han, L., et al., 2015. Emission Inventory of Crop Residues Field Burning and Its Temporal and Spatial Distribution in Sichuan Province. Environmental Science, 36(4): 1208-1216 (in Chinese with English abstract).
      Hong, X. H., Zhang, C. X., Tian, Y., et al., 2023. Quantification and Evaluation of Atmospheric Emissions from Crop Residue Burning Constrained by Satellite Observations in China during 2016-2020. Science of the Total Environment, 865: 161237. https://doi.org/10.1016/j.scitotenv.2022.161237
      Hu, W. Y., Zhao, T. L., Bai, Y. Q., et al., 2022. Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5-Year Observation over Central China. Journal of Geophysical Research: Atmospheres, 127(13): e2021JD035937. https://doi.org/10.1029/2021JD035937
      Huang, F., Zhou, J. B., Chen, N., et al., 2019. Chemical Characteristics and Source Apportionment of PM2.5 in Wuhan, China. Journal of Atmospheric Chemistry, 76(3): 245-262. https://doi.org/10.1007/s10874-019-09395-0
      Huang, X., Ding, A. J., Gao, J., et al., 2021. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID-19 Lockdown in China. National Science Review, 8(2): nwaa137. https://doi.org/10.1093/nsr/nwaa137
      Huang, Y., Hu, C. J., Cheng, H. R., et al., 2018. Emission Inventory and Spatial Distribution Characteristics of Particulate Matters from Dust Source in Wuhan, China. Journal of Wuhan University (Natural Science Edition), 64(4): 354-362 (in Chinese with English abstract).
      Huang, Y., Shen, H. Z., Chen, H., et al., 2014. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 48(23): 13834-13843. https://doi.org/10.1021/es503696k
      Jena, C., Ghude, S. D., Kumar, R., et al., 2021. Performance of High Resolution (400 m) PM2.5 Forecast over Delhi. Scientific Reports, 11: 4104. https://doi.org/10.1038/s41598-021-83467-8
      Jia, C. Y., Li, W. D., Wu, T. C., et al., 2021. Road Traffic and Air Pollution: Evidence from a Nationwide Traffic Control during Coronavirus Disease 2019 Outbreak. Science of the Total Environment, 781: 146618. https://doi.org/10.1016/j.scitotenv.2021.146618
      Jiang, P. Y., Zhong, X., Li, L. Y., 2020. On-Road Vehicle Emission Inventory and Its Spatio-Temporal Variations in North China Plain. Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639
      Jin, Q., Luo, Y. N., Meng, X. R., et al., 2023. Short- and Long-Term Impacts of the COVID-19 Epidemic on Urban PM2.5 Variations: Evidence from a Megacity, Chengdu. Atmospheric Environment, 294: 119479. https://doi.org/10.1016/j.atmosenv.2022.119479
      Kuang, M., Li, Z. Q., Liu, C. L., et al., 2013. Overall Evaluation of Combustion and NOx Emissions for a Down-Fired 600 MWe Supercritical Boiler with Multiple Injection and Multiple Staging. Environmental Science & Technology, 47(9): 4850-4858. https://doi.org/10.1021/es304492j
      Lam, Y. F., Cheung, C. C., Zhang, X. G., et al., 2021. Development of a New Emission Reallocation Method for Industrial Sources in China. Atmospheric Chemistry and Physics, 21(17): 12895-12908. https://doi.org/10.5194/acp-21-12895-2021
      Lei, T. Y., Wang, D. P., Yu, X., et al., 2023. Global Iron and Steel Plant CO2 Emissions and Carbon-Neutrality Pathways. Nature, 622(7983): 514-520. https://doi.org/10.1038/s41586-023-06486-7
      Li, B., Xu, Z. H., Liu, B. Y., et al., 2024. Development of a Finer-Resolution Multi-Year Emission Inventory for Open Biomass Burning in Heilongjiang Province, China. Scientific Reports, 14: 29969. https://doi.org/10.1038/s41598-024-81092-9
      Li, G. D., Fang, C. L., Wang, S. J., et al., 2016. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science & Technology, 50(21): 11452-11459. https://doi.org/10.1021/acs.est.6b02562
      Li, R., Zhao, Y. L., Fu, H. B., et al., 2021. Substantial Changes in Gaseous Pollutants and Chemical Compositions in Fine Particles in the North China Plain during the COVID-19 Lockdown Period: Anthropogenic vs. Meteorological Influences. Atmospheric Chemistry and Physics, 21(11): 8677-8692. https://doi.org/10.5194/acp-21-8677-2021
      Lian, X. B., Huang, J. P., Huang, R. J., et al., 2020. Impact of City Lockdown on the Air Quality of COVID-19-Hit of Wuhan City. Science of the Total Environment, 742: 140556. https://doi.org/10.1016/j.scitotenv.2020.140556
      Liu, J., Tong, D., Zheng, Y. X., et al., 2021. Carbon and Air Pollutant Emissions from China's Cement Industry 1990-2015: Trends, Evolution of Technologies, and Drivers. Atmospheric Chemistry and Physics, 21(3): 1627-1647. https://doi.org/10.5194/acp-21-1627-2021
      Lu, Y., Shao, M., Zheng, C. H., et al., 2020. Air Pollutant Emissions from Fossil Fuel Consumption in China: Current Status and Future Predictions. Atmospheric Environment, 231: 117536. https://doi.org/10.1016/j.atmosenv.2020.117536
      Ma, J. L., Shen, J. Y., Wang, P., et al., 2021. Modeled Changes in Source Contributions of Particulate Matter during the COVID-19 Pandemic in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 21(9): 7343-7355. https://doi.org/10.5194/acp-21-7343-2021
      Milne, A. E., Glendining, M. J., Bellamy, P., et al., 2014. Analysis of Uncertainties in the Estimates of Nitrous Oxide and Methane Emissions in the UK's Greenhouse Gas Inventory for Agriculture. Atmospheric Environment, 82: 94-105. https://doi.org/10.1016/j.atmosenv.2013.10.012
      Ni, Z. L., Zhou, Y. D., Zhang, Y. J., et al., 2021. Establishment of High Resolution Atmospheric Emission Inventory in Ezhou City. Environmental Science & Technology, 44(2): 90-96 (in Chinese with English abstract).
      Puliafito, S. E., Allende, D., Pinto, S., et al., 2015. High Resolution Inventory of GHG Emissions of the Road Transport Sector in Argentina. Atmospheric Environment, 101: 303-311. https://doi.org/10.1016/j.atmosenv.2014.11.040
      Qi, J., Zheng, B., Li, M., et al., 2017. A High-Resolution Air Pollutants Emission Inventory in 2013 for the Beijing-Tianjin-Hebei Region, China. Atmospheric Environment, 170: 156-168. https://doi.org/10.1016/j.atmosenv.2017.09.039
      Qin, S., Kong, S. F., Wu, J., et al., 2020. Spatial-Temporal Diversities of Ammonia Emissions and Impacting Factors in Hubei Province from 1996 to 2016. China Environmental Science, 40(4): 1403-1413 (in Chinese with English abstract).
      Qiu, P. P., Tian, H. Z., Zhu, C. Y., et al., 2014. An Elaborate High Resolution Emission Inventory of Primary Air Pollutants for the Central Plain Urban Agglomeration of China. Atmospheric Environment, 86: 93-101. https://doi.org/10.1016/j.atmosenv.2013.11.062
      Randerson, J. T., Chen, Y., van der Werf, G. R., et al., 2012. Global Burned Area and Biomass Burning Emissions from Small Fires. Journal of Geophysical Research: Biogeosciences, 117(G4): 2012JG002128. https://doi.org/10.1029/2012JG002128
      Sun, B., Li, J. H., 2025. Asymmetric Effects of Natural and Socioeconomic Factors on PM2.5 Pollution in Chinese Counties. Scientific Reports, 15: 19128. https://doi.org/10.1038/s41598-025-03138-w
      Sun, C., Zhan, L. X., Yin, H., et al., 2018. Establishment of Anthropogenic Volatile Organic Compounds Emission Inventory in Wuhan. Environmental Science & Technology, 41(4): 166-171 (in Chinese with English abstract).
      Sun, X. W., Cheng, S. Y., Lang, J. L., et al., 2018. Development of Emissions Inventory and Identification of Sources for Priority Control in the Middle Reaches of Yangtze River Urban Agglomerations. Science of the Total Environment, 625: 155-167. https://doi.org/10.1016/j.scitotenv.2017.12.103
      Thompson, R. J., Li, J. H., Weyant, C. L., et al., 2019. Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories. Environmental Science & Technology, 53(6): 3323-3330. https://doi.org/10.1021/acs.est.8b07040
      Tian, G., Huang, Y. H., Li, G., 2009. Establishment and Application of Four-Dimensional Fluxes Emission Factor Model for Construction Fugitive Dust. Environmental Science, 30(4): 1003-1007 (in Chinese with English abstract).
      Wang, H. L., Jing, S. A., Lou, S. R., et al., 2018. Estimation of Fine Particle (PM2.5) Emission Inventory from Cooking: Case Study for Shanghai. Environmental Science, 39(5): 1971-1977 (in Chinese with English abstract).
      Wang, S., Wang, Q. Q., Zhu, S. H., et al., 2022. Hourly Organic Tracers-Based Source Apportionment of PM2.5 before and during the Covid-19 Lockdown in Suburban Shanghai, China: Insights into Regional Transport Influences and Response to Urban Emission Reductions. Atmospheric Environment, 289: 119308. https://doi.org/10.1016/j.atmosenv.2022.119308
      Wang, S. Y., Zhu, Y., Jang, J. C., et al., 2024. Modeling Assessment of Air Pollution Control Measures and COVID-19 Pandemic on Air Quality Improvements over Greater Bay Area of China. Science of the Total Environment, 926: 171951. https://doi.org/10.1016/j.scitotenv.2024.171951
      Wang, Y., Tang, X., Chen, K. Y., et al., 2022. Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease-2019 Pandemic. Climatic and Environmental Research, 27(6): 756-768 (in Chinese with English abstract).
      Wu, J., Kong, S. F., Wu, F. Q., et al., 2020. The Moving of High Emission for Biomass Burning in China: View from Multi-Year Emission Estimation and Human- Driven Forces. Environment International, 142: 105812. https://doi.org/10.1016/j.envint.2020.105812
      Wu, J., Kong, S. F., Zeng, X., et al., 2021. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675
      Wu, Y. F., You, Y., Wang, Z. C., et al., 2024. Establishment of High Temporal-Spatial Resolution Anthropogenic Emission Inventory of Air Pollutants in 2017 for Macao, China. Atmospheric Environment, 337: 120735. https://doi.org/10.1016/j.atmosenv.2024.120735
      Xia, L., Liu, R., Fan, W. X., et al., 2025. Emerging Carbon Dioxide Hotspots in East Asia Identified by a Top-Down Inventory. Communications Earth & Environment, 6: 10. https://doi.org/10.1038/s43247-024-01991-7
      Xiong, J. H., Kong, S. F., Zheng, H., et al., 2023. Impacts of Emission and Meteorological Conditions on Air Pollutants at Various Sites around the COVID-19 Lockdown in Wuhan. Environmental Science, 44(2): 670-679 (in Chinese with English abstract).
      Xiong, T. Q., Jiang, W., Gao, W. D., 2016. Current Status and Prediction of Major Atmospheric Emissions from Coal-Fired Power Plants in Shandong Province, China. Atmospheric Environment, 124: 46-52. https://doi.org/10.1016/j.atmosenv.2015.11.002
      Xu, H. H., Chen, H., 2021. Impact of Urban Morphology on the Spatial and Temporal Distribution of PM2.5 Concentration: A Numerical Simulation with WRF/CMAQ Model in Wuhan, China. Journal of Environmental Management, 290: 112427. https://doi.org/10.1016/j.jenvman.2021.112427
      Yan, D. J., Ding, Y. F., Yu, Y., et al., 2019. Inventory and Reduction Potential of Anthropogenic PM2.5 Emission in Xi'an City. Research of Environmental Sciences, 32(5): 813-820 (in Chinese with English abstract).
      Yang, L. L., Wang, X. M., Chen, Q. J., 2012. New Method for Investigating Regional Interactions of Air Pollutants. Acta Scientiae Circumstantiae, 32(3): 528-536 (in Chinese with English abstract).
      Yuan, Q., Qi, B., Hu, D. Y., et al., 2021. Spatiotemporal Variations and Reduction of Air Pollutants during the COVID-19 Pandemic in a Megacity of Yangtze River Delta in China. Science of the Total Environment, 751: 141820. https://doi.org/10.1016/j.scitotenv.2020.141820
      Zeng, C. Y., Wu, S. H., Cheng, M., et al., 2024. High-Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects. Scientific Reports, 14: 20916. https://doi.org/10.1038/s41598-024-71836-y
      Zhan, Y., Xie, M., Zhao, W., et al., 2023. Quantifying the Seasonal Variations in and Regional Transport of PM2.5 in the Yangtze River Delta Region, China: Characteristics, Sources, and Health Risks. Atmospheric Chemistry and Physics, 23(17): 9837-9852. https://doi.org/10.5194/acp-23-9837-2023
      Zhang, J. K., Chen, C. Y., Su, Y. F., et al., 2024a. Characterization of Summertime Single Aerosol Particles in Chengdu (China): Interannual Evolution and Impact of COVID-19 Lockdown. Science of the Total Environment, 907: 167765. https://doi.org/10.1016/j.scitotenv.2023.167765
      Zhang, J. L., Huang, Y. Y., Zhou, N., et al., 2024b. Contribution of Anthropogenic Emission Changes to the Evolution of PM2.5 Concentrations and Composition in the Pearl River Delta during the Period of 2006-2020. Atmospheric Environment, 318: 120228. https://doi.org/10.1016/j.atmosenv.2023.120228
      Zhang, J., Liu, L., Zhao, Y., et al., 2020. Development of a High-Resolution Emission Inventory of Agricultural Machinery with a Novel Methodology: A Case Study for Yangtze River Delta Region. Environmental Pollution, 266: 115075. https://doi.org/10.1016/j.envpol.2020.115075
      Zhang, J. K., Su, Y. F., Chen, C. Y., et al., 2024c. Chemical Composition, Sources and Formation Mechanism of Urban PM2.5 in Southwest China: A Case Study at the Beginning of 2023. Atmospheric Chemistry and Physics, 24(5): 2803-2820. https://doi.org/10.5194/acp-24-2803-2024
      Zhang, L., Niu, M. C., Zhang, Z., et al., 2023. A New Method of Hotspot Analysis on the Management of CO2 and Air Pollutants, a Case Study in Guangzhou City, China. Science of the Total Environment, 856: 159040. https://doi.org/10.1016/j.scitotenv.2022.159040
      Zhang, Q., Zheng, Y. X., Tong, D., et al., 2019. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. https://doi.org/10.1073/pnas.1907956116
      Zhang, X. C., Wang, W. J., Wang, M. Y., et al., 2022. Emission Inventory and Spatial Distribution Characteristics of Anthropogenic Air Pollutants in Basin City in China—A Case Study of Jincheng City. Environmental Chemistry, 41(12): 4016-4031 (in Chinese with English abstract).
      Zhao, G. S., Pu, Z. G., Huang, Q. B., et al., 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621 (in Chinese with English abstract).
      Zhao, X. Y., Wang, G., Wang, S., et al., 2021. Impacts of COVID-19 on Air Quality in Mid-Eastern China: An Insight into Meteorology and Emissions. Atmospheric Environment, 266: 118750. https://doi.org/10.1016/j.atmosenv.2021.118750
      Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom-Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry and Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp-11-2295-2011
      Zheng, B., Cheng, J., Geng, G. N., et al., 2021. Mapping Anthropogenic Emissions in China at 1 km Spatial Resolution and Its Application in Air Quality Modeling. Science Bulletin, 66(6): 612-620. https://doi.org/10.1016/j.scib.2020.12.008
      Zheng, H. T., Cai, S. Y., Wang, S. X., et al., 2019. Development of a Unit-Based Industrial Emission Inventory in the Beijing-Tianjin-Hebei Region and Resulting Improvement in Air Quality Modeling. Atmospheric Chemistry and Physics, 19(6): 3447-3462. https://doi.org/10.5194/acp-19-3447-2019
      Zheng, H., Kong, S. F., Chen, N., et al., 2020. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan since the City Lockdown as COVID-19. Science of the Total Environment, 739: 140000. https://doi.org/10.1016/j.scitotenv.2020.140000
      Zhong, H., Zhao, Y., Muntean, M., et al., 2016. A High-Resolution Regional Emission Inventory of Atmospheric Mercury and Its Comparison with Multi-Scale Inventories: A Case Study of Jiangsu, China. Atmospheric Chemistry and Physics, 16(23): 15119-15134. https://doi.org/10.5194/acp-16-15119-2016
      Zhong, Z. M., Zheng, J. Y., Zhu, M. N., et al., 2018. Recent Developments of Anthropogenic Air Pollutant Emission Inventories in Guangdong Province, China. Science of the Total Environment, 627: 1080-1092. https://doi.org/10.1016/j.scitotenv.2018.01.268
      Zhou, H. J., Liu, T., Sun, B., et al., 2022. Chemical Characteristics and Sources of PM2.5 in Hohhot, a Semi-Arid City in Northern China: Insight from the COVID-19 Lockdown. Atmospheric Chemistry and Physics, 22(18): 12153-12166. https://doi.org/10.5194/acp-22-12153-2022
      Zhou, Y., Xing, X. F., Lang, J. L., et al., 2017. A Comprehensive Biomass Burning Emission Inventory with High Spatial and Temporal Resolution in China. Atmospheric Chemistry and Physics, 17(4): 2839-2864. https://doi.org/10.5194/acp-17-2839-2017
      Zhu, C. Y., Qu, X. Y., Qiu, M. Y., et al., 2023. High Spatiotemporal Resolution Vehicular Emission Inventory in Beijing-Tianjin-Hebei and Its Surrounding Areas (BTHSA) during 2000-2020, China. Science of the Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389
      代伶文, 孟晶, 李倩倩, 等, 2021. 长江经济带湖北省人为源VOCs排放清单及变化特征. 环境科学, 42(3): 1039-1052.
      段文娇, 郎建垒, 程水源, 等, 2018. 京津冀地区钢铁行业污染物排放清单及对PM2.5影响. 环境科学, 39(4): 1445-1454.
      高玉冰, 邢有凯, 何峰, 等, 2021. 中国钢铁行业节能减排措施的协同控制效应评估研究. 气候变化研究进展, 17(4): 388-399.
      顾延生, 李越南, 谢树成, 等, 2023. 从湖泊演化角度谈武汉创建国际湿地城市. 地球科学, 48(8): 3193-3204. doi: 10.3799/dqkx.2022.421
      郭文凯, 李光耀, 陈冰, 等, 2021. 兰州市高分辨率人为源排放清单建立及在WRF-Chem中应用评估. 环境科学, 42(2): 634-642.
      何敏, 王幸锐, 韩丽, 等, 2015. 四川省秸秆露天焚烧污染物排放清单及时空分布特征. 环境科学, 36(4): 1208-1216.
      黄宇, 虎彩娇, 成海容, 等, 2018. 武汉市扬尘源颗粒物排放清单及空间分布特征. 武汉大学学报(理学版), 64(4): 354-362.
      倪紫琳, 周亚端, 张银菊, 等, 2021. 鄂州市高时空分辨率大气污染源排放清单的建立. 环境科学与技术, 44(2): 90-96.
      覃思, 孔少飞, 吴剑, 等, 2020. 1996—2016年湖北省氨排放时空差异及影响因素. 中国环境科学, 40(4): 1403-1413.
      孙辰, 詹领茜, 尹珩, 等, 2018. 武汉市人为源挥发性有机物排放清单的建立. 环境科学与技术, 41(4): 166-171.
      田刚, 黄玉虎, 李钢, 2009. 四维通量法施工扬尘排放模型的建立与应用. 环境科学, 30(4): 1003-1007.
      王红丽, 景盛翱, 楼晟荣, 等, 2018. 餐饮行业细颗粒物(PM2.5)排放测算方法: 以上海市为例. 环境科学, 39(5): 1971-1977.
      王瑶, 唐晓, 陈科艺, 等, 2022. 新冠疫情期间武汉空气质量变化的多维观测分析. 气候与环境研究, 27(6): 756-768.
      熊江荷, 孔少飞, 郑煌, 等, 2023. 排放和气象对疫情前后武汉不同类型点位大气污染物的影响. 环境科学, 44(2): 670-679.
      闫东杰, 丁毅飞, 玉亚, 等, 2019. 西安市人为源一次PM2.5排放清单及减排潜力研究. 环境科学研究, 32(5): 813-820.
      杨柳林, 王雪梅, 陈巧俊, 2012. 区域间大气污染物相互影响研究的新方法探讨. 环境科学学报, 32(3): 528-536.
      张雪纯, 王文钜, 王明娅, 等, 2022. 中国盆地城市人为源大气污染物排放清单及空间分布特征——以晋城市为例. 环境化学, 41(12): 4016-4031.
      赵光帅, 普政功, 黄奇波, 等, 2024. 增温和降水改变对土壤CO2释放影响研究进展. 地球科学, 49(12): 4608-4621. doi: 10.3799/dqkx.2023.197
    • 加载中
    图(6) / 表(8)
    计量
    • 文章访问数:  54
    • HTML全文浏览量:  5
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-22
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回