[1] |
Aki, K., 1967. Scaling law of seismic spectrum. J. Geophys. Res. 72(4), 1217-1231, doi.org/10.1029/JZ072i004p01217. |
[2] |
Asano K, Iwata T. 2019. Source rupture process of the 2018 Hokkaido Eastern Iburi earthquake deduced from strong-motion data considering seismic wave propagation in three-dimensional velocity structure. Earth Planets Space, 71(1): 101, doi: 10.1186/s40623-019-1080-0. |
[3] |
Bouchon M. 1981. A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am., 71(4): 959-971, doi: 10.1785/BSSA0710040959. |
[4] |
Chen Y T, Xu L S. 2000. A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in the Tibetan Plateau. Geophys. J. Int., 143(2): 407–416, doi: 10.1046/j.1365-246X.2000.01263.x. |
[5] |
Dhakal Y P, Kunugi T, Kimura T, et al. 2019. Peak ground motions and characteristics of nonlinear site response during the 2018 Mw 6.6 Hokkaido eastern Iburi earthquake. Earth Planets Space, 71: 1-26, doi: 10.1186/s40623-019-1038-2. |
[6] |
Dreger D S. 1994. Empirical Green’s function study of the January 17, 1994 Northridge, California earthquake. Geophys. Res. Lett., 21(24): 2633-2636, doi: 10.1029/94GL02661. |
[7] |
Gou T, Huang Z, Zhao D, et al. 2019. Structural heterogeneity and anisotropy in the source zone of the 2018 Eastern Iburi earthquake in Hokkaido, Japan. J. Geophys. Res. Solid Earth, 124: 7052–7066, doi: 10.1029/2019JB017388. |
[8] |
Guo Z, Wen Y, Xu G, et al. 2019. Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sens., 11: 1667, doi: 10.3390/rs11141667. |
[9] |
Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73(6A): 1553-1583, doi: 10.1785/BSSA07306A1553. |
[10] |
Hisakawa T, Ando R, Yano T E, et al. 2020. Dynamic rupture simulation of 2018, Hokkaido Eastern Iburi earthquake: role of non-planar geometry. Earth Planets Space, 72: 1-14, doi: 10.1186/s40623-020-01160-y. |
[11] |
Hua Y, Zhao D, Xu Y, et al. 2019. Arc-arc collision caused the 2018 Eastern Iburi earthquake (M 6.7) in Hokkaido, Japan. Sci. Rep., 9(1): 13914, doi: 10.1038/s41598-019-50305-x. |
[12] |
Iwasaki T, Tsumura N, Ito T, et al. 2019. Structural heterogeneity in and around the fold-and-thrust belt of the Hidaka Collision zone, Hokkaido, Japan and its relationship to the aftershock activity of the 2018 Hokkaido Eastern Iburi Earthquake. Earth Planets Space, 71: 103, doi: 10.1186/s40623-019-1081-z. |
[13] |
Kobayashi H, Koketsu K, Miyake H. 2019. Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong motion and geodetic data. Earth Planets Space, 71(1): 63, doi: 10.1186/s40623-019-1041-7. |
[14] |
Kubo H, Iwaki A, Suzuki W, et al. 2020. RETRACTED ARTICLE: Estimation of the source process and forward simulation of long-period ground motion of the 2018 Hokkaido Eastern Iburi, Japan, earthquake. Earth Planets Space, 71(1): 98, doi: 10.1186/s40623-020-1146-z. |
[15] |
Lawson C L, Hanson R J. 1974. Solving Least Squares Problems. Philadelphia: Society for Industrial and Applied Mathematics. |
[16] |
National Research Institute for Earth Science and Disaster Resilience (NIED): Rupture process of the 2018 Hokkaido Eastern Iburi earthquake derived from strong-motion data. https://www.kyoshin.bosai.go.jp/kyoshin/topics/Iburi_20180906/inversion_en/ [2024-7-30] . |
[17] |
Nozu A, Irikura K. 2008. Strong-Motion Generation Areas of a Great Subduction-Zone Earthquake: Waveform Inversion with Empirical Green's Functions for the 2003 Tokachi-oki Earthquake. Bull. Seismol. Soc. Am., 98(1): 180-197, doi: 10.1785/0120060183. |
[18] |
Nozu A, Nagasaka Y. 2017. Rupture process of the main shock of the 2016 Kumamoto earthquake with special reference to damaging ground motions: waveform inversion with empirical Green’s functions. Earth Planets Space, 69: 1-18, doi: 10.1186/s40623-017-0609-3. |
[19] |
Osanai N, Yamada T, Hayashi S, et al. 2019. Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 16: 1517–1528, doi: 10.1007/s10346-019-01206-7. |
[20] |
Ren C M, Yue H, Wang T, et al. 2021. Source rupture model of the 2018 MW6.7 Iburi, Hokkaido earthquake from joint inversion of strong motion and InSAR observations. Earthq. Sci., 34(1): 88–101, doi: 10.29382/eqs-2020-0065. |
[21] |
Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc seconds: SRTM15+. Earth Space Sci., 6(10): 1847–1864. |
[22] |
Wang D,Mori J. 2012. The 2010 Qinghai, China, Earthquake: A Moderate Earthquake with Supershear Rupture. Bulletin of the Seismological Society of America, 102(1):301–308, doi: 10.1785/0120110034. |
[23] |
Wang D, Kawakatsu H, et al.2017. Automated determination of magnitude and source length of large earthquakes using backprojection and P wave amplitudes, Geophys. Res. Lett., 44, 5447–5456, |
[24] |
Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic Mapping Tools: improved version released. Eos Trans. Am. Geophys. Union, 94(45): 409–410, doi: 10.1002/2013EO450001. |
[25] |
Wu S L, Nozu A, Nagasaka Y. 2021. Rupture Process of the Mainshock of the 2019 Ridgecrest Earthquake Sequence from Waveform Inversion with Empirical Green’s Functions. Bull. Seismol. Soc. Am., 111(2): 1014-1031, doi: 10.1785/0120200266. |
[26] |
Yamagishi H, Yamazaki F. 2018. Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides, 15: 2521–2524, doi: 10.1007/s10346-018-1092-z. |
[27] |
Yao Q, Wang D, Fang L, 2019 ,Mori J.Rapid Estimation of Magnitudes of Large Damaging Earthquakes in and around Japan Using Dense Seismic Stations in China. Bulletin of the Seismological Society of America, 109(6): 2545–2555. |
[28] |
Zang C, Ni S D, Shen Z C. 2019. Rupture Directivity Analysis of the 2018 Hokkaido Eastern Iburi Earthquake and Its Seismotectonic Implication. Seismol. Res. Lett., 90(6): 2121–2131, doi: 10.1785/0220190131. |
[29] |
Zhang S, Li R, Wang F, et al. 2019. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides, 16: 1691–1708, doi: 10.1007/s10346-019-01207-6. |
[30] |
Zhou H, Che A, Wang L, et al. 2020. Investigation and mechanism analysis of disasters under Hokkaido Eastern Iburi earthquake. Geomatics Nat. Hazards Risk, 12(1): 1–28, doi: 10.1080/19475705.2020.1856201. |
[31] |
吴双兰, 野津厚, 長坂陽介. 2021. 2021年日本福岛县冲地震的震源破裂过程分析基于采用经验格林函数方法的波形反演. 世界地震工程, (2): 1-12. |
[32] |
谢张迪, 于湘伟, 章文波. 2024. 2018年日本北海道MW6.6地震震源动力学破裂过程. 地球物理学报,67(8):2972-2989,doi: 10.6038/cjg2023Q0942 |
[33] |
许力生, 陈运泰. 1996. 用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数. 地震学报, 18(2): 156-196. |
[34] |
许力生, 陈运泰. 2002. 震源时间函数与震源破裂过程. 地震地磁观测与研究, 23(06): 2-8, doi: 10.3969/j.issn.1003-3246.2004.06.001. |
[35] |
张旭, 许力生, 2015. 利用视震源时间函数反演尼泊尔MS8.1地震破裂过程. 地球物理学报, 58(6): 1881-1890, doi: 10.6038/cjg20150604. |
[36] |
福山英一, 石田瑞穂, 堀貞喜, 関口渉次, 綿田辰悟. 1996. Freesia Projectによる広帯域地震観測. 防災科学技術研究所報告,57, 23-31. |
[37] |
福山英一, 石田瑞穂,D. S. Dreger, 川井啓兼. 1998. オンライン広帯域地震データを用いた完全自動メカニズム決定,地震2, 51, 149-156. |
[38] |
野津厚. 2007. 2005年福岡県西方沖の地震の震源モデル-経験的グリーン関数を用いた波形インバージョン-. 地震第2輯, 59(3):253-270, doi: 10.4294/zisin.59.253. |
[39] |
野津厚. 2012. 強震動を対象とした海溝型巨大地震の震源モデルをより単純化する試み-疑似点震源モデルによる2011年東北地方太平洋沖地震の強震動シミュレーション-, 地震第2輯,65(1): 45-67. |
[40] |
日本気象庁.2018a 2018年09月06日03時07分 胆振地方中東部 M 6.7. https://www.data.jma.go.jp/eqev/data/mech/cmt/fig/cmt20180906030759.html[2024-07-30] . |
[41] |
日本気象庁.2018b2018年09月06日振地方中東部の地震-近地強震波形による震源過程解析(暫定)-. https://www.data.jma.go.jp/eqev/data/sourceprocess/event/2018090603075933near.pdf[2024-07-30] . |
[42] |
日本内阁府. 平成30年北海道胆振 いぶり 東部地震に係る被害状況等について. https://www.bousai.go.jp/updates/h30jishin_hokkaido/pdf/301030_jishin_hokkaido.pdf[2024-07-30] . |
[43] |
友澤裕介, 加藤研一, 野尻揮一朗. 2019. スペクトルインバージョン解析に基づく平成30年北海道胆振東部地震の震源特性・伝播経路特性・サイト増幅特性の推定. 日本地震工学会論文集, 19(4): 4_170-4_174, doi: 10.5610/jaee.19.4_170. |
[44] |
佐藤智美. 2019. 2018年北海道胆振東部地震の広帯域震源モデルと強震動特性.日本建築学会構造系論文集, 84(763): 1175-1185, doi: 10.3130/aijs.84.1175. |