• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于隧道实验的机动车大气污染物实时排放因子研究

    江惟缌 孔少飞 燕莹莹 吴剑 郑煌

    江惟缌, 孔少飞, 燕莹莹, 吴剑, 郑煌, 2025. 基于隧道实验的机动车大气污染物实时排放因子研究. 地球科学, 50(9): 3468-3487. doi: 10.3799/dqkx.2025.170
    引用本文: 江惟缌, 孔少飞, 燕莹莹, 吴剑, 郑煌, 2025. 基于隧道实验的机动车大气污染物实时排放因子研究. 地球科学, 50(9): 3468-3487. doi: 10.3799/dqkx.2025.170
    Jiang Weisi, Kong Shaofei, Yan Yingying, Wu Jian, Zheng Huang, 2025. Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments. Earth Science, 50(9): 3468-3487. doi: 10.3799/dqkx.2025.170
    Citation: Jiang Weisi, Kong Shaofei, Yan Yingying, Wu Jian, Zheng Huang, 2025. Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments. Earth Science, 50(9): 3468-3487. doi: 10.3799/dqkx.2025.170

    基于隧道实验的机动车大气污染物实时排放因子研究

    doi: 10.3799/dqkx.2025.170
    基金项目: 

    湖北省自然科学基金杰出青年项目 2022CFA040

    国家重点研发计划项目 2023YFC3709802

    详细信息
      作者简介:

      江惟缌(2001-),女,硕士研究生,研究方向为机动车污染物排放清单编制.ORCID:0009-0008-1147-9105. E-mail:3169459232@qq.com

      通讯作者:

      孔少飞,ORCID: 0000-0001-9735-6852. E-mail: kongshaofei@cug.edu.cn

    • 中图分类号: P402

    Real-Time Emission Factors of Motor Vehicle Air Pollutants Based on Tunnel Experiments

    • 摘要:

      机动车大气污染物动态排放因子是制约实时排放清单精度提升的一个关键参数.本研究选取某城市隧道,结合在线设备和监控摄像头开展7种大气污染物浓度和车流量的实时监测,采用YOLOv8l深度学习目标检测模型和SORT目标跟踪算法,获取车辆类型和速度;采用排放强度比值,推算车队整体和分车型的大气污染物排放因子.CO、NO、NO2、NOx、SO2、BC和PM2.5的平均排放因子分别为(1 064.9±479.8)、(496.5±209.3)、(55.5±30.4)、(578.6±267.6)、(6.3±2.2)、(3.3±1.5)和(37.7±19.2)mg/(km·辆);车队整体排放因子分别为(634.7±477.2)、(266.0±142.9)、(26.4±13.5)、(302.3±159.5)、(3.5±1.9)、(2.0±1.10)和(19.8±12.3)g/km.隧道内周末的日车流量为工作日的88.6%,工作日除PM2.5外的污染物排放因子是周末的1.00~1.48倍. 在逐小时排放因子情境下,凌晨的柴油车流量占比是其余时间的1.6倍,各污染物的凌晨高值分别是其余时间平均值的2.0~3.5倍;车队排放呈现出早晚(7:00~9:00;17:00~19:00)双峰特征,为全天平均值的1.8~3.3倍.本研究可为区域高精度动态机动车排放清单构建和机动车排放污染物的精准管控提供基础数据和科学依据.

       

    • 图  1  隧道实验采样示意

      Fig.  1.  Layout of sampling configuration and detail of the tunnel

      图  2  车辆识别界面和流程

      Fig.  2.  Interface and flowchart for vehicle detection and classification

      图  3  观测期间隧道内车流量和车速日变化特征

      a、b. 周末和工作日车速与车流量变化;c、d. 周末和工作日车速与车流量相关性

      Fig.  3.  Diurnal variation of traffic volume and vehicle speed inside the tunnel during the observation period

      图  4  各污染物单车平均排放因子

      Fig.  4.  Per-vehicle average emission factors of pollutants from motor vehicles

      图  5  我国近30年隧道实验排放因子变化趋势

      1 据邓顺熙和董小林(2000);2 据邓顺熙等(2000a);3 据邓顺熙等(2000b);4 据王伯光(2001);5 据Cheng et al.(2006);6 据Chiang et al.(2007);7 据Song et al.(2018b);8 据Zhang et al.(2015);9 据Deng et al.(2015);10 据Zhang et al.(2020);11 据Wang et al.(2021b);12 据Huang et al.(2017a);13 据Song et al.(2018a);14 据Luo et al.(2020);15 据宋爱楠等(2023);16 据本研究

      Fig.  5.  Trends in tunnel-based vehicle emission factors in China over the past 30 years

      图  6  各污染物车队整体排放因子

      Fig.  6.  Fleet-averaged emission factors for various pollutants

      图  7  各污染物机动车分车型排放因子

      Fig.  7.  Emission factors of different pollutants by vehicle type

      图  8  各污染物单车逐时排放因子

      Fig.  8.  Hourly dynamics of per-vehicle emission factors for pollutants

      图  9  各污染物车队整体逐时排放因子

      Fig.  9.  Hourly dynamics of fleet-averaged emission factors for pollutants

      图  10  车流量与排放因子的Pearson相关性

      a.车队整体排放因子;b.单车平均排放因子

      Fig.  10.  Pearson correlation between traffic volume and emission factors

      表  1  污染物排放因子比值参考

      Table  1.   Reference for pollutant emission factors

      车型 CO a NO a NO2 a NOx a SO2 a BC b PM2.5 a
      GV 0.85 0.05 0.05 0.05 0.02 0.006 0.001 5
      DV 0.45 0.3 0.3 0.3 0.03 0.022 5 0.03
      R 0.53 6 6 6 1.5 3.75 20
      注:其中,a. COPERT模型据Gkatzoflias et al. (2007);b. MOVES模型据Koupal et al. (2003).
      下载: 导出CSV

      表  2  不同地区隧道实验得到的机动车大气污染物单车排放因子对比

      Table  2.   Comparison of emission factors from different tunnel studies

      地点 年份 CO NO NO2 NOx SO2 BC PM2.5 参考文献
      甘肃 1995 41.86 - - 3.88 - - - 邓顺熙和董小林,2000
      西安 1996 33.28 - - 4.60 - - - 邓顺熙等, 2000a
      成都 1996 28.73 - - 4.65 - - - 邓顺熙等, 2000b
      广州 1999 15.40 - - 1.38 0.14 - - 王伯光, 2001
      香港 2004 1.84 - - 0.88 - - 0.13 Cheng et al., 2006
      台湾 2005 1.89 - - 0.73 0.02 - - Chiang et al., 2007
      天津 2010 0.28 0.062 0.020 0.084 - - 0.009 2 Song et al., 2018b
      Braga(Portugal) 2013 4.09 0.61 0.29 1.18 - 0.005 0.133 Alves et al., 2015
      广州 2014 3.10 - - 1.29 0.020 7 - 0.082 7 Zhang et al., 2015
      香港 2015 1.80 1.33 0.24 1.58 - - 0.025 Wang et al., 2021b
      上海 2016 1.84 - - 0.4 - - 0.034 Huang et al., 2017a
      天津 2017 0.28 0.062 0.020 0.084 - - 0.009 2 Song et al., 2018b
      西安‒汉中 2017 3.88 4.31 1.56 9.37 0.09 - - Luo et al., 2020
      郑州 2019 1.49 0.051 0.006 7 0.086 0.00 - - 王雯楠等, 2024
      天津 2019 0.41 - - 0.080 - - 0.009 3 宋爱楠等, 2023
      Mumbai(India) 2019 1.60 - 0.147 - - 0.012 0.044 Raparthi et al., 2021
      宜昌 2020 1.06 0.48 0.053 0.55 0.006 3 0.003 4 0.038 本研究
      注:“-”表示无数据;单位:g/(km∙辆).
      下载: 导出CSV

      表  3  工作日和周末的平均排放因子

      Table  3.   Average emission factors on weekdays and weekends

      时间情景 排放因子 单位 CO NO NO2 NOx SO2 BC PM2.5
      工作日 单车 mg/(km∙辆) 1409.5 508.1 60.5 581.2 6.7 3.3 35.8
      车队 g/km 757.8 252.0 28.6 288.6 3.9 2.0 17.9
      周末 单车 mg/(km∙辆) 720.2 484.9 50.5 576.0 5.8 3.2 39.6
      车队 g/km 512.9 146.4 13.9 159.9 1.6 1.1 13.6
      下载: 导出CSV
    • Alves, C. A., Gomes, J., Nunes, T., et al., 2015. Size-Segregated Particulate Matter and Gaseous Emissions from Motor Vehicles in a Road Tunnel. Atmospheric Research, 153: 134-144. https://doi.org/10.1016/j.atmosres.2014.08.002
      Anenberg, S. C., Miller, J., Minjares, R., et al., 2017. Impacts and Mitigation of Excess Diesel-Related NOx Emissions in 11 Major Vehicle Markets. Nature, 545(7655): 467-471. https://doi.org/10.1038/nature22086
      Bai, Y. Y., He, C., Li, J. Q., et al., 2023. Spatiotemporal Characteristics Analysis of Heavy-Duty Diesel Truck Emissions Based on GPS Data. Environmental Engineering, 41(4): 63-70, 100 (in Chinese with English abstract).
      Blanco-Alegre, C., Calvo, A. I., Alves, C., et al., 2020. Aethalometer Measurements in a Road Tunnel: A Step Forward in the Characterization of Black Carbon Emissions from Traffic. Science of the Total Environment, 703: 135483. https://doi.org/10.1016/j.scitotenv.2019.135483
      Boroujeni, B. Y., Frey, H. C., 2014. Road Grade Quantification Based on Global Positioning System Data Obtained from Real-World Vehicle Fuel Use and Emissions Measurements. Atmospheric Environment, 85: 179-186. https://doi.org/10.1016/j.atmosenv.2013.12.025
      Carslaw, D. C., Rhys-Tyler, G., 2013. New Insights from Comprehensive On-Road Measurements of NOx, NO2 and NH3 from Vehicle Emission Remote Sensing in London, UK. Atmospheric Environment, 81: 339-347. https://doi.org/10.1016/j.atmosenv.2013.09.026
      Chan, T. L., Ning, Z., 2005. On-Road Remote Sensing of Diesel Vehicle Emissions Measurement and Emission Factors Estimation in Hong Kong. Atmospheric Environment, 39(36): 6843-6856. https://doi.org/10.1016/j.atmosenv.2005.07.048
      Che, W. W., Zheng, J. Y., Wang, S. S., et al., 2011. Assessment of Motor Vehicle Emission Control Policies Using Model-3/CMAQ Model for the Pearl River Delta Region, China. Atmospheric Environment, 45(9): 1740-1751. https://doi.org/10.1016/j.atmosenv.2010.12.050
      Chen, X., Jiang, L. H., Xia, Y., et al., 2022. Quantifying On-Road Vehicle Emissions during Traffic Congestion Using Updated Emission Factors of Light-Duty Gasoline Vehicles and Real-World Traffic Monitoring Big Data. Science of the Total Environment, 847: 157581. https://doi.org/10.1016/j.scitotenv.2022.157581
      Cheng, Y., Lee, S. C., Ho, K. F., et al., 2006. On-Road Particulate Matter (PM2.5) and Gaseous Emissions in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 40(23): 4235-4245. https://doi.org/10.1016/j.atmosenv.2006.04.002
      Chiang, H., Hwu, C., Chen, S., et al., 2007. Emission Factors and Characteristics of Criteria Pollutants and Volatile Organic Compounds (VOCs) in a Freeway Tunnel Study. Science of the Total Environment, 381(1-3): 200-211. https://doi.org/10.1016/j.scitotenv.2007.03.039
      Crippa, M., Solazzo, E., Huang, G. L., et al., 2020. High Resolution Temporal Profiles in the Emissions Database for Global Atmospheric Research. Scientific Data, 7: 121. https://doi.org/10.1038/s41597-020-0462-2
      Dai, S., Bi, X., Chan, L. Y., et al., 2015. Chemical and Stable Carbon Isotopic Composition of PM2.5 from On-Road Vehicle Emissions in the PRD Region and Implications for Vehicle Emission Control Policy. Atmospheric Chemistry and Physics, 15(6): 3097-3108. https://doi.org/10.5194/acp-15-3097-2015
      Davison, J., Rose, R. A., Farren, N. J., et al., 2021. Verification of a National Emission Inventory and Influence of On-Road Vehicle Manufacturer-Level Emissions. Environmental Science & Technology, 55(8): 4452-4461. https://doi.org/10.1021/acs.est.0c08363
      Deng, F. Y., Lyu, Z. F., Qi, L. J., et al., 2020. A Big Data Approach to Improving the Vehicle Emission Inventory in China. Nature Communications, 11: 2801. https://doi.org/10.1038/s41467-020-16579-w
      Deng, S. X., Cheng, P., Zhu, W., 2000a. Vehicular Emission Factors of CO, THC and NOx from Freeway Tunnel. Research of Environmental Sciences, 13(2): 32-35 (in Chinese with English abstract).
      Deng, S. X., Chen, J. S., Li, B. C., 2000b. Emission Factors of CO, HC and NOx from Motor Vehicles on Urban Main Road in China. China Environmental Science, 20(1): 82-85 (in Chinese with English abstract).
      Deng, S. X., Dong, X. L., 2000. Study on Emission Factors of CO, HCs and NOx from Mountainous Roadway in China. Chinese Journal of Environmental Science, 21(1): 109-112 (in Chinese with English abstract).
      Deng, Y. W., Chen, C., Li, Q., et al., 2015. Measurements of Real-World Vehicle CO and NOx Fleet Average Emissions in Urban Tunnels of Two Cities in China. Atmospheric Environment, 122: 417-426. https://doi.org/10.1016/j.atmosenv.2015.08.036
      Drinovec, L., Močnik, G., Zotter, P., et al., 2015. The "Dual-Spot"Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmospheric Measurement Techniques, 8(5): 1965-1979. https://doi.org/10.5194/amt-8-1965-2015
      Farren, N. J., Davison, J., Rose, R. A., et al., 2020. Underestimated Ammonia Emissions from Road Vehicles. Environmental Science & Technology, 54(24): 15689-15697. https://doi.org/10.1021/acs.est.0c05839
      Feng, H. X., Ning, E. W., Yu, L., et al., 2023. The Spatial and Temporal Disaggregation Models of High-Accuracy Vehicle Emission Inventory. Environment International, 181: 108287. https://doi.org/10.1016/j.envint.2023.108287
      Feng, X. Y., Tian, Y. Z., Xue, Q. Q., et al., 2021. Measurement Report: Spatiotemporal and Policy-Related Variations of PM2.5 Composition and Sources during 2015-2019 at Multiple Sites in a Chinese Megacity. Atmospheric Chemistry and Physics, 21(21): 16219-16235. https://doi.org/10.5194/acp-21-16219-2021
      Gantt, B., Owen, R. C., Watkins, N., 2021. Characterizing Nitrogen Oxides and Fine Particulate Matter near Major Highways in the United States Using the National Near-Road Monitoring Network. Environmental Science & Technology, 55(5): 2831-2838. https://doi.org/10.1021/acs.est.0c05851
      Ghaffarpasand, O., Ropkins, K., Beddows, D. C. S., et al., 2023. Detecting High Emitting Vehicle Subsets Using Emission Remote Sensing Systems. Science of the Total Environment, 858: 159814. https://doi.org/10.1016/j.scitotenv.2022.159814
      Gkatzoflias, D., Kouridis, C., Ntziachristos, L., 2007. COPERT 4: Computer Programme to Calculate Emissions from Road Transport. European Environment Agency, Copenhagen.
      Gong, M. M., Yin, S. S., Gu, X. K., et al., 2017. Refined 2013-Based Vehicle Emission Inventory and Its Spatial and Temporal Characteristics in Zhengzhou, China. Science of the Total Environment, 599-600: 1149-1159. https://doi.org/10.1016/j.scitotenv.2017.03.299
      Grieshop, A. P., Lipsky, E. M., Pekney, N. J., et al., 2006. Fine Particle Emission Factors from Vehicles in a Highway Tunnel: Effects of Fleet Composition and Season. Atmospheric Environment, 40: 287-298. https://doi.org/10.1016/j.atmosenv.2006.03.064
      Hao, Y. Z., Deng, S. X., Qiu, Z. W., et al., 2017. Vehicle Emission Inventory for Xi'an Based on MOVES Model. Environmental Pollution & Control, 39(3): 227-231, 235 (in Chinese with English abstract).
      Ho, C. S., Peng, J. F., Lyu, Z. Y., et al., 2023. Tunnel Measurements Reveal Significant Reduction in Traffic-Related Light-Absorbing Aerosol Emissions in China. Science of the Total Environment, 856: 159212. https://doi.org/10.1016/j.scitotenv.2022.159212
      Hong, Y. W., Xu, X. B., Liao, D., et al., 2021. Air Pollution Increases Human Health Risks of PM2.5-Bound PAHs and Nitro-PAHs in the Yangtze River Delta, China. Science of the Total Environment, 770: 145402. https://doi.org/10.1016/j.scitotenv.2021.145402
      Hua, J. X., Zhang, Y. X., de Foy, B., et al., 2021. Competing PM2.5 and NO2 Holiday Effects in the Beijing Area Vary Locally Due to Differences in Residential Coal Burning and Traffic Patterns. Science of the Total Environment, 750: 141575. https://doi.org/10.1016/j.scitotenv.2020.141575
      Huang, C., Tao, S. K., Lou, S. R., et al., 2017a. Evaluation of Emission Factors for Light-Duty Gasoline Vehicles Based on Chassis Dynamometer and Tunnel Studies in Shanghai, China. Atmospheric Environment, 169: 193-203. https://doi.org/10.1016/j.atmosenv.2017.09.020
      Huang, R. J., Yuan, W., Yang, L., et al., 2022a. Concentration, Optical Characteristics, and Emission Factors of Brown Carbon Emitted by On-Road Vehicles. Science of the Total Environment, 810: 151307. https://doi.org/10.1016/j.scitotenv.2021.151307
      Huang, X. F., Zou, B. B., He, L. Y., et al., 2018. Exploration of PM2.5 Sources on the Regional Scale in the Pearl River Delta Based on ME-2 Modeling. Atmospheric Chemistry and Physics, 18(16): 11563-11580. https://doi.org/10.5194/acp-18-11563-2018
      Huang, X. J., Liu, Z. R., Liu, J. Y., et al., 2017b. Chemical Characterization and Source Identification of PM2.5 at Multiple Sites in the Beijing-Tianjin-Hebei Region, China. Atmospheric Chemistry and Physics, 17(21): 12941-12962. https://doi.org/10.5194/acp-17-12941-2017
      Huang, Y. H., Lee, C. K. C., Yam, Y. S., et al., 2022b. Rapid Detection of High-Emitting Vehicles by On-Road Remote Sensing Technology Improves Urban Air Quality. Science Advances, 8(5): eabl7575. https://doi.org/10.1126/sciadv.abl7575
      Huang, Y. H., Surawski, N. C., Yam, Y. S., et al., 2020. Re-Evaluating Effectiveness of Vehicle Emission Control Programmes Targeting High-Emitters. Nature Sustainability, 3(11): 904-907. https://doi.org/10.1038/s41893-020-0573-y
      Huang, Z. X., Wu, Y. Y., Zhu, W., et al., 2025. Study on the Effects of Different Fuels on Real Road Primary and Tailpipe Emissions of Diesel Vehicles. Acta Scientiae Circumstantiae, 45(7): 113-123 (in Chinese with English abstract).
      Huo, D., Huang, X. T., Dou, X. Y., et al., 2022. Carbon Monitor Cities Near-Real-Time Daily Estimates of CO2 Emissions from 1 500 Cities Worldwide. Scientific Data, 9: 533. https://doi.org/10.1038/s41597-022-01657-z
      Jiang, L. H., Xia, Y., Wang, L., et al., 2021. Hyperfine-Resolution Mapping of On-Road Vehicle Emissions with Comprehensive Traffic Monitoring and an Intelligent Transportation System. Atmospheric Chemistry and Physics, 21(22): 16985-17002. https://doi.org/10.5194/acp-21-16985-2021
      Jiang, P. Y., Zhong, X., Li, L. Y., 2020. On-Road Vehicle Emission Inventory and Its Spatio-Temporal Variations in North China Plain. Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639
      Jing, B. Y., Wu, L., Mao, H. J., et al., 2016. Development of a Vehicle Emission Inventory with High Temporal–Spatial Resolution Based on NRT Traffic Data and Its Impact on Air Pollution in Beijing – Part 1: Development and Evaluation of Vehicle Emission Inventory. Atmospheric Chemistry and Physics, 16(5): 3161-3170. https://doi.org/10.5194/acp-16-3161-2016
      Kendrick, C. M., Koonce, P., George, L. A., 2015. Diurnal and Seasonal Variations of NO, NO2 and PM2.5 Mass as a Function of Traffic Volumes Alongside an Urban Arterial. Atmospheric Environment, 122: 133-141. https://doi.org/10.1016/j.atmosenv.2015.09.019
      Khan, T., Frey, H. C., Rastogi, N., et al., 2020. Geospatial Variation of Real-World Tailpipe Emission Rates for Light-Duty Gasoline Vehicles. Environmental Science & Technology, 54(14): 8968-8979. https://doi.org/10.1021/acs.est.0c00489
      Klimont, Z., Kupiainen, K., Heyes, C., et al., 2017. Global Anthropogenic Emissions of Particulate Matter Including Black Carbon. Atmospheric Chemistry and Physics, 17(14): 8681-8723. https://doi.org/10.5194/acp-17-8681-2017
      Koupal, J. W., Cumberworth, M., Michaels, H. M., et al., 2003. Design and Implementation of MOVES: EPA's New Generation Mobile Source Emission Model. International Emissions Inventory Conference 2003, San Diego.
      Lang, J. L., Cheng, S. Y., Wei, W., et al., 2012. A Study on the Trends of Vehicular Emissions in the Beijing–Tianjin–Hebei (BTH) Region, China. Atmospheric Environment, 62: 605-614. https://doi.org/10.1016/j.atmosenv.2012.09.006
      Li, J. C., Zhang, M. Z., Ge, Y. S., et al., 2025. Characterization of Tire Wear Particle Emissions from Different-Mileage Passenger Cars. Atmospheric Environment, 357: 121292. https://doi.org/10.1016/j.atmosenv.2025.121292
      Li, L. L., Tan, Q. W., Zhang, Y. H., et al., 2017. Characteristics and Source Apportionment of PM2.5 during Persistent Extreme Haze Events in Chengdu, Southwest China. Environmental Pollution, 230: 718-729. https://doi.org/10.1016/j.envpol.2017.07.029
      Li, R., Wang, Q. Q., He, X., et al., 2020. Source Apportionment of PM2.5 in Shanghai Based on Hourly Organic Molecular Markers and Other Source Tracers. Atmospheric Chemistry and Physics, 20(20): 12047-12061. https://doi.org/10.5194/acp-20-12047-2020
      Li, X., Chen, S. Y., Lu, K. D., et al., 2023. Precise Measurement and Numerical Correction of Atmospheric Nitrogen Oxides Based on Photolytic Chemiluminescence. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(6): 991-1002 (in Chinese with English abstract).
      Liu, B., Frey, H. C., 2015. Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements. Environmental Science & Technology, 49(20): 12525-12534. https://doi.org/10.1021/acs.est.5b00553
      Liu, H. X., Meng, L. P., Chen, W. B., et al., 2024. Review of Air Chemical Detection of Contamination Based on Electronic Cleanrooms. Science Technology and Engineering, 24(22): 9261-9272 (in Chinese with English abstract).
      Liu, X. H., Zhu, R. C., Jin, B. Q., et al., 2023. Emission Characteristics and Light Absorption Apportionment of Carbonaceous Aerosols: A Tunnel Test Conducted in an Urban with Fully Enclosed Use of E10 Petrol. Environmental Research, 216: 114701. https://doi.org/10.1016/j.envres.2022.114701
      Liu, Y. H., Liao, W. Y., Li, L., et al., 2017. Vehicle Emission Trends in China's Guangdong Province from 1994 to 2014. Science of the Total Environment, 586: 512-521. https://doi.org/10.1016/j.scitotenv.2017.01.215
      Liu, Y. H., Ma, J. L., Li, L., et al., 2018. A High Temporal-Spatial Vehicle Emission Inventory Based on Detailed Hourly Traffic Data in a Medium-Sized City of China. Environmental Pollution, 236: 324-333. https://doi.org/10.1016/j.envpol.2018.01.068
      Llaguno-Munitxa, M., Bou-Zeid, E., 2023. Role of Vehicular Emissions in Urban Air Quality: The COVID-19 Lockdown Experiment. Transportation Research Part D: Transport and Environment, 115: 103580. https://doi.org/10.1016/j.trd.2022.103580
      Lu, X. C., Yao, T., Li, Y., et al., 2016. Source Apportionment and Health Effect of NOx over the Pearl River Delta Region in Southern China. Environmental Pollution, 212: 135-146. https://doi.org/10.1016/j.envpol.2016.01.056
      Luján, J. M., Bermúdez, V., Dolz, V., et al., 2018. An Assessment of the Real-World Driving Gaseous Emissions from a Euro 6 Light-Duty Diesel Vehicle Using a Portable Emissions Measurement System (PEMS). Atmospheric Environment, 174: 112-121. https://doi.org/10.1016/j.atmosenv.2017.11.056
      Luo, Y. B., Chen, J. X., Liu, W. W., et al., 2020. Pollutant Concentration Measurement and Emission Factor Analysis of Highway Tunnel with Mainly HGVS in Mountainous Area. Tunnelling and Underground Space Technology, 106: 103591. https://doi.org/10.1016/j.tust.2020.103591
      McDonald, B. C., Dallmann, T. R., Martin, E. W., et al., 2012. Long-Term Trends in Nitrogen Oxide Emissions from Motor Vehicles at National, State, and Air Basin Scales. Journal of Geophysical Research: Atmospheres, 117(D21): 2012JD018304. https://doi.org/10.1029/2012JD018304
      Nakashima, Y., Kondo, Y., 2022. Nitrous Acid (HONO) Emission Factors for Diesel Vehicles Determined Using a Chassis Dynamometer. Science of the Total Environment, 806: 150927. https://doi.org/10.1016/j.scitotenv.2021.150927
      Pan, Y. J., Li, Y., Chen, J. H., et al., 2020. Method for High-Resolution Emission Inventory for Road Vehicles in Chengdu Based on Traffic Flow Monitoring Data. Environmental Science, 41(8): 3581-3590 (in Chinese with English abstract).
      Pérez-Martínez, P. J., Miranda, R. M., Nogueira, T., et al., 2014. Emission Factors of Air Pollutants from Vehicles Measured Inside Road Tunnels in São Paulo: Case Study Comparison. International Journal of Environmental Science and Technology, 11(8): 2155-2168. https://doi.org/10.1007/s13762-014-0562-7
      Pierson, W. R., Brachaczek, W. W., 1983. Emissions of Ammonia and Amines from Vehicles on the Road. Environmental Science & Technology, 17(12): 757-760. https://doi.org/10.1021/es00118a013
      Pierson, W. R., Gertler, A. W., Robinson, N. F., et al., 1996. Real-World Automotive Emissions—Summary of Studies in the Fort McHenry and Tuscarora Mountain Tunnels. Atmospheric Environment, 30(12): 2233-2256. https://doi.org/10.1016/1352-2310(95)00276-6
      Qiao, Y. F., Xue, Y., Wang, X., et al., 2021. Investigation of PM Emissions in Cellular Automata Model with Slow-to-Start Effect. Physica A: Statistical Mechanics and Its Applications, 574: 125996. https://doi.org/10.1016/j.physa.2021.125996
      Qu, M. L., He, C., Wang, J. G., et al., 2024. Spatio-Temporal Characterisation of Heavy-Duty Diesel Vehicle Emissions Based on the IVE Model. Environmental Science & Technology, 47(10): 179-188 (in Chinese with English abstract).
      Raparthi, N., Debbarma, S., Phuleria, H. C., 2021. Development of Real-World Emission Factors for On-Road Vehicles from Motorway Tunnel Measurements. Atmospheric Environment: X, 10: 100113. https://doi.org/10.1016/j.aeaoa.2021.100113
      Shah, I. H., Zeeshan, M., 2016. Estimation of Light Duty Vehicle Emissions in Islamabad and Climate Co-Benefits of Improved Emission Standards Implementation. Atmospheric Environment, 127: 236-243. https://doi.org/10.1016/j.atmosenv.2015.12.012
      Shao, L. Y., Wang, W. H., Xing, J. P., et al., 2018. Physicochemical Characteristics and Effects of Airborne Particles: Research Progress and Prospects. Earth Science, 43(5): 1691-1708 (in Chinese with English abstract).
      Smit, R., Awadallah, M., Bagheri, S., et al., 2022. Real-World Emission Factors for SUVs Using On-Board Emission Testing and Geo-Computation. Transportation Research Part D: Transport and Environment, 107: 103286. https://doi.org/10.1016/j.trd.2022.103286
      Smit, R., Kingston, P., Wainwright, D. H., et al., 2017. A Tunnel Study to Validate Motor Vehicle Emission Prediction Software in Australia. Atmospheric Environment, 151: 188-199. https://doi.org/10.1016/j.atmosenv.2016.12.014
      Song, A. N., Peng, J. F., Guo, J. L., et al., 2023. Interannual Variations of Vehicle Emissions and Evaluation of Emission Control Policies Based on Tunnel Measurements in a Typical Megacity in China. Acta Scientiae Circumstantiae, 43(4): 166-178 (in Chinese with English abstract).
      Song, C. B., Liu, Y., Sun, S. D., et al., 2018a. Vehicular Volatile Organic Compounds (VOCs)-NOx-CO Emissions in a Tunnel Study in Northern China: Emission Factors, Profiles, and Source Apportionment. Atmospheric Chemistry and Physics Discussions, Preprint. https://doi.org/10.5194/acp-2018-387
      Song, C. B., Ma, C., Zhang, Y. J., et al., 2018b. Heavy-Duty Diesel Vehicles Dominate Vehicle Emissions in a Tunnel Study in Northern China. Science of the Total Environment, 637-638: 431-442. https://doi.org/10.1016/j.scitotenv.2018.04.387
      Song, X. W., Hao, Y. P., Zhu, X. D., 2020. Vehicular Emission Inventory Establishment and Characteristics Research in the Yangtze River Delta Urban Agglomeration. Acta Scientiae Circumstantiae, 40(1): 90-101 (in Chinese with English abstract).
      Sun, S. D., Sun, L. N., Liu, G., et al., 2021. Developing a Vehicle Emission Inventory with High Temporal-Spatial Resolution in Tianjin, China. Science of the Total Environment, 776: 145873. https://doi.org/10.1016/j.scitotenv.2021.145873
      Sun, S. D., Wang, B., Sun, L. N., et al., 2023. Development and Characteristics of Vehicle Emission Inventory with High Spatiotemporal Resolution in Jiangsu Province. China Environmental Science, 43(9): 4490-4502 (in Chinese with English abstract).
      Tan, J. H., Zhang, L. M., Zhou, X. M., et al., 2017. Chemical Characteristics and Source Apportionment of PM2.5 in Lanzhou, China. Science of the Total Environment, 601-602: 1743-1752. https://doi.org/10.1016/j.scitotenv.2017.06.050
      Tu, D. K., Xie, J. C., Chai, H. N., et al., 2025. Heavy-Duty Vehicles Dominate Expressway Tunnel Environment Analysis and Emission Factor Determination. Transportation Research Part D: Transport and Environment, 139: 104554. https://doi.org/10.1016/j.trd.2024.104554
      Uherek, E., Halenka, T., Borken-Kleefeld, J., et al., 2010. Transport Impacts on Atmosphere and Climate: Land Transport. Atmospheric Environment, 44(37): 4772-4816. https://doi.org/10.1016/j.atmosenv.2010.01.002
      Wang, B. G., Zhang, Y. H., Wu, Z. Q., et al., 2001. Tunnel Test for Motor Vehicle Emission Factors in Guangzhou. Research of Environmental Sciences, 14(4): 13-16 (in Chinese with English abstract).
      Wang, H., Zhang, S. J., Wu, X. M., et al., 2023a. Emission Measurements on a Large Sample of Heavy-Duty Diesel Trucks in China by Using Mobile Plume Chasing. Environmental Science & Technology, 57(40): 15153-15161. https://doi.org/10.1021/acs.est.3c03028
      Wang, P., Shen, J. Y., Xia, M., et al., 2021a. Unexpected Enhancement of Ozone Exposure and Health Risks during National Day in China. Atmospheric Chemistry and Physics, 21(13): 10347-10356. https://doi.org/10.5194/acp-21-10347-2021
      Wang, P., Zhang, R. H., Sun, S. D., et al., 2023b. Aggravated Air Pollution and Health Burden Due to Traffic Congestion in Urban China. Atmospheric Chemistry and Physics, 23(5): 2983-2996. https://doi.org/10.5194/acp-23-2983-2023
      Wang, W. N., Liu, G. G., Wei, H. G., et al., 2024. Research of Vehicle Emission Characteristics in Zhengzhou Based on High-Resolution Dynamic Emission Inventory. Environmental Engineering, 42(10): 92-101 (in Chinese with English abstract).
      Wang, X. L., Chen, L. A., Ho, K. F., et al., 2021b. Comparison of Vehicle Emissions by EMFAC-HK Model and Tunnel Measurement in Hong Kong. Atmospheric Environment, 256: 118452. https://doi.org/10.1016/j.atmosenv.2021.118452
      Wang, Y. J., Wang, H. B., Zhang, B., et al., 2025. High-Resolution Mapping of On-Road Vehicle Emissions with Real-Time Traffic Datasets Based on Big Data. Atmospheric Chemistry and Physics, 25(11): 5537-5555. https://doi.org/10.5194/acp-25-5537-2025
      Wang, Y. Q., Wang, M. M., Li, S. P., et al., 2020. Study on the Oxidation Potential of the Water-Soluble Components of Ambient PM2.5 over Xi'an, China: Pollution Levels, Source Apportionment and Transport Pathways. Environment International, 136: 105515. https://doi.org/10.1016/j.envint.2020.105515
      Wang, Z., Wu, Y., Zhou, Y., et al., 2014. Real-World Emissions of Gasoline Passenger Cars in Macao and Their Correlation with Driving Conditions. International Journal of Environmental Science and Technology, 11(4): 1135-1146. https://doi.org/10.1007/s13762-013-0276-2
      Wen, Y. F., Liu, M., Zhang, S. J., et al., 2023. Updating On-Road Vehicle Emissions for China: Spatial Patterns, Temporal Trends, and Mitigation Drivers. Environmental Science & Technology, 57(38): 14299-14309. https://doi.org/10.1021/acs.est.3c04909
      Wu, N. N., Geng, G. N., Xu, R. C., et al., 2024. Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China. Earth System Science Data, 16(6): 2893-2915. https://doi.org/10.5194/essd-16-2893-2024
      Wu, Y., Wang, R. J., Zhou, Y., et al., 2011. On-Road Vehicle Emission Control in Beijing: Past, Present, and Future. Environmental Science & Technology, 45(1): 147-153. https://doi.org/10.1021/es1014289
      Wu, Y., Zhang, S. J., Li, M. L., et al., 2012. The Challenge to NOx Emission Control for Heavy-Duty Diesel Vehicles in China. Atmospheric Chemistry and Physics, 12(19): 9365-9379. https://doi.org/10.5194/acp-12-9365-2012
      Wu, Y. L., Yang, J., Shao, Z. J., et al., 2024. A Study of Vehicle Emission Inventory and Its Characteristics in Suzhou, China. Acta Scientiae Circumstantiae, 44(9): 129-139 (in Chinese with English abstract).
      Xie, Y., Liao, S. D., Zhu, M. N., et al., 2020. Emission Characteristics of Light-Duty Gasoline Vehicle Exhaust Based on Acceleration Simulation Mode. Environmental Science, 41(7): 3112-3120 (in Chinese with English abstract).
      Yan, H., Wu, Y., Zhang, S. J., et al., 2014. Emission Characteristics and Concentrations of Vehicular Black Carbon in a Typical Freeway Traffic Environment of Beijing. Acta Scientiae Circumstantiae, 34(8): 1891-1899 (in Chinese with English abstract).
      Yan, L., Zhang, Q., Zheng, B., et al., 2024. Modeling Fuel-, Vehicle-Type-, and Age-Specific CO2 Emissions from Global On-Road Vehicles in 1970-2020. Earth System Science Data, 16(10): 4497-4509. https://doi.org/10.5194/essd-16-4497-2024
      Yang, D. Y., Zhang, S. J., Niu, T. L., et al., 2019. High-Resolution Mapping of Vehicle Emissions of Atmospheric Pollutants Based on Large-Scale, Real-World Traffic Datasets. Atmospheric Chemistry and Physics, 19(13): 8831-8843. https://doi.org/10.5194/acp-19-8831-2019
      Yang, J. C., Durbin, T. D., Jiang, Y., et al., 2018. A Comparison of a Mini-PEMS and a 1065 Compliant PEMS for On-Road Gaseous and Particulate Emissions from a Light Duty Diesel Truck. Science of the Total Environment, 640-641: 364-376. https://doi.org/10.1016/j.scitotenv.2018.04.383
      Yang, Z. Q., Tate, J. E., Rushton, C. E., et al., 2022. Detecting Candidate High NOx Emitting Light Commercial Vehicles Using Vehicle Emission Remote Sensing. Science of the Total Environment, 823: 153699. https://doi.org/10.1016/j.scitotenv.2022.153699
      Yao, P., Holzinger, R., Materić, D., et al., 2023. Methylsiloxanes from Vehicle Emissions Detected in Aerosol Particles. Environmental Science & Technology, 57(38): 14269-14279. https://doi.org/10.1021/acs.est.3c03797
      Yu, K. A., McDonald, B. C., Harley, R. A., 2021. Evaluation of Nitrogen Oxide Emission Inventories and Trends for On-Road Gasoline and Diesel Vehicles. Environmental Science & Technology, 55(10): 6655-6664. https://doi.org/10.1021/acs.est.1c00586
      Yue, D. L., Zhou, Y., Zhong, L. J., et al., 2014. Continuous Online Monitoring Techniques for Physical and Chemical Properties of Atmospheric Aerosols. Environmental Science & Technology, 37(5): 64-69 (in Chinese with English abstract).
      Zavala, M., Molina, L. T., Yacovitch, T. I., et al., 2017. Emission Factors of Black Carbon and Co-Pollutants from Diesel Vehicles in Mexico City. Atmospheric Chemistry and Physics, 17(24): 15293-15305. https://doi.org/10.5194/acp-17-15293-2017
      Zhang, J. S., Peng, J. F., Song, C. B., et al., 2020. Vehicular Non-Exhaust Particulate Emissions in Chinese Megacities: Source Profiles, Real-World Emission Factors, and Inventories. Environmental Pollution, 266: 115268. https://doi.org/10.1016/j.envpol.2020.115268
      Zhang, Q. J., Yang, L., Wei, N., et al., 2023. Pollution Characteristics and Health Risks Assessment of Black Carbon from Vehicles Emissions in Typical Urban Tunnel of Tianjin. Acta Scientiae Circumstantiae, 43(2): 408-413 (in Chinese with English abstract).
      Zhang, R. Q., Li, S., Fu, X. W., et al., 2021. Emissions and Light Absorption of Carbonaceous Aerosols from On-Road Vehicles in an Urban Tunnel in South China. Science of the Total Environment, 790: 148220. https://doi.org/10.1016/j.scitotenv.2021.148220
      Zhang, Y. L., Wang, X. M., Li, G. H., et al., 2015. Emission Factors of Fine Particles, Carbonaceous Aerosols and Traces Gases from Road Vehicles: Recent Tests in an Urban Tunnel in the Pearl River Delta, China. Atmospheric Environment, 122: 876-884. https://doi.org/10.1016/j.atmosenv.2015.08.024
      Zhu, C. Y., Qu, X. Y., Qiu, M. Y., et al., 2023. High Spatiotemporal Resolution Vehicular Emission Inventory in Beijing-Tianjin-Hebei and Its Surrounding Areas (BTHSA) during 2000-2020, China. Science of the Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389
      Zíková, N., Wang, Y. G., Yang, F. M., et al., 2016. On the Source Contribution to Beijing PM2.5 Concentrations. Atmospheric Environment, 134: 84-95. https://doi.org/10.1016/j.atmosenv.2016.03.047
      Zong, Z., Tan, Y., Wang, X., et al., 2020. Dual-Modelling-Based Source Apportionment of NOx in Five Chinese Megacities: Providing the Isotopic Footprint from 2013 to 2014. Environment International, 137: 105592. https://doi.org/10.1016/j.envint.2020.105592
      柏洋洋, 何超, 李加强, 等, 2023. 基于GPS数据的重型柴油货车排放时空特征分析. 环境工程, 41(4): 63-70, 100.
      邓顺熙, 成平, 朱唯, 2000a. 用隧道确定高速公路汽车CO, THC和NOx排放因子. 环境科学研究, 13(2): 32-35.
      邓顺熙, 陈洁陕, 李百川, 2000b. 中国城市道路机动车CO、HC和NOx排放因子的测定. 中国环境科学, 20(1): 82-85.
      邓顺熙, 董小林, 2000. 我国山岭公路汽车CO、HCs和NOx排放系数. 环境科学, 21(1): 109-112.
      郝艳召, 邓顺熙, 邱兆文, 等, 2017. 基于MOVES模型的西安市机动车排放清单研究. 环境污染与防治, 39(3): 227-231, 235.
      黄志雄, 吴洋亦, 祝伟, 等, 2025. 不同油品对柴油车实际道路原排和尾排的影响研究. 环境科学学报, 45(7): 113-123.
      李泫, 陈仕意, 陆克定, 等, 2023. 基于化学发光-光解转化法的大气氮氧化物精确测量原理与数值修正. 北京大学学报(自然科学版), 59(6): 991-1002.
      刘辉翔, 孟令鹏, 陈雯柏, 等, 2024. 电子洁净室空气化学污染物检测研究进展. 科学技术与工程, 24(22): 9261-9272.
      潘玉瑾, 李媛, 陈军辉, 等, 2020. 基于交通流的成都市高分辨率机动车排放清单建立. 环境科学, 41(8): 3581-3590.
      瞿美丽, 何超, 王计广, 等, 2024. 基于IVE模型重型柴油车尾气排放时空特征分析. 环境科学与技术, 47(10): 179-188.
      邵龙义, 王文华, 幸娇萍, 等, 2018. 大气颗粒物理化特征和影响效应的研究进展及展望. 地球科学, 43(5): 1691-1708. doi: 10.3799/dqkx.2018.422
      宋爱楠, 彭剑飞, 国纪良, 等, 2023. 基于典型城市隧道观测的机动车排放年际变化与控制政策评估. 环境科学学报, 43(4): 166-178.
      宋晓伟, 郝永佩, 朱晓东, 2020. 长三角城市群机动车污染物排放清单建立及特征研究. 环境科学学报, 40(1): 90-101.
      孙世达, 王博, 孙露娜, 等, 2023. 江苏省高时空分辨率机动车排放清单构建及特征. 中国环境科学, 43(9): 4490-4502.
      王伯光, 张远航, 吴政奇, 等, 2001. 广州市机动车排放因子隧道测试研究. 环境科学研究, 14(4): 13-16.
      王雯楠, 刘格格, 魏红格, 等, 2024. 基于高分辨率动态排放清单的郑州市机动车排放特征研究. 环境工程, 42(10): 92-101.
      吴雨涟, 杨洁, 邵智娟, 等, 2024. 苏州市机动车排放清单及特征研究. 环境科学学报, 44(9): 129-139.
      谢岩, 廖松地, 朱曼妮, 等, 2020. 轻型汽油车稳态工况下的尾气排放特征. 环境科学, 41(7): 3112-3120.
      严晗, 吴烨, 张少君, 等, 2014. 北京典型道路交通环境机动车黑碳排放与浓度特征研究. 环境科学学报, 34(8): 1891-1899.
      岳玎利, 周炎, 钟流举, 等, 2014. 大气颗粒物理化特性在线监测技术. 环境科学与技术, 37(5): 64-69.
      张启钧, 杨磊, 魏宁, 等, 2023. 天津市典型市区隧道机动车黑碳污染排放特征与健康风险评价. 环境科学学报, 43(2): 408-413.
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  52
    • HTML全文浏览量:  5
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-22
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回