• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吴双兰, 李涵, 崔臻, 野津厚, 庄海洋, 赵凯, 陈国兴, 2025. 2018年日本北海道胆振东部MW6.6地震运动学震源模型. 地球科学. doi: 10.3799/dqkx.2025.171
    引用本文: 吴双兰, 李涵, 崔臻, 野津厚, 庄海洋, 赵凯, 陈国兴, 2025. 2018年日本北海道胆振东部MW6.6地震运动学震源模型. 地球科学. doi: 10.3799/dqkx.2025.171
    WU Shuanglan, LI Han, CUI Zhen, NOZU Atsushi, ZHUANG Haiyang, ZHAO Kai, CHEN Guoxing, 2025. Kinematic source model of the 2018 Hokkaido Eastern Iburi MW6.6 Japan Earthquake. Earth Science. doi: 10.3799/dqkx.2025.171
    Citation: WU Shuanglan, LI Han, CUI Zhen, NOZU Atsushi, ZHUANG Haiyang, ZHAO Kai, CHEN Guoxing, 2025. Kinematic source model of the 2018 Hokkaido Eastern Iburi MW6.6 Japan Earthquake. Earth Science. doi: 10.3799/dqkx.2025.171

    2018年日本北海道胆振东部MW6.6地震运动学震源模型

    doi: 10.3799/dqkx.2025.171
    基金项目: 

    江苏省“双创博士”计划项目(JSSCBS20230124)

    中国地震局工程力学研究所基本科研业务费专项资助项目(2023D10)

    国家自然科学基金(52278503,52378397,52379112)

    国家重点研发计划项目(2023YFB2390400)联合资助

    详细信息
      作者简介:

      吴双兰,女,1987年生,2018年毕业于日本京都大学,副教授,主要从事运动学的震源机制反演、强震动场模拟、岩土地震工程等方面研究.E-mail:wushuang7850@163.com.

      通讯作者:

      陈国兴,男,1963年生,1993年毕业于中国地震局工程力学研究所,教授,主要从事强震动场模拟、岩土地震工程、土动力学等方面研究.E-mail:gxc6307@163.com.

    • 中图分类号: P315

    Kinematic source model of the 2018 Hokkaido Eastern Iburi MW6.6 Japan Earthquake

    • 摘要: 通过观测的地表波形反演震源机制以理解地震震源破裂过程是研究强震动特征非常有效的途径之一.本研究主要针对强震动的产生机制,采用中小震作为经验格林函数,选取 0.2~2.0 Hz 频段的强震动速度波形进行波形反演 2018年日本北海道MW6.6地震的破裂过程,提出了该地震的震源模型.结果表明:该地震的主要最大滑移量区域集中在沿断层面西南部~东北部6 km范围、距离震源~12.0 km 的浅层区域内,该区域内最大滑动量约 3.5 m;识别出两个最大滑移速度分布区,分别位于断层西南6.0 km、东北4.0 km,距离震源~15.0 km 的浅层区域内,最大滑动速度约 2.0 m/s,破裂速度为 2.0 km/s,该震源模型对应地震震级MW7.0.此外,本研究通过多种组合的中小震记录作为经验的格林函数及近断层强震观测台站探讨了该震源模型的鲁棒性,进一步通过合成未参与反演的台站强震动波形,结果显示合成波形与观测波形的匹配度较高,表明模型的时空特征描述合理;最后,通过与其他公开已发表的震源模型的综合对比发现最大滑移分布相似,该系列对比充分验证了该震源模型是稳定可靠的,可为未来强震动模拟提供重要参考.

       

    • [1] Aki, K., 1967. Scaling law of seismic spectrum. J. Geophys. Res. 72(4), 1217-1231, doi.org/10.1029/JZ072i004p01217.
      [2] Asano K, Iwata T. 2019. Source rupture process of the 2018 Hokkaido Eastern Iburi earthquake deduced from strong-motion data considering seismic wave propagation in three-dimensional velocity structure. Earth Planets Space, 71(1): 101, doi: 10.1186/s40623-019-1080-0.
      [3] Bouchon M. 1981. A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am., 71(4): 959-971, doi: 10.1785/BSSA0710040959.
      [4] Chen Y T, Xu L S. 2000. A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in the Tibetan Plateau. Geophys. J. Int., 143(2): 407–416, doi: 10.1046/j.1365-246X.2000.01263.x.
      [5] Dhakal Y P, Kunugi T, Kimura T, et al. 2019. Peak ground motions and characteristics of nonlinear site response during the 2018 Mw 6.6 Hokkaido eastern Iburi earthquake. Earth Planets Space, 71: 1-26, doi: 10.1186/s40623-019-1038-2.
      [6] Dreger D S. 1994. Empirical Green’s function study of the January 17, 1994 Northridge, California earthquake. Geophys. Res. Lett., 21(24): 2633-2636, doi: 10.1029/94GL02661.
      [7] Gou T, Huang Z, Zhao D, et al. 2019. Structural heterogeneity and anisotropy in the source zone of the 2018 Eastern Iburi earthquake in Hokkaido, Japan. J. Geophys. Res. Solid Earth, 124: 7052–7066, doi: 10.1029/2019JB017388.
      [8] Guo Z, Wen Y, Xu G, et al. 2019. Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sens., 11: 1667, doi: 10.3390/rs11141667.
      [9] Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73(6A): 1553-1583, doi: 10.1785/BSSA07306A1553.
      [10] Hisakawa T, Ando R, Yano T E, et al. 2020. Dynamic rupture simulation of 2018, Hokkaido Eastern Iburi earthquake: role of non-planar geometry. Earth Planets Space, 72: 1-14, doi: 10.1186/s40623-020-01160-y.
      [11] Hua Y, Zhao D, Xu Y, et al. 2019. Arc-arc collision caused the 2018 Eastern Iburi earthquake (M 6.7) in Hokkaido, Japan. Sci. Rep., 9(1): 13914, doi: 10.1038/s41598-019-50305-x.
      [12] Iwasaki T, Tsumura N, Ito T, et al. 2019. Structural heterogeneity in and around the fold-and-thrust belt of the Hidaka Collision zone, Hokkaido, Japan and its relationship to the aftershock activity of the 2018 Hokkaido Eastern Iburi Earthquake. Earth Planets Space, 71: 103, doi: 10.1186/s40623-019-1081-z.
      [13] Kobayashi H, Koketsu K, Miyake H. 2019. Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong motion and geodetic data. Earth Planets Space, 71(1): 63, doi: 10.1186/s40623-019-1041-7.
      [14] Kubo H, Iwaki A, Suzuki W, et al. 2020. RETRACTED ARTICLE: Estimation of the source process and forward simulation of long-period ground motion of the 2018 Hokkaido Eastern Iburi, Japan, earthquake. Earth Planets Space, 71(1): 98, doi: 10.1186/s40623-020-1146-z.
      [15] Lawson C L, Hanson R J. 1974. Solving Least Squares Problems. Philadelphia: Society for Industrial and Applied Mathematics.
      [16] National Research Institute for Earth Science and Disaster Resilience (NIED): Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong-motion data. https://www.kyoshin.bosai.go.jp/kyoshin/topics/Iburi_20180906/inversion_en/ [2024-7-30] .
      [17] Nozu A, Irikura K. 2008. Strong-Motion Generation Areas of a Great Subduction-Zone Earthquake: Waveform Inversion with Empirical Green's Functions for the 2003 Tokachi-oki Earthquake. Bull. Seismol. Soc. Am., 98(1): 180-197, doi: 10.1785/0120060183.
      [18] Nozu A, Nagasaka Y. 2017. Rupture process of the main shock of the 2016 Kumamoto earthquake with special reference to damaging ground motions: waveform inversion with empirical Green’s functions. Earth Planets Space, 69: 1-18, doi: 10.1186/s40623-017-0609-3.
      [19] Osanai N, Yamada T, Hayashi S, et al. 2019. Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 16: 1517–1528, doi: 10.1007/s10346-019-01206-7.
      [20] Ren C M, Yue H, Wang T, et al. 2021. Source rupture model of the 2018 MW6.7 Iburi, Hokkaido earthquake from joint inversion of strong motion and InSAR observations. Earthq. Sci., 34(1): 88–101, doi: 10.29382/eqs-2020-0065.
      [21] Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc seconds: SRTM15+. Earth Space Sci., 6(10): 1847–1864.
      [22] Wang D,Mori J. 2012. The 2010 Qinghai, China, Earthquake: A Moderate Earthquake with Supershear Rupture. Bulletin of the Seismological Society of America, 102(1):301–308, doi: 10.1785/0120110034.
      [23] Wang D, Kawakatsu H, et al.2017. Automated determination of magnitude and source length of large earthquakes using backprojection and P wave amplitudes, Geophys. Res. Lett., 44, 5447–5456,
      [24] Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic Mapping Tools: improved version released. Eos Trans. Am. Geophys. Union, 94(45): 409–410, doi: 10.1002/2013EO450001.
      [25] Wu S L, Nozu A, Nagasaka Y. 2021. Rupture Process of the Mainshock of the 2019 Ridgecrest Earthquake Sequence from Waveform Inversion with Empirical Green’s Functions. Bull. Seismol. Soc. Am., 111(2): 1014-1031, doi: 10.1785/0120200266.
      [26] Yamagishi H, Yamazaki F. 2018. Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides, 15: 2521–2524, doi: 10.1007/s10346-018-1092-z.
      [27] Yao Q, Wang D, Fang L, 2019 ,Mori J.Rapid Estimation of Magnitudes of Large Damaging Earthquakes in and around Japan Using Dense Seismic Stations in China. Bulletin of the Seismological Society of America, 109(6): 2545–2555.
      [28] Zang C, Ni S D, Shen Z C. 2019. Rupture Directivity Analysis of the 2018 Hokkaido Eastern Iburi Earthquake and Its Seismotectonic Implication. Seismol. Res. Lett., 90(6): 2121–2131, doi: 10.1785/0220190131.
      [29] Zhang S, Li R, Wang F, et al. 2019. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides, 16: 1691–1708, doi: 10.1007/s10346-019-01207-6.
      [30] Zhou H, Che A, Wang L, et al. 2020. Investigation and mechanism analysis of disasters under Hokkaido Eastern Iburi earthquake. Geomatics Nat. Hazards Risk, 12(1): 1–28, doi: 10.1080/19475705.2020.1856201.
      [31] 吴双兰, 野津厚, 長坂陽介. 2021. 2021年日本福岛县冲地震的震源破裂过程分析基于采用经验格林函数方法的波形反演. 世界地震工程, (2): 1-12.
      [32] 谢张迪, 于湘伟, 章文波. 2024. 2018年日本北海道MW6.6地震震源动力学破裂过程. 地球物理学报,67(8):2972-2989,doi: 10.6038/cjg2023Q0942
      [33] 许力生, 陈运泰. 1996. 用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数. 地震学报, 18(2): 156-196.
      [34] 许力生, 陈运泰. 2002. 震源时间函数与震源破裂过程. 地震地磁观测与研究, 23(06): 2-8, doi: 10.3969/j.issn.1003-3246.2004.06.001.
      [35] 张旭, 许力生, 2015. 利用视震源时间函数反演尼泊尔MS8.1地震破裂过程. 地球物理学报, 58(6): 1881-1890, doi: 10.6038/cjg20150604.
      [36] 福山英一, 石田瑞穂, 堀貞喜, 関口渉次, 綿田辰悟. 1996. Freesia Projectによる広帯域地震観測. 防災科学技術研究所報告,57, 23-31.
      [37] 福山英一, 石田瑞穂,D. S. Dreger, 川井啓兼. 1998. オンライン広帯域地震データを用いた完全自動メカニズム決定,地震2, 51, 149-156.
      [38] 野津厚. 2007. 2005年福岡県西方沖の地震の震源モデル-経験的グリーン関数を用いた波形インバージョン-. 地震第2輯, 59(3):253-270, doi: 10.4294/zisin.59.253.
      [39] 野津厚. 2012. 強震動を対象とした海溝型巨大地震の震源モデルをより単純化する試み-疑似点震源モデルによる2011年東北地方太平洋沖地震の強震動シミュレーション-, 地震第2輯,65(1): 45-67.
      [40] 日本気象庁.2018a 2018年09月06日03時07分 胆振地方中東部 M 6.7. https://www.data.jma.go.jp/eqev/data/mech/cmt/fig/cmt20180906030759.html[2024-07-30] .
      [41] 日本気象庁.2018b2018年09月06日振地方中東部の地震-近地強震波形による震源過程解析(暫定)-. https://www.data.jma.go.jp/eqev/data/sourceprocess/event/2018090603075933near.pdf[2024-07-30] .
      [42] 日本内阁府. 平成30年北海道胆振 いぶり 東部地震に係る被害状況等について. https://www.bousai.go.jp/updates/h30jishin_hokkaido/pdf/301030_jishin_hokkaido.pdf[2024-07-30] .
      [43] 友澤裕介, 加藤研一, 野尻揮一朗. 2019. スペクトルインバージョン解析に基づく平成30年北海道胆振東部地震の震源特性・伝播経路特性・サイト増幅特性の推定. 日本地震工学会論文集, 19(4): 4_170-4_174, doi: 10.5610/jaee.19.4_170.
      [44] 佐藤智美. 2019. 2018年北海道胆振東部地震の広帯域震源モデルと強震動特性.日本建築学会構造系論文集, 84(763): 1175-1185, doi: 10.3130/aijs.84.1175.
    • 加载中
    计量
    • 文章访问数:  24
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-05-27
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回