[1] |
Alkmim, F.F., Marshak, S., Fonseca, M.A., 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton Region, Brazil.Geology, 29(4): 319–322. doi: 10.1130/0091-7613(2001)029<0319:AWGITN>2.0.CO;2 |
[2] |
Azevedo, R.L.M. de., 2004. Paleoceanografia e a Evolução do Atlântico Sul no Albiano.Boletim De Geociências Da Petrobras, 12(2): 231–249. |
[3] |
Brun, J. P., 1999. Narrow Rifts Versus Wide Rifts: Inferences for the Mechanics of Rifting from Laboratory Experiments.Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1753): 695–712. doi: 10.1098/rsta.1999.0349 |
[4] |
Bonifacio, J.F., Ganade, G.E., Santos, A.C.D., et al., 2023. Review and Critical Assessment on Plate Reconstruction Models for the South Atlantic.Earth-Science Reviews, 238: 104333. Doi: 10.1016/j.earscirev.2023.104333 |
[5] |
Chaboureau, A.C., Guillocheau, F., Robin, C., et al., 2013. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications.Tectonophysics, 604: 191–223. doi: 10.1016/j.tecto.2012.08.025 |
[6] |
Chen, Z.G., Xu, G. Wang, J.C., et al., 2016. Different Structural Characteristics in the East and West Parts, Bongor Basin, Chad, and Their Influence on Hydrocarbon Accumulation. Oil Geophysical Prospecting, 51(S1): 113–119, 9(in Chinese with English abstract). |
[7] |
Collettini, C., Sibson, R.H., 2001. Normal Faults, Normal Friction?Geology, 29(10): 927–930. doi: 10.1130/0091-7613(2001)029<0927:NFNF>2.0.CO;2 |
[8] |
Dahlstrom, C.D.A., 1970. Structural Geology in the Eastern Margin of the Canadian Rocky Mountains.Bulletin of Canadian Petroleum Geology, 18(3):332-406. Doi: 10.35767/gscpgbull.18.3.332. |
[9] |
Darros De Matos, R.M., 2000. Tectonic Evolution of the Equatorial South Atlantic.American Geophysical Union (AGU). doi: 10.1029/GM115p0331 |
[10] |
Davison, I., 2007. Geology and Tectonics of the South Atlantic Brazilian Salt Basins.London, Geological Society of London. |
[11] |
Dou, L.R., Wang, J.C., Wang, R.C., et al., 2018. Precambrian Basement Reservoirs: Case Study from the Northern Bongor Basin, the Republic of Chad.AAPG Bulletin, 102(09): 1803–1824. doi: 10.1306/02061817090 |
[12] |
Dou, L.R., Wang, J.C., Wang, R.C., et al., 2018. The Precambrian Basement Play in the Central African Rift System.Earth Science Frontiers, 25(2): 015-023(in Chinese with English abstract). |
[13] |
Dou, L.R., Wang, R.C.., Wang, J.C., et al., 2021. Thermal History Reconstruction from Apatite Fission-Track Analysis and Vitrinite Reflectance Data of the Bongor Basin, the Republic of Chad.AAPG Bulletin, 105(5): 919–944. doi: 10.1306/11182019167 |
[14] |
Dou, L.R., Xiao, K.Y., Du, Y.B., et al., 2024. Tectonics of the West and Central African Strike-Slip Rift System.Petroleum Science, 21(6): 3742–3753. doi: 10.1016/j.petsci.2024.11.017 |
[15] |
Dou, L.R., Xiao, K.Y., Hu, Y., et al., Petroleum Geology and a Model of Hydrocarbon Accumulations in the Bongor Basin the Republic of Chad.Acta Petroleum Sinica, 32(3): 379–386(in Chinese with English abstract). |
[16] |
Eagles, G., 2007. New angles on South Atlantic Opening.Geophysical Journal International, 168(1): 353–361. doi: 10.1111/j.1365-246X.2006.03206.x |
[17] |
Fairhead, J.D., 2020. Regional Tectonics and Basin Formation: The Role of Potential Field Studies – An Application to the Mesozoic West and Central African Rift System. In:Regional Geology and Tectonics (Second Edition) (N. Scarselli, J. Adam, D. Chiarella, D. G. Roberts & A. W. Bally, Eds.), Elsevier: p. 541–556. doi: 10.1016/B978-0-444-64134-2.00018-3 |
[18] |
Fairhead, J.D., 2023. The Mesozoic West and Central Africa Rift System (WCARS) and the Older Kandi Shear Zone (KSZ): Rifting and Tectonics of North Africa and South America and Fragmentation of Gondwana Based on Geophysical Investigations.Journal of African Earth Sciences, 199: 104817. doi: 10.1016/j.jafrearsci.2022.104817 |
[19] |
Fairhead, J.D., Green, C.M., Masterton, S.M., et al. 2013. The Role that Plate Tectonics, Inferred Stress Changes and Stratigraphic Unconformities have on the Evolution of the West and Central African Rift System and the Atlantic Continental Margins.Tectonophysics, 594: 118–127. doi: 10.1016/j.tecto.2013.03.021 |
[20] |
Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins.Marine and Petroleum Geology, 43: 63–87. doi: 10.1016/j.marpetgeo.2012.11.003 |
[21] |
Frindt, S., Trumbull, R.B., Romer, R.L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: a Geochemical and Nd–Sr–Pb Isotope Study,Chemical Geology, 206(1): 43–71. doi: 10.1016/j.chemgeo.2004.01.015 |
[22] |
Gao, H.H., Du, Y.B., Wang, L., et al., 2023. Tectonic Features, Genetic Mechanisms and Basin Evolution of the Eastern Doseo Basin, Chad.Petroleum Exploration and Development, 50(5): 1003-1015(in Chinese with English abstract). |
[23] |
Genik, G.J., 1993. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad, and Central African Republic1.AAPG Bulletin, 77(8): 1405–1434. doi: 10.1306/BDFF8EAC-1718-11D7-8645000102C1865D |
[24] |
Gladczenko, T.P., Hinz, K., Eldholm, O., et al. 1997. South Atlantic Volcanic Margins.Journal of the Geological Society, 154(3): 465–470. |
[25] |
Gupta, S., Cowie, P.A., Dawers, N.H., et al., 1998. A mechanism to Explain Rift-Basin Subsidence and Stratigraphic Patterns through Fault-Array Evolution.Geology, 26(7): 595-598. Doi: 10.1130/0091-7613(1998)026<0595:AMTERB>2.3.CO;2. |
[26] |
Gürer, D., Granot, R., Hinsbergen, D.J.J. 2022. Plate Tectonic Chain Reaction Revealed by Noise in the Cretaceous Quiet Zone.Nature Geoscience, 15(3): 233–239. doi: 10.1038/s41561-022-00893-7 |
[27] |
Hao, L.L., Hu, W.L., Wang, Q., et al., 2025. Bangong-Nujiang Neo-Tethyan Ocean (Central Tibet): Geodynamics, Crustal Evolution, Metallogeny, and Linkages to the “Yanshan Movement.”Earth-Science Reviews, 265: 105119. doi: 10.1016/j.earscirev.2025.105119 |
[28] |
Harding, T. P., Lowell, J. D., 1979. Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps in Petroleum Provinces.AAPG Bulletin, 63(7):1016-1058. doi: 10.1306/2F9184B4-16CE-11D7-8645000102C1865D |
[29] |
Hu, W.L., Wang, Q., Tang, G.J., et al., 2022. Late Early Cretaceous Magmatic Constraints on the Timing of Closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet.Lithos, 416–417: 106648. doi: 10.1016/j.lithos.2022.106648 |
[30] |
Huang, C., Yu, Z.H., Xiao, G.J., et al. 2012. Tectonic Evolution and its Influence to Hydrocarbon Accumulation in B basin, Central and Western African System.Science Technology and Engineering, 12(17): 1671-1815(in Chinese with English abstract). |
[31] |
Hubbert, M.K., 1951. Mechanical Basis for Certain Familiar Geologic Structures.GSA Bulletin, 62(4): 355–372. doi:10.1130/0016-7606(1951)62[355:MBFCFG] 2.0.CO;2 |
[32] |
Lenhardt, N., Omietimi, E.J., Edegbai, A.J., et al., 2024. Traversing the Rift: A Review of the Evolution of the West and Central African Rift System and its Economic Potential.Earth-Science Reviews, 104999. doi: 10.1016/j.earscirev.2024.104999 |
[33] |
Li, Z.H., Cui, F.Y., Yang, S.T. et al., 2023. Key Geodynamic Processes and Driving Forces of Tethyan Evolution.Science China Earth Sciences, 66(12): 2666–2685(in Chinese with English abstract). |
[34] |
Liu, C.Z., Chung, S.L., Wu, F.Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites.Geology, 44(4): 311–314. doi: 10.1130/G37342.1 |
[35] |
Liu, H.F., 1993. Dynamic Classification of Sedimentary Basin and Their Structural Styles.Earth Science, 18(6):699-724+814(in Chinese with English abstract). |
[36] |
Lustrino, M., Melluso, L., Brotzu, P., et al., 2005. Petrogenesis of the Early Cretaceous Valle Chico Igneous Complex (SE Uruguay): Relationships with Paraná–Etendeka Magmatism.Lithos, 82(3): 407–434. doi: 10.1016/j.lithos.2004.07.004 |
[37] |
Marzoli, A., Melluso, L., Morra, V., et al., 1999. Geochronology and Petrology of Cretaceous Basaltic Magmatism in the Kwanza Basin (Western Angola), and Relationships with the Paranà-Etendeka Continental Flood Basalt Province.Journal of Geodynamics, 28(4): 341–356. doi: 10.1016/S0264-3707(99)00014-9 |
[38] |
Matos, R.M.D.D., Krueger, A., Norton, I. & Casey, K. 2021, The Fundamental role of the Borborema and Benin–Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic Cretaceous Rift system,Marine and Petroleum Geology, 127: 104872. doi: 10.1016/j.marpetgeo.2020.104872 |
[39] |
Min, G., Hou, G.T., 2019. Mechanism of the Mesozoic African rift system: Paleostress field modeling.Journal of Geodynamics, 132: 101655. doi: 10.1016/j.jog.2019.101655 |
[40] |
Moulin, M., Aslanian, D., Unternehr, P., 2010. A new starting point for the South and Equatorial Atlantic Ocean.Earth-Science Reviews, 98(1–2): 1–37. doi: 10.1016/j.earscirev.2009.08.001 |
[41] |
Qu, X.M., Wang, R.J., Xin, H.B., et al., 2012. Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu–Nujiang Suture, Tbetan Plateau.Lithos, 146–147: 264–275. doi: 10.1016/j.lithos.2012.05.006 |
[42] |
Scotese, C.R., 2014. Atlas of Plate Tectonic Reconstructions (Mollweide Projection). Volumes 1-6, Paleomap Project PaleoAtlas for ArcGIS, Paleomap Project, Evanston, IL. doi: 10.13140/2.1.1046.4967 |
[43] |
Scotese, C.R., Vérard, C., Burgener, L., et al., 2025. The Cretaceous World: Plate Tectonics, Palaeogeography and Palaeoclimate.Geological Society, London, Special Publications, 544(1): 31–202. doi: 10.1144/SP544-2024-28 |
[44] |
Segall, P., Pollard, D.D., 1980. Mechanics of Discontinuous Faults.Journal of Geophysical Research: Solid Earth, 85(B8): 4337–4350. doi: 10.1029/JB085iB08p04337 |
[45] |
Sibson, R.H., 1985. A Note on Fault Reactivation.Journal of Structural Geology, 7(6): 751–754. doi: 10.1016/0191-8141(85)90150-6 |
[46] |
Sibson, R.H., Xie, G., 1998. Dip Range for Intracontinental Reverse Fault Ruptures: Truth not Stranger than Friction?Bulletin of the Seismological Society of America, 88(4): 1014–1022. doi: 10.1785/BSSA0880041014 |
[47] |
Simmons, N.A., Myers, S.C., Johannesson, G., et al., 2015. Evidence for Long-Lived Subduction of an Ancient Tectonic Plate Beneath the Southern Indian Ocean.Geophysical Research Letters, 42(21): 9270–9278. doi: 10.1002/2015GL066237 |
[48] |
Song, Y.F., Dou, L.R., Cheng, D.S., et al., 2024. Driving Mechanism of Tectonic Inversion in Intra-Plate Rift Basins and its Impact on Oil: A Case Study of the Bongor Basin in Central Africa. Geological Review, 70(S1): 239–240(in Chinese with English abstract). |
[49] |
Stampfli, G.M., Borel, G.D., 2002. A Pplate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons.Earth and Planetary Science Letters, 196(1): 17–33. doi: 10.1016/S0012-821X(01)00588-X |
[50] |
Sun, W.D., Liu, L.J., Hu, Y.B., et al., 2018. Post-Ridge-Subduction Acceleration of the Indian Plate Induced by Slab Rollback.Solid Earth Sciences, 3(1): 1–7. doi: 10.1016/j.sesci.2017.12.003 |
[51] |
Tian, N.X., Xie, X.N., Sun, Q.L., et al., 2023. Formation Evolution and Structural Architectures of Conjugated Continental Margin Basins in the Equatorial Segment of South Atlantic. Earth Science, 1-15(in Chinese with English abstract). |
[52] |
Turner, J.P., Williams, G.A., 2004. Sedimentary Basin Inversion and Intra-Plate Shortening.Earth-Science Reviews, 65(3–4): 277–304. doi: 10.1016/j.earscirev.2003.10.002 |
[53] |
Wan, B., Wu, F.Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics.Science China Earth Sciences, 62(12): 2005–2016. doi: 10.1007/s11430-019-9393-4 |
[54] |
Wang, E.Q., Meng, K., Xu, G., 2018. Cenozoic Two-Stage Obduction of the Indian Subcontinent: On the Interaction between the Indian Ocean, Tethyan and Eurasian Plates.Acta Petrologica Sinica,34( 7) : 1867 - 1875(in Chinese with English abstract). |
[55] |
Wang, H.X., Lv, T.F., Fu, X.F., et al., 2012. Formation, Evolution and Reservoir-Controlling Mechanism of Relay Zone in Rift Basin.Geological Science and Technology Information, 32(4): 102–110(in Chinese with English abstract). |
[56] |
Wang, L., Zhang, X.S., Xiao, K.Y., et al., 2022. Formation and Evolution of Baobab Structural Zone and Controlling Factors of Hydrocarbon Accumulation in Bongor Basin, Chad.China Petroleum Exploration, 27(2):84-92(in Chinese with English abstract). |
[57] |
Wang, W.L., Yang, J.G., Sun, Q.Q., et al., 2017. Research Progress and Development Trends of the Transfer Zone.Geology and Resources, 26(2): 195-202(in Chinese with English abstract). |
[58] |
Xiao, K.Y., Zhao, J., Yu, Z.H., et al., 2014. Structural Characteristics of Intensively Inversed Bongor Basin in CARS and their Impacts on Hydrocarbon Accumulation.Earth Science Frontiers, 21(3):172-180(in Chinese with English abstract). |
[59] |
Xu, C.C., 2012. The Characteristics of Inversion Structures in Bongor Basin and its Relationship with Hydrocarbon Accumulation. Beijing, China University of Geosciences (Beijing) (in Chinese with English abstract). |
[60] |
Yang, S.T., Li, Z.H., Wan, B., et al., 2021. Subduction-Induced Back-Arc Extension Versus Far-Field Stretching: Contrasting Modes for Continental Marginal Break-Up.Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009416. doi: 10.1029/2020GC009416 |
[61] |
Yu, Z.H., Xiao, K.Y., Zhang, G.L., et al., 2018. Analysis on Inverted Structure Characteristics and its Forming Mechanism in the Bongor Basin, Chad.China Petroleum Exploration, 23(3):90-98(in Chinese with English abstract). |
[62] |
Zhu, R.X., Zhao, P., Zhao, L., 2021. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean.Science China Earth Sciences, 52(1): 1–25(in Chinese with English abstract). |
[63] |
余朝华, 肖坤叶, 张桂林, 等 2018, 乍得Bongor盆地反转构造特征及形成机制分析, 中国石油勘探, 23(3): 90–98. |
[64] |
宋一帆, 窦立荣, 程顶胜, 等 2024, 板内裂谷盆地构造反转驱动机制以及对油气的影响--以中非Bongor盆地为例, 地质论评, 70(S1): 239–240. 2 |
[65] |
朱日祥, 赵盼, 赵亮, 2021, 新特提斯洋演化与动力过程, 中国科学: 地球科学, 52(1): 1–25. |
[66] |
李忠海, 崔峰源, 杨舒婷, 等 2023, 特提斯演化的关键动力学过程与驱动力, 中国科学: 地球科学, 53(12): 2701–2722. |
[67] |
王二七, 孟恺, 许光, 等 2018, 印度陆块新生代两次仰冲事件及其构造驱动机制:论印度洋、特提斯和欧亚板块相互作用, 岩石学报, 34(7): 1867–1875. |
[68] |
王利, 张新顺, 肖坤叶, 等 2022, 乍得邦戈盆地Baobab构造带形成演化及油气成藏控制因素, 中国石油勘探, 27(2): 84–92. |
[69] |
王海学, 吕延防, 付晓飞, 等 2013, 裂陷盆地转换带形成演化及其控藏机理, 地质科技情报, 32(4): 102–110. |
[70] |
窦立荣, 王景春, 王仁冲, 等 2018, 中非裂谷系前寒武系基岩油气成藏组合, 地学前缘, 25(2): 15–23. |
[71] |
窦立荣, 肖坤叶, 胡勇, 等 2011, 乍得Bongor盆地石油地质特征及成藏模式, 石油学报, 32(3): 379–386. |
[72] |
肖坤叶, 赵健, 余朝华, 等 2014, 中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响, 地学前缘, 21(3): 172–180. |
[73] |
许长春 2012, Bongor盆地反转构造特征及其与油气聚集关系, 北京, 中国地质大学(北京). |
[74] |
陈志刚, 徐刚, 王景春, 等 2016, 乍得Bongor盆地东、西部构造特征差异及其对油气富集的影响, 石油地球物理勘探, 51(S1): 113–119, 9. |
[75] |
高华华, 杜业波, 王林, 等 2023, 乍得Doseo盆地东部构造特征、成因机制与盆地演化, 石油勘探与开发, 50(5): 1003–1015. |
[76] |
黄超, 余朝华, 肖高杰, 等 2012, 中西非裂谷系B盆地构造演化及其对油气成藏的影响研究, 科学技术与工程, 12(17): 1671-1815. |
[77] |
王文龙, 杨济广, 孙乔琪, 等 2017, 构造转换带研究进展与发展趋势, 地质与资源, 26(2): 195-202. |
[78] |
刘和甫, 1993, 沉积盆地地球动力学分类及构造样式分析, 地球科学, 18(6): 699-724+814. |
[79] |
田纳新,解习农,孙启良,等 2023,南大西洋赤道段两岸共轭陆缘盆地形成演化及结构差异,地球科学,1-15. |