[1] |
Carracedo, J.C., 1999. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes.Journal of Volcanology and Geothermal Research, 1999, 94(1-4): 1-19. https://doi.org/10.1016/S0377-0273(99)00095-5 |
[2] |
Cashman, K.V., Sparks, R.S.J., Blundy, J.D., 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes.Science, 2017, 355(6331): eaag3055. https://doi.org/1126/science.aag3055 |
[3] |
Cheng, Z.H., Guo, Z.F., Dingwell, D.B., et al., 2020. Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet. Journal of Asian EarthSciences, 193: 104309. https://doi.org/10.1016/j.jseaes.2020.104309 |
[4] |
Chen, K.F., He, H.Y., Stuart, F., et al., 2022. Binary mixing of lithospheric mantle and asthenosphere beneath Tengchong volcano, SE Tibet: evidence from noble gas isotopic signatures.International Geology Review, 65(2): 236-252. https://doi.org/10.1080/00206814.2022.2042744 |
[5] |
Chen, K.F., Liu, S.L., Yang, D.H., et al., 2023. Lithospheric thinning beneath the Tengchong volcanic field, Southern China: Insight from Cenozoic calc-alkaline basalts.Frontiers in Earth Science, 11: 1036001. https://doi.org/10.3389/feart.2023.1036001 |
[6] |
Duan, X.Z., Fan, H.R., Zhang, H.F., et al., 2019. Melt inclusions in phenocrysts track enriched upper mantle source for Cenozoic Tengchong volcanic field, Yunnan Province, SW China.Lithos, 324: 180-201. https://doi.org/10.1016/j.lithos.2018.10.034 |
[7] |
Elardo, S.M., Shearer, C.K., 2014. Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032.American Mineralogist, 99(2-3): 355-368. https://doi.org/10.2138/am.2014.4552 |
[8] |
Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes.Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025 |
[9] |
Gao, J.F., Zhou, M.F., Robinson, P.T., et al., 2015. Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau.Journal of Asian Earth Sciences, 98: 1-17. https://doi.org/10.1016/j.jseaes.2014.10.036 |
[10] |
Glazner, A.F., Bartley, J.M., Coleman, D.S., 2016. We need a new definition for “magma”.Eos, 97. https://doi.org/10.1029/2016eo059741 |
[11] |
Guo, Z.F., Cheng, Z.F., Zhang, M.L., et al., 2015. Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet: constraints on Indian eastward subduction and slab detachment.Journal of the Geological Society, 172(5): 624-640. https://doi.org/10.1144/jgs2014-078 |
[12] |
Guo, Z.P., Zou, H.B., 2021. Decoupled whole-rock and zircon Hf isotopes in young evolved post-collisional lavas from Dayingshan (SE Tibet): Evidence for open-system magmatic processes.Lithos, 400-401: 106393. https://doi.org/10.1016/j.lithos.2021.106393 |
[13] |
Huang, X.W., Zhou, M.F., Wang, C.Y., et al. 2013. Chalcophile element constraints on magma differentiation of Quaternary volcanoes in Tengchong, SW China.Journal of Asian Earth Sciences, 76(SI): 1-11. https://doi.org/10.1016/j.jseaes.2013.07.020 |
[14] |
Hu, J.H., Song, X.Y., He, H.L., et al., 2018. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China.Journal of Asian Earth Sciences, 154: 342-353. https://doi.org/10.1016/j.jseaes.2017.12.029 |
[15] |
Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2014. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.Analytical Chemistry, 87: 1152-1157. https://doi.org/10.1021/ac503749k |
[16] |
Leterrier, J., Maury, R.C., Thonon, P., et al., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series.Earth and Planetary Science Letters, 59(1): 139 -154. https://doi.org/10.1016/0012-821X(82)90122-4 |
[17] |
Li, D.P., Luo, Z.H., Liu, J.Q., et al., 2012. Magma Origin and Evolution of Tengchong Cenozoic Volcanic Rocks from West Yunnan, China: Evidence from Whole Rock Geochemistry and Nd-Sr-Pb Isotopes.Acta Geologica Sinica-English Edition, 86(4): 867-878. https://doi.org/10.1111/j.1755-6724.2012.00712.x |
[18] |
Li, N., Zhao, Y.W., Zhang, L.Y., et al., 2020. The quaternary eruptive sequence of the Tengchong volcanic group, southwestern China.Lithos, 354: 105173. https://doi.org/10.1016/j.lithos.2019.105173 |
[19] |
Loucks, R.R., 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene.Geology, 18(4): 346-349. https://doi.org/10.1130/0091-7613(1990)018<0346:DOOFNU>2.3.CO;2 |
[20] |
Luo, T., Hu, Z.C., Zhang, W., et al., 2018. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis.Journal of Analytical Atomic Spectrometry, 33: 1655-1663. https://doi.org/10.1039/C8JA00163D |
[21] |
Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2006. Petrology and geochemistry of post-collisional volcanic rocks from the Tibetan plateau: Implications for lithosphere heterogeneity and collision-induced asthenospheric mantle flow.Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia, 409: 507-530. https://doi.org/10.1130/2006.2409(24) |
[22] |
Nakagawa, M., Wada, K., Wood, C.P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand.Journal of Petrology, 43(12): 2279-2303. https://doi.org/10.1093/petrology/43.12.2279 |
[23] |
Nisbet, E.G., Pearce, J.A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings.Contributions to Mineralogy and Petrology, 1977, 63(2): 149 -160. https://doi.org/10.1007/BF00398776 |
[24] |
Putirka, K.D., Mikaelian, H., Ryerson, F., et al., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho.American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017 |
[25] |
Putirka, K.A., 2005. Igneous thermometers and barometers based on plagioclase plus liquid equilibria: Tests of some existing models and new calibrations.American Mineralogist, 90(2-3): 336-346. https://doi.org/10.2138/am.2005.1449 |
[26] |
Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems.Reviews in Mineralogy and Geochemistry 69(1): 61-120. https://doi.org/10.2138/rmg.2008.69.3 |
[27] |
Simkin, T., Smith, J.V., 1970. Minor element distribution in olivine.The Journal of Geology, 78: 304–325. https://doi.org/10.1086/627519 |
[28] |
Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005. An olivine-free mantle source of Hawaiian shield basalts.Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411 |
[29] |
Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al. 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts.Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113 |
[30] |
Streck, M.J., 2008. Mineral textures and zoning as evidence for open system processes.Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15 |
[31] |
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins.Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
[32] |
Tian, H.C., Yang, W., Li, S.G., et al., 2018. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids. Geochimica et Cosmochimica Acta, 240: 191-219. https://doi.org/10.1016/j.gca.2018.08.032 |
[33] |
Tucker, R.T., Zou, H.B., Fan, Q.C., et al., 2013. Ion microprobe dating of zircons from active Dayingshan volcano, Tengchong, SE Tibetan Plateau: Time scales and nature of magma chamber storage.Lithos, 172: 214-221. https://doi.org/10.1016/j.lithos.2013.04.017 |
[34] |
Wang, F., Peng, Z.C., Zhu, R.X., et al., 2006. Petrogenesis and magma residence time of lavas from Tengchong volcanic field (China): Evidence from U series disequilibria and40Ar/39Ar dating. Geochemistry Geophysics Geosystems, 7: Q01002. https://doi.org/10.1029/2005GC001023 |
[35] |
Wang, Y., Zhang, X., Jiang, C., et al. 2007. Tectonic controls on the late Miocene–Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau.Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005 |
[36] |
Xu, Y., Li, X.L., Wang, S., 2018. Seismic structure beneath the Tengchong volcanic area (southwest China) from receiver function analysis.Journal of Volcanology and Geothermal Research, 357: 339-348. https://doi.org/10.1016/j.jvolgeores.2018.05.011 |
[37] |
Xu, Y., Yang, X.T., Li, Z.W., et al., 2012. Seismic structure of the Tengchong volcanic area southwest China from local earthquake tomography.Journal of Volcanology and Geothermal Research, 239: 83-91. https://doi.org/10.1016/j.jvolgeores.2012.06.017 |
[38] |
Yang, H.Y., Hu, J.F., Hu, Y.L., et al., 2013. Crustal structure in the Tengchong volcanic area and position of the magma chambers.Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027 |
[39] |
Yu, H.M., Xu, J.D., Lin, C.Y., et al., 2012. Magmatic processes inferred from chemical composition, texture and crystal size distribution of the Heikongshan lavas in the Tengchong volcanic field, SW China.Journal of Asian Earth Sciences, 58: 1-15. https://doi.org/10.1016/j.jseaes.2012.07.013 |
[40] |
Zhang, J.F., Tang, J., Xu, W.L., et al., 2023. Translithospheric magmatic plumbing system of a late Early Cretaceous intraplate volcano in NE China: Insights from geochemistry and phenocryst composition.Lithos, 460: 107371. https://doi.org/10.1016/j.lithos.2023.107371 |
[41] |
Zhang, L., Hu, Y.L., Qin, M., et al., 2015. Study on Crustal and Lithosphere Thicknesses of Tengchong Volcanic Area in Yunnan.Chinese Journal of Geophysics, 58(5): 1622-1633. https://doi.org/10.1002/cjg2.220171 |
[42] |
Zhang, Y.T., Liu, J.Q., Meng, F.C., 2012. Geochemistry of Cenozoic volcanic rocks in Tengchong, SW China: relationship with the uplift of the Tibetan Plateau.Island Arc, 21(4): 255-269. https://doi.org/10.1111/j.1440-1738.2012.00819.x |
[43] |
Zhao, Y., Guo, Z., Wang, K., et al., 2021. A Large Magma Reservoir Beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography.Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022116. https://doi.org/10.1029/2021JB022116 |
[44] |
60. https://doi.org/10.1007/s00410-011-0702-8 |
[45] |
Zhu, B.Q., Mao, C.X., Lugmair, G.W., et al., 1983. Isotopic and geochemical evidence for the origin of Plio-Pleistocene volcanic rocks near the Indo-Eurasian collisional margin at Tengchong, China.Earth and Planetary Science Letters, 65(2): 263-275. https://doi.org/10.1016/0012-821X(83)90165-6 |
[46] |
Zou, H.B., Fan, Q.C., Schmitt, A.K., et al., 2010. U–Th dating of zircons from Holocene potassic andesites (Maanshan volcano, Tengchong, SE Tibetan Plateau) by depth profiling: Time scales and nature of magma storage.Lithos, 118(1-2): 202-210. https://doi.org/10.1016/j.lithos.2010.05.001 |
[47] |
Zou, H.B., Shen, C.C., Fan, Q.C., 2014. U-series disequilibrium in young Tengchong volcanics: Recycling of mature clay sediments or mudstones into the SE Tibetan mantle.Lithos, 192: 132-141. https://doi.org/10.1016/j.lithos.2014.01.017 |
[48] |
曹俊,陈苗苗,万淑敏,等,2024. 塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程. 地球科学,49(7):2448-2474. |
[49] |
成智慧,杨志军,赵文斌,等,2020. 青藏高原东南缘腾冲后碰撞粗面安山岩形成的深部岩浆过程:来自辉长质物质的启示. 岩石学报,36(7): 2127-2148. |
[50] |
陈廷方,2003. 云南腾冲火山岩岩石学特征. 沉积与特提斯地质,23(4): 56-61. |
[51] |
陈廷方,赵崇贺,1994. 腾冲新生代火山岩的构造环境分析[J]. 西南工学院学报,9(4): 52-59. |
[52] |
丁磊磊,刘嘉麒,郭正府,等,2018. 滇西腾冲中更新世英安质岩浆的爆发机制. 岩石学报,34(1): 113-125. |
[53] |
樊祺诚,刘若新,魏海泉,等,1999. 腾冲活火山的岩浆演化. 地质论评,45(S): 895-904. |
[54] |
姜朝松,1998a. 腾冲地区新生代火山活动分期. 地震研究,21(4): 30-39. |
[55] |
姜朝松.,1998b. 腾冲新生代火山分布特征. 地震研究,21(4): 19-29. |
[56] |
李琳琳,王书兵,刘建辉,等,2015. 滇西腾冲曲石地区中更新世火山岩年龄及成因:SHRIMP锆石U-Pb定年和Hf同位素约束. 岩石学报,31(9): 2609-2619. |
[57] |
李霓,张柳毅,2011. 云南腾冲新期火山岩矿物及其熔体包裹体研究. 岩石学报,27(10): 2842-2854. |
[58] |
林木森,彭松柏,乔卫涛,等,2014. 滇西腾冲地块新生代火山岩中高温麻粒岩包体的发现及成因. 地球科学(中国地质大学学报),39(7): 807-819. |
[59] |
林木森,彭松柏,乔卫涛,2017. 滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义. 岩石学报,33(10): 3137-3146. |
[60] |
李欣,刘嘉麒,2012. 云南腾冲全新世火山岩地球化学特征及其成因. 岩石学报,28(5): 1507-1516. |
[61] |
罗照华,刘嘉麒,赵慈平,等,2011. 深部流体与岩浆活动:兼论腾冲火山群的深部过程. 岩石学报,27(10): 2855-2862. |
[62] |
徐翠玲,赵广涛,何雨旸,等,2012. 滇西腾冲新生代火山岩岩石地球化学特征. 海洋地质与第四纪地质,32(2): 65-75. |
[63] |
姚金,2018. 腾冲新生代火山岩地球化学组成及其成因研究. 合肥:中国科学技术大学. |
[64] |
于红梅,林传勇,史兰斌,等,2010. 腾冲黑空山粗安岩中镁铁质-超镁铁质包体的特征及成因初探. 中国科学:地球科学,40(12): 1697-1709. |
[65] |
于红梅,许建东,林传勇,等,2012. 云南腾冲黑空山、马鞍山和打莺山火山粗安岩显微结构特征及其火山学意义. 岩石学报,28(4): 1205-1216. |
[66] |
赵崇贺,陈廷方,1992. 腾冲新生代火山作用构造-岩浆类型的探讨-一种滞后型的弧火山. 现代地质,1992, 6(2): 119-129. |
[67] |
赵勇伟,樊祺诚,2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化. 岩石学报,26(4): 1133-1140. |
[68] |
周真恒,向才英,姜朝松, 2000. 腾冲火山岩稀土和微量元素地球化学研究. 地震研究,23(2): 215-230. |