• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江惟缌, 孔少飞, 燕莹莹, 吴剑, 郑煌, 2025. 基于隧道实验的机动车大气污染物实时排放因子研究. 地球科学. doi: 10.3799/dqkx.2025.170
    引用本文: 江惟缌, 孔少飞, 燕莹莹, 吴剑, 郑煌, 2025. 基于隧道实验的机动车大气污染物实时排放因子研究. 地球科学. doi: 10.3799/dqkx.2025.170
    JIANG Weisi, KONG Shaofei, YAN Yingying, WU Jian, ZHENG Huang, 2025. Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments. Earth Science. doi: 10.3799/dqkx.2025.170
    Citation: JIANG Weisi, KONG Shaofei, YAN Yingying, WU Jian, ZHENG Huang, 2025. Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments. Earth Science. doi: 10.3799/dqkx.2025.170

    基于隧道实验的机动车大气污染物实时排放因子研究

    doi: 10.3799/dqkx.2025.170
    基金项目: 

    湖北省自然科学基金杰出青年项目(2022CFA040)

    国家重点研发计划(2023YFC3709802)

    详细信息
      作者简介:

      江惟缌(2001-),女,硕士研究生,研究方向为机动车污染物排放清单编制,ORCID:0009-0008-1147-9105,E-mail:3169459232@qq.com.

      通讯作者:

      孔少飞(1986-),教授,博士生导师,主要从事大气污染源排放测量与定量表征研究,ORCID:0000-0001-9735-6852,E-mail:kongshaofei@cug.edu.cn.

    • 中图分类号: X511

    Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments

    • 摘要: 机动车大气污染物动态排放因子是制约实时排放清单精度提升的一个关键参数.本研究选取某城市隧道,结合在线设备和监控摄像头开展7种大气污染物浓度和车流量的实时监测,采用YOLOv8l深度学习目标检测模型和SORT目标跟踪算法,获取车辆类型和速度;采用排放强度比值,推算车队整体和分车型的大气污染物排放因子CO、NO、NO2、NOX、SO2、BC和PM2.5的平均排放因子分别为1064.9 ± 479.8、496.5 ± 209.3、55.5 ± 30.4、578.6 ± 267.6、6.3 ± 2.2、3.3 ± 1.5和37.7 ± 19.2 mg km-1-1;车队整体排放因子分别为 634.7 ± 477.2、 266.0 ± 142.9、 26.4 ± 13.5、302.3 ± 159.5、3.5 ± 1.9、2.0 ± 1.1和19.8 ± 12.3 mg km-1.隧道内周末的日车流量为工作日的88.6%,工作日除PM2.5外的污染物的排放因子是周末的1.0~1.48倍. 在逐小时排放因子情境下,凌晨的柴油车流量占比是其余时间的1.6倍,各污染物的凌晨高值分别是其余时间平均值的2.0~3.5倍;车队排放呈现出早晚(7:00~9:00;17:00~19:00)双峰特征,为全天平均值的1.8~3.3倍.本研究可为区域高精度动态机动车排放清单构建和机动车排放污染物的精准管控提供基础数据和科学依据.

       

    • [1] Alves, C., Gomes, J., Nunes, T., et al., 2015. Size-Segregated Particulate Matter and Gaseous Emissions from Motor Vehicles in a Road Tunnel.Atmospheric Research, 153, 134–144. https://doi.org/10.1016/j.atmosres.2014.08.002
      [2] Anenberg, S., Miller, J., Minjares, R., et al., 2017. Impacts and Mitigation of Excess Diesel-Related NOX Emissions In 11 Major Vehicle Markets. Nature, 545(7655), 467–471. https://doi.org/10.1038/nature22086
      [3] 柏洋洋, 何超, 李加强, 等, 2023. 基于GPS数据的重型柴油货车排放时空特征分析.环境工程, 41(4), 63–70, 100. https://doi.org/10.13205/j.hjgc.202304009
      [4] Blanco-Alegre, C., Calvo, A., Alves, C., et al., 2020. Aethalometer Measurements in a Road Tunnel: A Step Forward in the Characterization of Black Carbon Emissions from Traffic.Science of The Total Environment, 703, 135483. https://doi.org/10.1016/j.scitotenv.2019.135483
      [5] California Air Resources Board, 2021. EMFAC2021: Emission factors model for California. https://arb.ca.gov/emfac/ (accessed July 25, 2025)
      [6] Carslaw, D., Rhys-Tyler, G., 2013. New Insights from Comprehensive On-Road Measurements of NOX, NO2 And NH3 from Vehicle Emission Remote Sensing in London, UK. Atmospheric Environment, 81, 339–347.https://doi.org/10.1016/j.atmosenv.2013.09.026
      [7] Chan, T.L., Ning, Z., 2005. On-road Remote Sensing of Diesel Vehicle Emissions Measurement and Emission Factors Estimation in Hong Kong.Atmospheric Environment, 39(36), 6843–6856.https://doi.org/10.1016/j.atmosenv.2005.07.048
      [8] Che, W., Zheng, J., Wang, S., et al., 2011. Assessment of Motor Vehicle Emission Control Policies Using Model-3/CMAQ Model for the Pearl River Delta region, China.Atmospheric Environment, 45(9), 1740–1751. https://doi.org/10.1016/j.atmosenv.2010.12.050
      [9] Chen X., Jiang L., Xia Y., et al., 2022. Quantifying On-Road Vehicle Emissions During Traffic Congestion Using Updated Emission Factors of Light-Duty Gasoline Vehicles and Real-World Traffic Monitoring Big Data.Science of The Total Environment, 847, 157581. https://doi.org/10.1016/j.scitotenv.2022.157581
      [10] Cheng, Y., Lee, S., Ho, K., et al., 2006. On-Road Particulate Matter (PM2.5) and Gaseous Emissions in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 40(23), 4235–4245. https://doi.org/10.1016/j.atmosenv.2006.04.002
      [11] Chiang, H., Hwu, C., Chen, S., et al., 2007. Emission Factors and Characteristics of Criteria Pollutants and Volatile Organic Compounds (VOCs) in a Freeway Tunnel Study.Science of The Total Environment, 381(1–3), 200–211. https://doi.org/10.1016/j.scitotenv.2007.03.039
      [12] Crippa, M., Solazzo, E., Huang, G., et al., 2020. High Resolution Temporal Profiles in the Emissions Database for Global Atmospheric Research.Scientific Data, 7(1), 121. https://doi.org/10.1038/s41597-020-0462-2
      [13] Dai, S., Bi, X., Chan, L., et al., 2015. Chemical and Stable Carbon Isotopic Composition of PM2.5 from On-Road Vehicle Emissions in the PRD Region and Implications for Vehicle Emission Control Policy. Atmospheric Chemistry and Physics, 15(6), 3097–3108. https://doi.org/10.5194/acp-15-3097-2015
      [14] Davison, J., Rose, R., Farren, N., et al., 2021. Verification of a National Emission Inventory and Influence of On-Road Vehicle Manufacturer-Level Emissions.Environmental Science and Technology, 55(8), 4452–4461. https://doi.org/10.1021/acs.est.0c08363
      [15] 邓顺熙, 董小林, 2000a. 我国山岭公路汽车CO、HCs和NOX排放系数. 环境科学, (1): 109-112. https://doi.org/10.13227/j.hjkx.2000.01.027
      [16] 邓顺熙, 成平, 朱唯, 2000b. 用隧道确定高速公路汽车CO, THC和NOX排放因子. 环境科学研究, (2): 32-35. https://doi.org/10.13198/j.res.2000.02.35.dengshx.010
      [17] 邓顺熙, 陈洁陕, 李百川, 2000c. 中国城市道路机动车CO、HC和NOX排放因子的测定. 中国环境科学, (1): 82-85.
      [18] Deng, F., Lv, Z., Qi, L., et al., 2020. A Big Data Approach to Improving the Vehicle Emission Inventory in China.Nature Communications, 11(1), 2801. https://doi.org/10.1038/s41467-020-16579-w
      [19] Deng, Y., Chen, C., Li, Q., et al., 2015. Measurements of Real-World Vehicle CO And NOX Fleet Average Emissions in Urban Tunnels of Two Cities in China. Atmospheric Environment, 122, 417–426. https://doi.org/10.1016/j.atmosenv.2015.08.036
      [20] Drinovec, L., Močnik, G., Zotter, P., et al., 2015. The Dual-Spot Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation.Atmospheric Measurement Techniques, 8(5), 1965–1979. https://doi.org/10.5194/amt-8-1965-2015
      [21] European Environment Agency, 2019. COPERT: Computer Programme to Calculate Emissions from Road Transport (Version 5). https://www.emisia.com/utilities/copert/(accessed July 25, 2025)
      [22] Farren, N., Davison, J., Rose, R.A., et al., 2020. Underestimated Ammonia Emissions from Road Vehicles.Environmental Science and Technology, 54(24), 15689–15697. https://doi.org/10.1021/acs.est.0c05839
      [23] Feng, H., Ning, E., Yu, L., et al., 2023. The Spatial and Temporal Disaggregation Models of High-Accuracy Vehicle Emission Inventory.Environment International, 181, 108287. https://doi.org/10.1016/j.envint.2023.108287
      [24] Feng, X., Tian, Y., Xue, Q., et al., 2021. Measurement report: Spatiotemporal and Policy-Related Variations of PM2.5 Composition and Sources During 2015–2019 at Multiple Sites in A Chinese Megacity. Atmospheric Chemistry and Physics, 21(21), 16219–16235. https://doi.org/10.5194/acp-21-16219-2021
      [25] Gantt, B., Owen, R.C., Watkins, N., 2021. Characterizing Nitrogen Oxides and Fine Particulate Matter Near Major Highways in the United States Using the National Near-Road Monitoring Network.Environmental Science and Technology, 55(5), 2831–2838. https://doi.org/10.1021/acs.est.0c05851
      [26] Ghaffarpasand, O., Ropkins, K., Beddows, D.C.S., et al., 2023. Detecting High Emitting Vehicle Subsets Using Emission Remote Sensing Systems.Science of The Total Environment, 858, 159814. https://doi.org/10.1016/j.scitotenv.2022.159814
      [27] Gkatzoflias, D., Kouridis, C., Ntziachristos, L., 2007. COPERT 4: Computer Programme to Calculate Emissions from Road Transport.European Environment Agency.
      [28] Gong, M., Yin, S., Gu, X., et al., 2017. Refined 2013-Based Vehicle Emission Inventory and Its Spatial and Temporal Characteristics in Zhengzhou, China.Science of The Total Environment, 599–600, 1149–1159. https://doi.org/10.1016/j.scitotenv.2017.03.299
      [29] Grieshop, A., Lipsky, E., Pekney, N., et al., 2006. Fine Particle Emission Factors from Vehicles in a Highway Tunnel: Effects of Fleet Composition and Season.Atmospheric Environment, 40, 287–298. https://doi.org/10.1016/j.atmosenv.2006.03.064
      [30] 郝艳召, 邓顺熙, 邱兆文, 等, 2017. 基于MOVES模型的西安市机动车排放清单研究.环境污染与防治, 39(3), 227–231, 235. https://doi.org/10.15985/j.cnki.1001-3865.2017.03.001
      [31] Ho, C., Peng, J., Lv, Z., et al., 2023. Tunnel Measurements Reveal Significant Reduction in Traffic-Related Light-Absorbing Aerosol Emissions in China.Science of The Total Environment, 856, 159212. https://doi.org/10.1016/j.scitotenv.2022.159212
      [32] Hong, Y., Xu, X., Liao, D., et al., 2021. Air Pollution Increases Human Health Risks of PM2.5-Bound PAHs and Nitro-PAHs in the Yangtze River Delta, China. Science of The Total Environment, 770, 145402. https://doi.org/10.1016/j.scitotenv.2021.145402
      [33] Hua J., Zhang Y., De Foy B., et al., 2021. Competing PM2.5 and NO2 Holiday Effects in the Beijing Area Vary Locally Due to Differences in Residential Coal Burning and Traffic Patterns. Science of The Total Environment, 750, 141575. https://doi.org/10.1016/j.scitotenv.2020.141575
      [34] Huang, C., Tao, S., Lou, S.et al., 2017. Evaluation of Emission Factors for Light-Duty Gasoline Vehicles Based on Chassis Dynamometer and Tunnel Studies in Shanghai, China.Atmospheric Environment, 169, 193–203. https://doi.org/10.1016/j.atmosenv.2017.09.020
      [35] Huang, R., Yuan, W., Yang, L., et al., 2022. Concentration, Optical Characteristics, and Emission Factors of Brown Carbon Emitted by On-Road Vehicles.Science of The Total Environment, 810, 151307. https://doi.org/10.1016/j.scitotenv.2021.151307
      [36] Huang, X., Liu, Z., Liu, J., et al., 2017. Chemical Characterization and Source Identification of PM2.5 at Multiple Sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 17(21), 12941–12962. https://doi.org/10.5194/acp-17-12941-2017
      [37] Huang, X., Zou, B., He, Y., et al., 2018. Exploration Of PM2.5 Sources on the Regional Scale in the Pearl River Delta Based on ME-2 Modeling. Atmospheric Chemistry and Physics, 18(16), 11563–11580. https://doi.org/10.5194/acp-18-11563-2018
      [38] Huang, Y., Lee, C., Yam, Y., et al., 2022. Rapid Detection of High-Emitting Vehicles by On-Road Remote Sensing Technology Improves Urban Air Quality.Science Advances, 8(5), eabl7575. https://doi.org/10.1126/sciadv.abl7575
      [39] Huang, Y., Surawski, N., Yam, Y., et al., 2020. Re-Evaluating Effectiveness of Vehicle Emission Control Programmes Targeting High-Emitters.Nature Sustainability, 3(11), 904–907. https://doi.org/10.1038/s41893-020-0573-y
      [40] 黄志雄, 吴洋亦, 祝伟, 等, 2025. 不同油品对柴油车实际道路原排和尾排的影响研究.环境科学学报, 1-11. https://doi.org/10.13671/j.hjkxxb.2025.0007
      [41] Huo, D., Huang, X., Dou, X., et al., 2022. Carbon Monitor Cities Near-Real-Time Daily Estimates of CO2 Emissions from 1500 Cities Worldwide. Scientific Data, 9(1), 533. https://doi.org/10.1038/s41597-022-01657-z
      [42] International Sustainable Systems Research Center, 2009. International Vehicle Emissions (IVE) Model User’s Manual Version 2.0. https://www.issrc.org/ive/. (accessed July 25, 2025)
      [43] Jiang, L., Xia, Y., Wang, L., et al., 2021. Hyperfine-Resolution Mapping of On-Road Vehicle Emissions with Comprehensive Traffic Monitoring and an Intelligent Transportation System.Atmospheric Chemistry and Physics, 21(22), 16985–17002. https://doi.org/10.5194/acp-21-16985-2021
      [44] Jiang, P., Zhong, X., Li, L., 2020. On-Road Vehicle Emission Inventory and Its Spatio-Temporal Variations in North China Plain.Environmental Pollution, 267, 115639. https://doi.org/10.1016/j.envpol.2020.115639
      [45] Jing, B., Wu, L., Mao, H., et al., 2016. Development of a Vehicle Emission Inventory with High Temporal–Spatial Resolution Based on NRT Traffic Data and Its Impact on Air Pollution in Beijing – Part 1: Development and Evaluation of Vehicle Emission Inventory.Atmospheric Chemistry and Physics, 16(5), 3161–3170. https://doi.org/10.5194/acp-16-3161-2016
      [46] Kendrick, C., Koonce, P., George, L., 2015. Diurnal and Seasonal Variations of NO, NO2 and PM2.5 Mass as a Function of Traffic Volumes Alongside an Urban Arterial. Atmospheric Environment, 122, 133–141. https://doi.org/10.1016/j.atmosenv.2015.09.019
      [47] Khan, T., Frey, H., Rastogi, N., et al., 2020. Geospatial Variation of Real-World Tailpipe Emission Rates for Light-Duty Gasoline Vehicles.Environmental Science and Technology. https://doi.org/10.1021/acs.est.0c00489
      [48] Klimont, Z., Kupiainen, K., Heyes, C., et al., 2017. Global Anthropogenic Emissions of Particulate Matter Including Black Carbon.Atmospheric Chemistry and Physics, 17(14), 8681–8723. https://doi.org/10.5194/acp-17-8681-2017
      [49] Koupal, J., Cumberworth, M., Michaels, H., et al., 2003. Design and Implementation of MOVES: EPA’s New Generation Mobile Source Emission Model.Ann Arbor, 1001(48), 105.
      [50] Kristensson, A., Johansson, C., Westerholm, R., et al., 2004. Real-World Traffic Emission Factors of Gases and Particles Measured in a Road Tunnel in Stockholm, Sweden.Atmospheric Environment, 38(5), 657–673. https://doi.org/10.1016/j.atmosenv.2003.10.030
      [51] Lang, J., Cheng, S., Wei, W., et al., 2012. A Study on the Trends of Vehicular Emissions in the Beijing–Tianjin–Hebei (BTH) Region, China.Atmospheric Environment, 62, 605–614. https://doi.org/10.1016/j.atmosenv.2012.09.006
      [52] Li, J., Zhang, M., Ge, Y., et al., 2025. Characterization of Tire Wear Particle Emissions from Different-Mileage Passenger Cars.Atmospheric Environment, 357, 121292. https://doi.org/10.1016/j.atmosenv.2025.121292
      [53] Li, L., Tan, Q., Zhang, Y., et al., 2017.Characteristics and Source Apportionment of PM2.5 During Persistent Extreme Haze Events in Chengdu, Southwest China. Environmental Pollution, 230, 718–729. https://doi.org/10.1016/j.envpol.2017.07.029
      [54] 李荔, 张洁, 赵秋月, 等, 2018. 基于COPERT模型的江苏省机动车时空排放特征与分担率.环境科学, 39(09): 3976-3986. DOI: 10.13227/j.hjkx.201712238.
      [55] 李泫, 陈仕意, 陆克定, 等, 2023. 基于化学发光–光解转化法的大气氮氧化物精确测量原理与数值修正.北京大学学报(自然科学版), 59(06): 991-1002. DOI: 10.13209/j.0479-8023.2023.057
      [56] Lin, Y., Li, Y., Amesho, K., et al., 2019. Characterization and Quantification of PM2.5 Emissions and PAHs Concentration in PM2.5 From the Exhausts of Diesel Vehicles with Various Accumulated Mileages. Science of The Total Environment, 660, 188–198. https://doi.org/10.1016/j.scitotenv.2019.01.007
      [57] Liu, B., Frey, H.C., 2015. Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements.Environmental Science and Technology, 49(20), 12525–12534. https://doi.org/10.1021/acs.est.5b00553
      [58] 刘辉翔, 孟令鹏, 陈雯柏, 等, 2024. 电子洁净室空气化学污染物检测研究进展.科学技术与工程, 24(22): 9261-9272. DOI: 10.12404/j.issn.1671-1815.2400323
      [59] Liu, X., Zhu, R., Jin, B., et al, 2023. Emission Characteristics and Light Absorption Apportionment of Carbonaceous Aerosols: A Tunnel Test Conducted in an Urban with Fully Enclosed Use of E10 Petrol.Environmental Research, 216, 114701. https://doi.org/10.1016/j.envres.2022.114701
      [60] Liu, Y., Liao, W., Li, L., et al., 2017. Vehicle Emission Trends in China’s Guangdong Province from 1994 to 2014.Science of The Total Environment, 586, 512–521. https://doi.org/10.1016/j.scitotenv.2017.01.215
      [61] Liu, Y., Ma, J., Li, L., et al., 2018. A High Temporal-Spatial Vehicle Emission Inventory Based on Detailed Hourly Traffic Data in a Medium-Sized City of China.Environmental Pollution, 236, 324–333. https://doi.org/10.1016/j.envpol.2018.01.068
      [62] Llaguno-Munitxa, M., Bou-Zeid, E., 2023. Role of Vehicular Emissions in Urban Air Quality: The COVID-19 Lockdown Experiment.Transportation Research Part D: Transport and Environment, 115, 103580. https://doi.org/10.1016/j.trd.2022.103580
      [63] Lu, X., Yao, T., Li, Y., et al., 2016. Source Apportionment and Health Effect of NOX Over the Pearl River Delta Region in Southern China. Environmental Pollution, 212, 135–146. https://doi.org/10.1016/j.envpol.2016.01.056
      [64] Luján, J.M., Bermúdez, V., Dolz, V., et al., 2018. An Assessment of the Real-World Driving Gaseous Emissions from a Euro 6 Light-Duty Diesel Vehicle Using a Portable Emissions Measurement System (PEMS).Atmospheric Environment, 174, 112–121. https://doi.org/10.1016/j.atmosenv.2017.11.056
      [65] Luo, Y., Chen, J., Liu, W., et al., 2020. Pollutant Concentration Measurement and Emission Factor Analysis of Highway Tunnel with Mainly HGVs in Mountainous Area.Tunnelling and Underground Space Technology, 106, 103591. https://doi.org/10.1016/j.tust.2020.103591
      [66] Martins, L., Andrade, M., Freitas, E., et al., 2006. Emission Factors for Gas-Powered Vehicles Traveling Through Road Tunnels in São Paulo, Brazil.Environmental Science and Technology, 40(21), 6722–6729. https://doi.org/10.1021/es052441u
      [67] McDonald, B., Dallmann, T., Martin, E., et al., 2012. Long-Term Trends in Nitrogen Oxide Emissions from Motor Vehicles at National, State, and Air Basin Scales.Journal of Geophysical Research: Atmospheres, 117(D21). https://doi.org/10.1029/2012JD018304
      [68] Nakashima, Y., Kondo, Y., 2022. Nitrous Acid (HONO) Emission Factors for Diesel Vehicles Determined Using a Chassis Dynamometer.Science of The Total Environment, 806, 150927. https://doi.org/10.1016/j.scitotenv.2021.150927
      [69] Nogueira, T., Kamigauti, L., Pereira, G., et al., 2021. Evolution of Vehicle Emission Factors in a Megacity Affected by Extensive Biofuel Use: Results of Tunnel Measurements in São Paulo, Brazil.Environmental Science and Technology, 55(10), 6677–6687. https://doi.org/10.1021/acs.est.1c01006
      [70] O’Driscoll, R., ApSimon, H., Oxley, T., et al., 2016. A Portable Emissions Measurement System (PEMS) Study of NOX and Primary NO2 Emissions from Euro 6 Diesel Passenger Cars and Comparison with COPERT Emission Factors. Atmospheric Environment, 145, 81–91. https://doi.org/10.1016/j.atmosenv.2016.09.021
      [71] 潘玉瑾, 李媛, 陈军辉, 等, 2020. 基于交通流的成都市高分辨率机动车排放清单建立.环境科学, 41(8), 3581–3590. https://doi.org/10.13227/j.hjkx.202002082
      [72] Pérez-Martínez, P., Miranda, R., Nogueira, T., et al., 2014. Emission Factors of Air Pollutants from Vehicles Measured Inside Road Tunnels in São Paulo: Case Study Comparison.International Journal of Environmental Science and Technology, 11(8), 2155–2168. https://doi.org/10.1007/s13762-014-0562-7
      [73] Perugu, H., 2019. Emission Modelling of Light-Duty Vehicles in India Using the Revamped VSP-Based MOVES Model: The Case Study of Hyderabad.Transportation Research Part D: Transport and Environment, 68, 150–163. https://doi.org/10.1016/j.trd.2018.01.031
      [74] Pierson, W., Brachaczek, W., 1983. Emissions of Ammonia and Amines from Vehicles on the Road.Environmental Science and Technology, 17(12), 757–760. https://doi.org/10.1021/es00118a013
      [75] Pierson, W., Gertler, A., Robinson, N., et al., 1996. Real-World Automotive Emissions-Summary of Studies in the Fort McHenry and Tuscarora Mountain Tunnels.Atmospheric Environment, 30(12), 2233–2256. https://doi.org/10.1016/1352-2310(95)00276-6
      [76] Qiao, Y., Xue, Y., Wang, X., et al., 2021. Investigation of PM Emissions in Cellular Automata Model with Slow-To-Start Effect.Physica A: Statistical Mechanics and Its Applications, 574, 125996. https://doi.org/10.1016/j.physa.2021.125996
      [77] Raparthi, N., Debbarma, S., Phuleria, H., 2021. Development of Real-World Emission Factors for On-Road Vehicles from Motorway Tunnel Measurements.Atmospheric Environment: X, 10, 100113. https://doi.org/10.1016/j.aeaoa.2021.100113
      [78] Shah I.H., Zeeshan M., 2016. Estimation of Light Duty Vehicle Emissions in Islamabad and Climate Co-Benefits of Improved Emission Standards Implementation.Atmospheric Environment, 127, 236–243. https://doi.org/10.1016/j.atmosenv.2015.12.012
      [79] 邵龙义, 王文华, 幸娇萍, 等, 2018. 大气颗粒物理化特征和影响效应的研究进展及展望.地球科学, 43(05), 1691-1708. doi: 10.3799/dqkx.2018.422
      [80] Smit, R., Awadallah, M., Bagheri, S., et al., 2022. Real-World Emission Factors for SUVs using On-Board Emission Testing and Geo-Computation.Transportation Research Part D: Transport and Environment, 107, 103286. https://doi.org/10.1016/j.trd.2022.103286
      [81] Smit, R., Kingston, P., Wainwright, D.H., et al., 2017. A Tunnel Study to Validate Motor Vehicle Emission Prediction Software in Australia.Atmospheric Environment, 151, 188–199. https://doi.org/10.1016/j.atmosenv.2016.12.014
      [82] 宋爱楠, 彭剑飞, 国纪良, 等, 2023. 基于典型城市隧道观测的机动车排放年际变化与控制政策评估.环境科学学报, 43(4), 166–178. https://doi.org/10.13671/j.hjkxxb.2022.0371
      [83] Song, C., Liu, Y., Sun, S., et al., 2018. Vehicular Volatile Organic Compounds (VOCs)-NOX-CO Emissions in a Tunnel Study in Northern China: Emission Factors, Profiles, And Source Apportionment. Atmospheric Chemistry and Physics Discussions, 1–38. https://doi.org/10.5194/acp-2018-387
      [84] Song, C., Ma, C., Zhang, Y., et al., 2018. Heavy-Duty Diesel Vehicles Dominate Vehicle Emissions in a Tunnel Study in Northern China.Science of The Total Environment, 637–638, 431–442. https://doi.org/10.1016/j.scitotenv.2018.04.387
      [85] 宋晓伟, 郝永佩, 朱晓东, 等, 2020. 长三角城市群机动车污染物排放清单建立及特征研究.环境科学学报, 40(1), 90–101. https://doi.org/10.13671/j.hjkxxb.2019.0350
      [86] Sun, S., Sun, L., Liu, G., et al., 2021. Developing A Vehicle Emission Inventory with High Temporal-Spatial Resolution in Tianjin, China.Science of The Total Environment, 776, 145873. https://doi.org/10.1016/j.scitotenv.2021.145873
      [87] 孙世达, 王博, 孙露娜, 等, 2023. 江苏省高时空分辨率机动车排放清单构建及特征.中国环境科学, 43(9), 4490–4502. https://doi.org/10.19674/j.cnki.issn1000-6923.20230506.003
      [88] Tan, J., Zhang, L., Zhou, X., et al., 2017. Chemical Characteristics and Source Apportionment of PM2.5 in Lanzhou, China. Science of The Total Environment, 601–602, 1743–1752. https://doi.org/10.1016/j.scitotenv.2017.06.050
      [89] Tu, D., Xie, J., Chai, H., et al., 2025. Heavy-Duty Vehicles Dominate Expressway Tunnel Environment Analysis and Emission Factor Determination.Transportation Research Part D: Transport and Environment, 139, 104554. https://doi.org/10.1016/j.trd.2024.104554
      [90] Uherek, E., Halenka, T., Borken-Kleefeld, J., et al., 2010. Transport Impacts on Atmosphere and Climate: Land Transport.Atmospheric Environment, 44(37), 4772–4816. https://doi.org/10.1016/j.atmosenv.2010.01.002
      [91] United States Environmental Protection Agency, 2024. MOVES5: Motor Vehicle Emission Simulator. https://www.epa.gov/moves (accessed July 25, 2025)
      [92] 王伯光,张远航,吴政奇,等, 2001. 广州市机动车排放因子隧道测试研究.环境科学研究, 4, 13–16. https://doi.org/10.13198/j.res.2001.04.16.wangbg.004
      [93] Wang, H., Zhang, S., Wu, X., et al., 2023a. Emission Measurements on a Large Sample of Heavy-Duty Diesel Trucks in China by Using Mobile Plume Chasing.Environmental Science and Technology, 57(45), 17659–17659. https://doi.org/10.1021/acs.est.3c08593
      [94] Wang, P., Shen, J., Xia, M., et al., 2021a. Unexpected Enhancement of Ozone Exposure and Health Risks During National Day in China.Atmospheric Chemistry and Physics, 21(13), 10347–10356. https://doi.org/10.5194/acp-21-10347-2021
      [95] Wang, P., Zhang, R., Sun, S., et al., 2023b. Aggravated Air Pollution and Health Burden Due to Traffic Congestion in Urban China.Atmospheric Chemistry and Physics, 23(5), 2983–2996. https://doi.org/10.5194/acp-23-2983-2023
      [96] Wang, Q., He, X., Zhu, S., et al., 2020. Source Apportionment of PM2.5 in Shanghai Based on Hourly Organic Molecular Markers and Other Source Tracers. Atmospheric Chemistry and Physics, 20(20), 12047–12061. https://doi.org/10.5194/acp-20-12047-2020
      [97] 王雯楠, 刘格格, 魏红格, 等, 2024. 基于高分辨率动态排放清单的郑州市机动车排放特征研究.环境工程, 42(10), 92–101. https://doi.org/10.13205/j.hjgc.202410012
      [98] Wang, X., Chen, L., Ho, K., et al., 2021b. Comparison of Vehicle Emissions by EMFAC-HK Model and Tunnel Measurement in Hong Kong.Atmospheric Environment, 256, 118452. https://doi.org/10.1016/j.atmosenv.2021.118452
      [99] Wang, Y., Wang, H., Zhang, B., et al., 2025. High-Resolution Mapping of On-Road Vehicle Emissions with Real-Time Traffic Datasets Based on Big Data.Atmospheric Chemistry and Physics, 25(11), 5537–5555. https://doi.org/10.5194/acp-25-5537-2025
      [100] Wang, Y., Wang, M., Li, S., et al., 2020. Study on the Oxidation Potential of the Water-Soluble Components of Ambient PM2.5 over Xi’an, China: Pollution Levels, Source Apportionment and Transport Pathways. Environment International, 136, 105515. https://doi.org/10.1016/j.envint.2020.105515
      [101] Wang, Z., Wu, Y., Zhou, Y., et al., 2014. Real-World Emissions of Gasoline Passenger Cars in Macao and Their Correlation with Driving Conditions.International Journal of Environmental Science and Technology, 11(4), 1135–1146. https://doi.org/10.1007/s13762-013-0276-2
      [102] Wen, Y., Liu, M., Zhang, S., et al., 2023. Updating On-Road Vehicle Emissions for China: Spatial Patterns, Temporal Trends, and Mitigation Drivers.Environmental Science and Technology, 57(38), 14299–14309. https://doi.org/10.1021/acs.est.3c04909
      [103] 22-00070-0
      [104] Wu, N., Geng, G., Xu, R., et al., 2024. Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China.Earth System Science Data, 16(6), 2893–2915. https://doi.org/10.5194/essd-16-2893-2024
      [105] Wu, Y., Wang, R., Zhou, Y., et al., 2011. On-Road Vehicle Emission Control in Beijing: Past, Present, and Future.Environmental Science and Technology, 45(1), 147–153. https://doi.org/10.1021/es1014289
      [106] Wu, Y., Zhang, S., Li, M., et al., 2012. The Challenge to NOX Emission Control for Heavy-Duty Diesel Vehicles in China. Atmospheric Chemistry and Physics, 12(19), 9365–9379. https://doi.org/10.5194/acp-12-9365-2012
      [107] 吴雨涟, 杨洁, 邵智娟, 等, 2024. 苏州市机动车排放清单及特征研究.环境科学学报, 44(9), 129–139. https://doi.org/10.13671/j.hjkxxb.2024.0175
      [108] 谢岩, 廖松地, 朱曼妮, 等, 2020. 轻型汽油车稳态工况下的尾气排放特征.环境科学, 41(7), 3112–3120. https://doi.org/10.13227/j.hjkx.201912002
      [109] 严晗, 吴烨, 张少君, 等, 2014. 北京典型道路交通环境机动车黑碳排放与浓度特征研究.环境科学学报, 34(8), 1891–1899. https://doi.org/10.13671/j.hjkxxb.2014.0523
      [110] Yan, L., Zhang, Q., Zheng, B., et al., 2024. Modeling Fuel-, Vehicle-Type-, And Age-Specific CO2 Emissions from Global On-Road Vehicles in 1970–2020. Earth System Science Data, 16(10), 4497–4509. https://doi.org/10.5194/essd-16-4497-2024
      [111] Yang, D., Zhang, S., Niu, T., et al., 2019. High-Resolution Mapping of Vehicle Emissions of Atmospheric Pollutants Based on Large-Scale, Real-World Traffic Datasets.Atmospheric Chemistry and Physics, 19(13), 8831–8843. https://doi.org/10.5194/acp-19-8831-2019
      [112] Yang, J., Durbin, T., Jiang, Y., et al., 2018. A Comparison of a Mini-PEMS and a 1065 Compliant PEMS for On-Road Gaseous and Particulate Emissions from a Light Duty Diesel Truck.Science of The Total Environment, 640–641, 364–376. https://doi.org/10.1016/j.scitotenv.2018.04.383
      [113] Yang, Z., Tate, J., Rushton, C., et al., 2022. Detecting Candidate High NOX Emitting Light Commercial Vehicles Using Vehicle Emission Remote Sensing. Science of The Total Environment, 823, 153699. https://doi.org/10.1016/j.scitotenv.2022.153699
      [114] Yao, P., Holzinger, R., Materić, D., et al., 2023. Methylsiloxanes from Vehicle Emissions Detected in Aerosol Particles.Environmental Science and Technology, 57(38), 14269–14279. https://doi.org/10.1021/acs.est.3c03797
      [115] Yazdani Boroujeni, B., Frey, H., 2014. Road Grade Quantification Based on Global Positioning System Data Obtained from Real-World Vehicle Fuel Use and Emissions Measurements.Atmospheric Environment, 85, 179–186. https://doi.org/10.1016/j.atmosenv.2013.12.025
      [116] Yu, K., McDonald, B., Harley, R., 2021. Evaluation of Nitrogen Oxide Emission Inventories and Trends for On-Road Gasoline and Diesel Vehicles.Environmental Science and Technology, 55(10), 6655–6664. https://doi.org/10.1021/acs.est.1c00586
      [117] 岳玎利, 周炎, 钟流举, 等, 2014. 大气颗粒物理化特性在线监测技术.环境科学与技术, 37(05): 64-69. DOI: 10.3969/j.issn.1003-6504.2014.05.013
      [118] Zavala, M., Molina, L., Yacovitch, T., et al., 2017. Emission Factors of Black Carbon and Co-Pollutants from Diesel Vehicles in Mexico City.Atmospheric Chemistry and Physics, 17(24), 15293–15305. https://doi.org/10.5194/acp-17-15293-2017
      [119] 瞿美丽, 何超, 王计广, 等, 2024. 基于IVE模型重型柴油车尾气排放时空特征分析.环境科学与技术, 47(10), 179–188. https://doi.org/10.19672/j.cnki.1003-6504.1104.24.338
      [120] Zhai, M., He, C., Wang, J., et al., 2024. Spatio-temporal Characterisation of Heavy-duty Diesel Vehicle Emissions Based on the IVE Model. Environmental Science and Technology, 2024, 47(10): 179-188. (in Chinese with English abstract)
      [121] Zhang, J., Peng, J., Song, C., et al., 2020. Vehicular Non-Exhaust Particulate Emissions in Chinese Megacities: Source Profiles, Real-World Emission Factors, and Inventories.Environmental Pollution, 266, 115268. https://doi.org/10.1016/j.envpol.2020.115268
      [122] 张启钧, 杨磊, 魏宁, 等, 2023. 天津市典型市区隧道机动车黑碳污染排放特征与健康风险评价.环境科学学报, 43(2): 408-413. https://doi.org/10.13671/j.hjkxxb.2022.0242
      [123] Zhang, R., Li, S., Fu, X., et al., 2021. Emissions And Light Absorption of Carbonaceous Aerosols from On-Road Vehicles in an Urban Tunnel in South China.Science of The Total Environment, 790, 148220. https://doi.org/10.1016/j.scitotenv.2021.148220
      [124] Zhang, Y., Wang, X., Li, G., et al., 2015. Emission Factors of Fine Particles, Carbonaceous Aerosols and Traces Gases from Road Vehicles: Recent Tests in an Urban Tunnel in the Pearl River Delta, China.Atmospheric Environment, 122, 876–884. https://doi.org/10.1016/j.atmosenv.2015.08.024
      [125] Zhu, C., Qu, X., Qiu, M., et al., 2023. High Spatiotemporal Resolution Vehicular Emission Inventory in Beijing-Tianjin-Hebei and Its Surrounding Areas (BTHSA) during 2000–2020, China.Science of The Total Environment, 873, 162389. https://doi.org/10.1016/j.scitotenv.2023.162389
      [126] Zíková, N., Wang, Y., Yang, F., et al., 2016. On the Source Contribution to Beijing PM2.5 Concentrations. Atmospheric Environment, 134, 84–95. https://doi.org/10.1016/j.atmosenv.2016.03.047
      [127] Zong, Z., Tan, Y., Wang, X., et al., 2020. Dual-Modelling-Based Source Apportionment of NOX in Five Chinese Megacities: Providing the Isotopic Footprint from 2013 to 2014. Environment International, 137, 105592. https://doi.org/10.1016/j.envint.2020.105592
    • 加载中
    计量
    • 文章访问数:  22
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-22
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回