Structure Composition and Formation Process of Cenozoic High-K Calc-Alkaline Volcanic Rocks in Tengchong Area
-
摘要: 腾冲地区新生代以来,发育大量高钾钙碱性火山岩(玄武质粗面安山岩和粗面安山岩),但具体形成过程尚不明确.基于岩相学分析,对这些火山岩进行全岩主量、矿物主微量元素分析,并结合文献已发表数据,探讨其形成演化过程.岩石普遍具斑状结构,斑晶以橄榄石、辉石和斜长石为主,并发育聚斑晶.单斜辉石斑晶常见正环带、反环带及振荡环带,其中振荡环带指示岩浆演化过程中多批次基性岩浆补给混合和可能的局部混染作用.全岩主量元素分析显示它们属于高钾钙碱性系列岩石.单斜辉石、斜方辉石和斜长石斑晶及聚斑晶有相似的稀土元素和微量元素配分模式,但单斜辉石最富集微量元素,其次为斜长石,斜方辉石的含量最低.橄榄石斑晶化学指示岩浆源区可能来源于橄榄岩的部分熔融,而全岩微量元素及单斜辉石斑晶的成分特征记录岛弧环境信息.斑晶矿物平衡温压计算及地球物理学资料共同揭示研究区下方存在两个中酸性岩浆储库:浅部的英安质岩浆储库(深度为8.3~13.6 km)和深部的安山质岩浆储库(深度为18.4~30.2 km).本文研究样品均源于深部储库,形成过程包括:基性岩浆补给引发晶粥-熔体的混合作用,当新生熔体在储库中占主导时,触发喷发,并携带半固结岩浆团至地表,形成典型的(聚)斑晶结构.Abstract: Since the Cenozoic, a large amount of high-potassium calc-alkaline volcanic rocks (basaltic trachyandesite and trachyandesite) have developed in the Tengchong area, but the specific formation process remains unclear. Based on petrographic analysis, in this paper it conducts whole-rock major element and mineral major and trace element analyses of these volcanic rocks, and discusses their formation and evolution process in combination with the published data. The rocks commonly exhibit porphyritic textures, with phenocrysts predominantly consisting of olivine, pyroxene, and plagioclase, and the development of glomerocrysts. Clinopyroxene phenocrysts commonly show normal zoning, reverse zoning, and oscillatory zoning, with oscillatory zoning indicating multi-stage mafic magma replenishment and possible local contamination during magma evolution. Whole-rock major element analysis reveals that these rocks belong to the high-potassium calc-alkaline rock series. Clinopyroxene, orthopyroxene, and plagioclase phenocrysts and glomerocrysts show similar REE and trace element distribution patterns, with clinopyroxene being the most enriched in trace elements, followed by plagioclase, and orthopyroxene showing the lowest concentrations. The geochemical characteristics of olivine phenocrysts suggest that the magma source region may have originated from partial melting of peridotite, while the trace element compositions of the whole rocks and clinopyroxene phenocrysts record geochemical signatures characteristic of an arc-related tectonic setting. The mineral equilibrium temperature-pressure calculations reveal the existence of two intermediate to felsic magma reservoirs beneath the study area: a shallow dacitic magma reservoir (depth 8.3-13.6 km) and a deep andesitic magma reservoir (depth 18.4-30.2 km). The studied samples are derived from the deeper reservoir. Their formation involves mafic magma recharge, triggering mixing between crystal mush and melt; when newly generated melts become dominant within the reservoir, eruption is triggered, carrying semi-consolidated magmatic clots to the surface and forming the typical (glomerocrystic) textures.
-
Key words:
- Cenozoic /
- high-K calc-alkaline volcanic rocks /
- phenocryst /
- magma reservoir /
- Tengchong area /
- rare earth elements /
- petrology
-
图 1 腾冲新生代四期火山岩分布及取样地点
N2.上新世;Q1.早更新世;Q3.晚更新世;Q4.全新世(据姜朝松,1998b;Wang et al.,2006;Zhang et al.,2012)
Fig. 1. Distribution and sampling sites of four Cenozoic volcanic rock periods in Tengchong
图 4 TAS图解(a)和SiO2-K2O图解(b)
其他数据来源:Zhu et al.,1983;樊祺诚等,1999;Wang et al.,2006;赵勇伟和樊祺诚,2010;Zou et al.,2010,2014;Li et al.,2012,2020;李欣和刘嘉麒,等,2012;徐翠玲等,2012;于红梅等,2012;Yu et al.,2012;Zhang et al.,2012;Tucker et al.,2013;林木森等, 2014, 2017;Gao et al.,2015;Guo et al.,2015;李琳琳等,2015;丁磊磊等,2018;Hu et al.,2018;Tian et al.,2018;姚金,2018;Cheng et al.,2020;成智慧等,2020;Guo and Zou, 2021;Chen et al.,2023a,2023b
Fig. 4. Total alkalis-silica (TAS) diagram (a) and SiO2-K2O diagram (b)
图 5 橄榄石Fo值与CaO含量变化(灰色圆点表示前人研究数据)
其他数据来源:陈廷方,2003;李霓和张柳毅,2011;Yu et al.,2012;Huang et al.,2013;Duan et al.,2019;Chen et al.,2023a,2023b
Fig. 5. Variation diagram of olivine Fo value vs. CaO content (gray dots represent data from previous studies)
图 6 腾冲地区火山岩的长石(a)与辉石(b)斑晶分类
底图引自Cheng et al.(2020).其他数据来源:陈廷方,2003;于红梅等,2010;李霓和张柳毅,2011;Yu et al.,2012;Hu et al.,2018;Duan et al.,2019;成智慧等,2020
Fig. 6. Classification of feldspar (a) and pyroxene (b) phenocrysts in volcanic rock from Tengchong area
图 7 单斜辉石斑晶的稀土元素球粒陨石标准化图(a)与微量元素原始地幔蛛网图(b)
虚线为单斜辉石聚斑晶,全岩数据同图 4,球粒陨石数据和原始地幔数据引自Sun and McDonough(1989)
Fig. 7. Chondrite-normalized rare earth element diagram (a) and primitive mantle-normalized trace element spider diagram (b) for the clinopyroxene phenocrysts
图 8 斜方辉石斑晶的稀土元素球粒陨石标准化图与微量元素原始地幔蛛网图
球粒陨石数据和原始地幔数据引自Sun and McDonough(1989)
Fig. 8. Chondrite-normalized rare earth element diagram and primitive mantle-normalized trace element spider diagram for the orthopyroxene phenocrysts
图 9 长石斑晶的稀土元素球粒陨石标准化图与微量元素原始地幔蛛网图
球粒陨石数据和原始地幔数据引自Sun and McDonough(1989)
Fig. 9. Chondrite-normalized rare earth element diagram and primitive mantle-normalized trace element spider diagram for the feldspar phenocrysts
图 10 矿物‒熔体平衡判别图及温压计算结果(数据来源:Cheng et al., 2020)
Fig. 10. Discrimination diagram for mineral-melt equilibrium and calculation results of temperature and pressure (data source: Cheng et al., 2020)
图 11 腾冲地区火山岩斑晶显微结构(背散射电子图像)与成分特征
a.橄榄石斑晶;b,c.橄榄石Fe和Mg元素面分布(EDS分析);d.斜长石韵律环带;e.单斜辉石反环带结构;f.斜长石的熔蚀边;g,h.单斜辉石振荡环带及LA-ICP-MS微区元素剖面(红圈为测试点);数字代表Mg#;Ol.橄榄石;Opx.斜方辉石;Cpx.单斜辉石;Pl.斜长石
Fig. 11. Microtextures (backscattered electron, BSE images) and compositional features of phenocrysts in volcanic rocks from the Tengchong area
图 12 100Ni/Mg-100Mn/Fe图(a)、Ni/(Mg/Fe)/1 000-100Mn/Fe图(b)、100Ca/Fe-100Mn/Fe图(c)和Fe/Mn-Fo图(d)
a,b,c. 底图引自Sobolev et al.(2007);d.引自Chen et al.(2023a,2023b);数据引自Yu et al.(2012)
Fig. 12. 100Ni/Mg vs. 100Mn/Fe diagram (a), Ni/(Mg/Fe)/1 000 vs. 100Mn/Fe diagram (b), 100Ca/Fe vs. 100Mn/Fe diagram (c) and Fe/Mn vs. Fo diagram (d)
图 13 单斜辉石Alz-TiO2图(a)(据Loucks, 1990)和单斜辉石F1-F2图(b)(据Nisbet and Pearce, 1977)
Alz.4次配位Al占总Al的百分比;WPT.板块内部拉斑玄武岩;WPA.板块内部碱性玄武岩;VAB.火山弧玄武岩;OFB.洋底玄武岩;F1=-0.012SiO2-0.080 7TiO2+0.002 6Al2O3-0.001 2FeO-0.002 6MnO+0.008 7MgO-0.012 8CaO-0.041 9Na2O;F2=-0.046 9SiO2-0.081 8TiO2- 0.021 2Al2O3-0.004 1FeO-0.143 5MnO-0.002 9MgO+0.008 5CaO+0.016Na2O
Fig. 13. Clinopyroxene Alz vs. TiO2 diagram (a) (after Loucks, 1990) and clinopyroxene F1 vs. F2 diagram (b) (after Nisbet and Pearce, 1977)
图 14 腾冲火山岩平衡温压(a)(数据来源:Cheng et al., 2020)和地球物理模式图(b)(据Xu et al., 2018)
Fig. 14. Equilibrium temperature and pressure (a) (data source: Cheng et al., 2020) and geophysical model diagram (b) (after Xu et al., 2018) of Tengchong volcanic rocks
表 1 腾冲地区火山喷发期次划分
Table 1. Division of volcanic eruption periods in the Tengchong area
分期 时代 采样点 岩性 主要斑晶矿物组合 第一期
(8~3 Ma)上新世 芒棒 粗面安山岩 Pl+Px+少量Ol 第二期
(2.7~0.8 Ma)早‒中更新世 大黑山、大空山 大黑山:玄武质粗面安山岩;大空山:玄武质粗面安山岩与粗面安山岩 大黑山:Pl+Px+Ol大空山:Pl+Px+Ol 第三期
(0.8~0.2 Ma)晚更新世 曲石乡柱状节理观景台 玄武质粗面安山岩与粗面安山岩 Pl+Px+Ol 第四期
(< 0.2 Ma)全新世 打鹰山、马鞍山、老龟坡 打鹰山与马鞍山:粗面安山岩;老龟坡:粗面安山岩与玄武质粗面安山岩 打鹰山:Pl+Px马鞍山:Pl+Px+Ol老龟坡:Pl+Px+Ol 注:Pl. 斜长石;Px. 辉石;Ol. 橄榄石. 表 2 单斜辉石‒熔体温压计和斜长石‒熔体温压计计算结果
Table 2. Calculation results of temperature and pressure using clinopyroxene-liquid thermobarometers and plagioclase-liquid thermobarometers
温压计 温度(℃) 压力(kbar) 深度(km) Cpx-Liq (Putirka et al., 2003) 1 096~1 149 2.9~8.5 12.7~30.2 Pl-Liq (Putirka, 2005) 1 069~1 158 3.5~8.4 14.7~29.9 -
Cao, J., Chen, M. M., Wan, S. M., et al., 2024. Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China. Earth Science, 49(7): 2448-2474 (in Chinese with English abstract). Carracedo, J. C., 1999. Growth, Structure, Instability and Collapse of Canarian Volcanoes and Comparisons with Hawaiian Volcanoes. Journal of Volcanology and Geothermal Research, 94(1-4): 1-19. https://doi.org/10.1016/S0377-0273(99)00095-5 Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055 Chen, K. F., He, H. Y., Stuart, F., et al., 2023a. Binary Mixing of Lithospheric Mantle and Asthenosphere beneath Tengchong Volcano, SE Tibet: Evidence from Noble Gas Isotopic Signatures. International Geology Review, 65(2): 236-252. https://doi.org/10.1080/00206814.2022.2042744 Chen, K. F., Liu, S. L., Yang, D. H., et al., 2023b. Lithospheric Thinning beneath the Tengchong Volcanic Field, Southern China: Insight from Cenozoic Calc- Alkaline Basalts. Frontiers in Earth Science, 11: 1036001. https://doi.org/10.3389/feart.2023.1036001 Chen, T. F., 2003. The Petrology of the Volcanic Rocks in Tengchong, Yunnan. Sedimentary Geology and Tethyan Geology, 23(4): 56-61 (in Chinese with English abstract). Chen, T. F., Zhao, C. H., 1994. Discussion on the Tectonic Setting of the Tengcong Cenozoic Volcanic Rocks. Journal of Southwest University of Science and Technology, 9(4): 52-59 (in Chinese with English abstract). Cheng, Z. H., Guo, Z. F., Dingwell, D. B., et al., 2020. Geochemistry and Petrogenesis of the Post-Collisional High-K Calc-Alkaline Magmatic Rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 193: 104309. https://doi.org/10.1016/j.jseaes.2020.104309 Cheng, Z. H., Yang, Z. J., Zhao, W. B., et al., 2020. Gabbroic Xenoliths and Glomerocrysts in the Post-Collisional Trachyandestic Rocks from Tengchong, SE Tibet: Implications for the Magma Chamber Processes. Acta Petrologica Sinica, 36(7): 2127-2148 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.07.14 Ding, L. L., Liu, J. Q., Guo, Z. F., et al., 2018. The Eruption Trigger of the Dacitic Magma in Tengchong during the Middle Pleistocene. Acta Petrologica Sinica, 34(1): 113-125 (in Chinese with English abstract). Duan, X. Z., Fan, H. R., Zhang, H. F., et al., 2019. Melt Inclusions in Phenocrysts Track Enriched Upper Mantle Source for Cenozoic Tengchong Volcanic Field, Yunnan Province, SW China. Lithos, 324/325: 180-201. https://doi.org/10.1016/j.lithos.2018.10.034 Elardo, S. M., Shearer, C. K., 2014. Magma Chamber Dynamics Recorded by Oscillatory Zoning in Pyroxene and Olivine Phenocrysts in Basaltic Lunar Meteorite Northwest Africa 032. American Mineralogist, 99(2-3): 355-368. https://doi.org/10.2138/am.2014.4552 Fan, Q. C., Liu, R. X., Wei, H. Q., et al., 1999. Magmatic Evolution of Tengchong Active Volcano. Geological Review, 45(S1): 895-904 (in Chinese with English abstract). Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025 Gao, J. F., Zhou, M. F., Robinson, P. T., et al., 2015. Magma Mixing Recorded by Sr Isotopes of Plagioclase from Dacites of the Quaternary Tengchong Volcanic Field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98: 1-17. https://doi.org/10.1016/j.jseaes.2014.10.036 Glazner, A., Bartley, J., Coleman, D., 2016. We Need a New Definition for "Magma". Eos, 97. https://doi.org/10.1029/2016eo059741 Guo, Z. F., Cheng, Z. H., Zhang, M. L., et al., 2015. Post-Collisional High-K Calc-Alkaline Volcanism in Tengchong Volcanic Field, SE Tibet: Constraints on Indian Eastward Subduction and Slab Detachment. Journal of the Geological Society, 172(5): 624-640. https://doi.org/10.1144/jgs2014-078 Guo, Z. P., Zou, H. B., 2021. Decoupled Whole-Rock and Zircon Hf Isotopes in Young Evolved Post-Collisional Lavas from Dayingshan (SE Tibet): Evidence for Open-System Magmatic Processes. Lithos, 400/401: 106393. https://doi.org/10.1016/j.lithos.2021.106393 Hu, J. H., Song, X. Y., He, H. L., et al., 2018. Constraints of Texture and Composition of Clinopyroxene Phenocrysts of Holocene Volcanic Rocks on a Magmatic Plumbing System beneath Tengchong, SW China. Journal of Asian Earth Sciences, 154: 342-353. https://doi.org/10.1016/j.jseaes.2017.12.029 Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k Huang, X. W., Zhou, M. F., Wang, C. Y., et al., 2013. Chalcophile Element Constraints on Magma Differentiation of Quaternary Volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences, 76: 1-11. https://doi.org/10.1016/j.jseaes.2013.07.020 Jiang, C. S., 1998a. Period Division of Volcano Activities in the Cenozoic Era of Tengchong. Journal of Seismological Research, 21(4): 320 (in Chinese with English abstract). Jiang, C. S., 1998b. Distribution Characteristics of Tengchong Volcano in the Cenozoic Era. Journal of Seismological Research, 21(4): 309-319 (in Chinese with English abstract). Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4 Li, D. P., Luo, Z. H., Liu, J. Q., et al., 2012. Magma Origin and Evolution of Tengchong Cenozoic Volcanic Rocks from West Yunnan, China: Evidence from Whole Rock Geochemistry and Nd-Sr-Pb Isotopes. Acta Geologica Sinica - English Edition, 86(4): 867-878. https://doi.org/10.1111/j.1755-6724.2012.00712.x Li, L. L., Wang, S. B., Liu, J. H., et al., 2015. Age and Origin of Mid-Pleistocene Volcanic Rocks from Qushi in Tengchong Area, Western Yunnan Province: SHRIMP Zircon U-Pb Dating and Constraint from Hf-in-Zircon Isotopes. Acta Petrologica Sinica, 31(9): 2609-2619 (in Chinese with English abstract). Li, N., Zhang, L. Y., 2011. A Study on Volcanic Minerals and Hosted Melt Inclusions in Newly-Erupted Tengchong Volcanic Rocks, Yunnan Province. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese with English abstract). Li, N., Zhao, Y. W., Zhang, L. Y., et al., 2020. The Quaternary Eruptive Sequence of the Tengchong Volcanic Group, Southwestern China. Lithos, 354/355: 105173. https://doi.org/10.1016/j.lithos.2019.105173 Li, X., Liu, J. Q., 2012. A Study on the Geochemical Characteristics and Petrogenesis of Holocene Volcanic Rocks in the Tengchong Volcanic Eruption Field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese with English abstract). Lin, M. S., Peng, S. B., Qiao, W. T., 2017. 40Ar/39Ar Geochronology and Geochemistry of Pleistocene Trachyandesite in Tengchong, Western Yunnan, China, and Its Tectonic Implication. Acta Petrologica Sinica, 33(10): 3137-3146 (in Chinese with English abstract). Lin, M. S., Peng, S. B., Qiao, W. T., et al., 2014. Characteristics and Genetic Significance of High Temperature Granulite Xenoliths in Cenozoic Volcanic Rocks, Tengchong, Western Yunnan Province, China. Earth Science, 39(7): 807-819 (in Chinese with English abstract). Loucks, R. R., 1990. Discrimination of Ophiolitic from Nonophiolitic Ultramafic-Mafic Allochthons in Orogenic Belts by the Al/Ti Ratio in Clinopyroxene. Geology, 18(4): 346. https://doi.org/10.1130/0091-7613(1990)0180346:doofnu>2.3.co;2 doi: 10.1130/0091-7613(1990)0180346:doofnu>2.3.co;2 Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D Luo, Z. H., Liu, J. Q., Zhao, C. P., et al., 2011. Deep Fluids and Magmatism: The Deep Processes beneath the Tengchong Volcano Group. Acta Petrologica Sinica, 27(10): 2855-2862 (in Chinese with English abstract). Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-Induced Asthenospheric Mantle Flow. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, 409: 507-530. https://doi.org/10.1130/2006.2409(24) Nakagawa, M., Wada, K., Wood, C. P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand. Journal of Petrology, 43(12): 2279-2303. https://doi.org/10.1093/petrology/43.12.2279 Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776 Putirka, K. D., 2005. Igneous Thermometers and Barometers Based on Plagioclase+Liquid Equilibria: Tests of Some Existing Models and New Calibrations. American Mineralogist, 90(2-3): 336-346. https://doi.org/10.2138/am.2005.1449 Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. https://doi.org/10.2138/rmg.2008.69.3 Putirka, K. D., Mikaelian, H., Ryerson, F., et al., 2003. New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88(10): 1542-1554. https://doi.org/10.2138/am-2003-1017 Simkin, T., Smith, J. V., 1970. Minor-Element Distribution in Olivine. The Journal of Geology, 78(3): 304-325. doi: 10.1086/627519 Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113 Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411 Streck, M. J., 2008. Mineral Textures and Zoning as Evidence for Open System Processes. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. https://doi.org/10.2138/rmg.2008.69.15 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tian, H. C., Yang, W., Li, S. G., et al., 2018. Low δ26Mg Volcanic Rocks of Tengchong in Southwestern China: A Deep Carbon Cycle Induced by Supercritical Liquids. Geochimica et Cosmochimica Acta, 240: 191-219. https://doi.org/10.1016/j.gca.2018.08.032 Tucker, R. T., Zou, H. B., Fan, Q. C., et al., 2013. Ion Microprobe Dating of Zircons from Active Dayingshan Volcano, Tengchong, SE Tibetan Plateau: Time Scales and Nature of Magma Chamber Storage. Lithos, 172/173: 214-221. https://doi.org/10.1016/j.lithos.2013.04.017 Wang, F., Peng, Z. C., Zhu, R. X., et al., 2006. Petrogenesis and Magma Residence Time of Lavas from Tengchong Volcanic Field (China): Evidence from U Series Disequilibria and 40Ar/39Ar Dating. Geochemistry, Geophysics, Geosystems, 7(1): 2005GC001023. https://doi.org/10.1029/2005GC001023 Wang, Y., Zhang, X. M., Jiang, C. S., et al., 2007. Tectonic Controls on the Late Miocene-Holocene Volcanic Eruptions of the Tengchong Volcanic Field along the Southeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2): 375-389. https://doi.org/10.1016/j.jseaes.2006.11.005 Xu, C. L., Zhao, G. T., He, Y. Y., et al., 2012. Geochemistry of Cenozoic Volcanic Rocks from Tengchong, Western Yunnan. Marine Geology & Quaternary Geology, 32(2): 65-75 (in Chinese with English abstract). Xu, Y., Li, X. L., Wang, S., 2018. Seismic Structure beneath the Tengchong Volcanic Area (Southwest China) from Receiver Function Analysis. Journal of Volcanology and Geothermal Research, 357: 339-348. https://doi.org/10.1016/j.jvolgeores.2018.05.011 Xu, Y., Yang, X. T., Li, Z. W., et al., 2012. Seismic Structure of the Tengchong Volcanic Area Southwest China from Local Earthquake Tomography. Journal of Volcanology and Geothermal Research, 239/240: 83-91. https://doi.org/10.1016/j.jvolgeores.2012.06.017 Yang, H. Y., Hu, J. F., Hu, Y. L., et al., 2013. Crustal Structure in the Tengchong Volcanic Area and Position of the Magma Chambers. Journal of Asian Earth Sciences, 73: 48-56. https://doi.org/10.1016/j.jseaes.2013.04.027 Yao, J., 2018. Research on the Geochemical Composition and Genesis of Cenozoic Volcanic Rocks in Tengchong (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract). Yu, H. M., Lin, C. Y., Shi, L. B., et al., 2010. Characteristics and Genesis of Mafic-Ultramafic Inclusions in Rough Andesite in Heikongshan, Tengchong. Scientia Sinica (Terrae), 40(12): 1697-1709 (in Chinese with English abstract). doi: 10.1360/zd2010-40-12-1697 Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Magmatic Processes Inferred from Chemical Composition, Texture and Crystal Size Distribution of the Heikongshan Lavas in the Tengchong Volcanic Field, SW China. Journal of Asian Earth Sciences, 58: 1-15. https://doi.org/10.1016/j.jseaes.2012.07.013 Yu, H. M., Xu, J. D., Lin, C. Y., et al., 2012. Microstructural Characteristics of Trachyandesite Lavas in Heikongshan, Ma'anshan and Dayingshan Volcanoes, Tengchong, Yunnan Province and Its Volcanological Implications. Acta Petrologica Sinica, 28(4): 1205-1216 (in Chinese with English abstract). Zhang, J. F., Tang, J., Xu, W. L., et al., 2023. Translithospheric Magmatic Plumbing System of a Late Early Cretaceous Intraplate Volcano in NE China: Insights from Geochemistry and Phenocryst Composition. Lithos, 460/461: 107371. https://doi.org/10.1016/j.lithos.2023.107371 Zhang, L., Hu, Y. L., Qin, M., et al., 2015. Study on Crustal and Lithosphere Thicknesses of Tengchong Volcanic Area in Yunnan. Chinese Journal of Geophysics, 58(3): 256-268. https://doi.org/10.1002/cjg2.220171 Zhang, Y. T., Liu, J. Q., Meng, F. C., 2012. Geochemistry of Cenozoic Volcanic Rocks in Tengchong, SW China: Relationship with the Uplift of the Tibetan Plateau. Island Arc, 21(4): 255-269. https://doi.org/10.1111/j.1440-1738.2012.00819.x Zhao, C. H., Chen, T. F., 1992. A Discussion on Magma-Tectonic Type of Cenozoic Volcanism from Tengchong Area (Yunnan Province): A New Type of Post-Collision arc-Volcanism. Geoscience, 6(2): 119-129 (in Chinese with English abstract). Zhao, Y., Guo, Z., Wang, K., et al., 2021. A Large Magma Reservoir beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022116. https://doi.org/10.1029/2021JB022116 Zhao, Y. W., Fan, Q. C., 2010. Magma Origin and Evolution of Maanshan Volcano, Dayingshan Volcano and Heikongshan Volcano in Tengchong Area. Acta Petrologica Sinica, 26(4): 1133-1140 (in Chinese with English abstract). Zhou, M. F., Robinson, P. T., Wang, C. Y., et al., 2012. Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. https://doi.org/10.1007/s00410-011-0702-8 Zhou, Z. H., Xiang, C. Y., Jiang, C. S., 2000. Geochemistry of the Rare Earth and Trace Elements in the Volcanic Rocks in Tengchong, China. Journal of Seismological Research, 23(2): 215-230 (in Chinese with English abstract). Zhu, B. Q., Mao, C. X., Lugmair, G. W., et al., 1983. Isotopic and Geochemical Evidence for the Origin of Plio-Pleistocene Volcanic Rocks near the Indo-Eurasian Collisional Margin at Tengchong, China. Earth and Planetary Science Letters, 65(2): 263-275. https://doi.org/10.1016/0012-821X(83)90165-6 Zou, H. B., Fan, Q. C., Schmitt, A. K., et al., 2010. U-Th Dating of Zircons from Holocene Potassic Andesites (Maanshan Volcano, Tengchong, SE Tibetan Plateau) by Depth Profiling: Time Scales and Nature of Magma Storage. Lithos, 118(1/2): 202-210. https://doi.org/10.1016/j.lithos.2010.05.001 Zou, H. B., Shen, C. C., Fan, Q. C., et al., 2014. U-Series Disequilibrium in Young Tengchong Volcanics: Recycling of Mature Clay Sediments or Mudstones into the SE Tibetan Mantle. Lithos, 192/193/194/195: 132-141. https://doi.org/10.1016/j.lithos.2014.01.017 曹俊, 陈苗苗, 万淑敏, 等, 2024. 塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程. 地球科学, 49(7): 2448-2474. doi: 10.3799/dqkx.2022.490 陈廷方, 2003. 云南腾冲火山岩岩石学特征. 沉积与特提斯地质, 23(4): 56-61. 陈廷方, 赵崇贺, 1994. 腾冲新生代火山岩的构造环境分析. 西南工学院学报, 9(4): 52-59. 成智慧, 杨志军, 赵文斌, 等, 2020. 青藏高原东南缘腾冲后碰撞粗面安山岩形成的深部岩浆过程: 来自辉长质物质的启示. 岩石学报, 36(7): 2127-2148. 丁磊磊, 刘嘉麒, 郭正府, 等, 2018. 滇西腾冲中更新世英安质岩浆的爆发机制. 岩石学报, 34(1): 113-125. 樊祺诚, 刘若新, 魏海泉, 等, 1999. 腾冲活火山的岩浆演化. 地质论评, 45(S1): 895-904. 姜朝松, 1998a. 腾冲地区新生代火山活动分期. 地震研究, 21(4): 320. 姜朝松, 1998b. 腾冲新生代火山分布特征. 地震研究, 21(4): 309-319. 李琳琳, 王书兵, 刘建辉, 等, 2015. 滇西腾冲曲石地区中更新世火山岩年龄及成因: SHRIMP锆石U-Pb定年和Hf同位素约束. 岩石学报, 31(9): 2609-2619. 李霓, 张柳毅, 2011. 云南腾冲新期火山岩矿物及其熔体包裹体研究. 岩石学报, 27(10): 2842-2854. 李欣, 刘嘉麒, 2012. 云南腾冲全新世火山岩地球化学特征及其成因. 岩石学报, 28(5): 1507-1516. 林木森, 彭松柏, 乔卫涛, 2017. 滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义. 岩石学报, 33(10): 3137-3146. 林木森, 彭松柏, 乔卫涛, 等, 2014. 滇西腾冲地块新生代火山岩中高温麻粒岩包体的发现及成因. 地球科学, 39(7): 807-819. doi: 10.3799/dqkx.2014.076 罗照华, 刘嘉麒, 赵慈平, 等, 2011. 深部流体与岩浆活动: 兼论腾冲火山群的深部过程. 岩石学报, 27(10): 2855-2862. 徐翠玲, 赵广涛, 何雨旸, 等, 2012. 滇西腾冲新生代火山岩岩石地球化学特征. 海洋地质与第四纪地质, 32(2): 65-75. 姚金, 2018. 腾冲新生代火山岩地球化学组成及其成因研究(硕士学位论文). 合肥: 中国科学技术大学. 于红梅, 林传勇, 史兰斌, 等, 2010. 腾冲黑空山粗安岩中镁铁质-超镁铁质包体的特征及成因初探. 中国科学: 地球科学, 40(12): 1697-1709. 于红梅, 许建东, 林传勇, 等, 2012. 云南腾冲黑空山、马鞍山和打莺山火山粗安岩显微结构特征及其火山学意义. 岩石学报, 28(4): 1205-1216. 赵崇贺, 陈廷方, 1992. 腾冲新生代火山作用构造-岩浆类型的探讨: 一种滞后型的弧火山. 现代地质, 6(2): 119-129. 赵勇伟, 樊祺诚, 2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化. 岩石学报, 26(4): 1133-1140. 周真恒, 向才英, 姜朝松, 2000. 腾冲火山岩稀土和微量元素地球化学研究. 地震研究, 23(2): 215-230. -
王坤 附表.docx
-




下载: