[1] |
Chen, Y. S., Liu, Z. H., Guan, Q. B., et al., 2023. Mesozoic Tectonic Transition of the Northeastern North China Craton: Evidence from Adakitic Rocks in Southeastern Jilin Province, China.International Geology Review, 65(1): 1-20. https://doi.org/10.1080/00206814.2022.2028269 |
[2] |
Cunningham, C. G., Austin, G. W., Naeser, C. W., et al., 2004. Formation of a Paleothermal Anomaly and Disseminated Gold Deposits Associated with the Bingham Canyon Porphyry Cu-Au-Mo system, Utah. Economic Geology, 99(4): 789-806. https://doi.org/10.2113/gsecongeo.99.4.789 |
[3] |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 |
[4] |
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 |
[5] |
Goldfarb, R. J., Taylor, R. D., Collins, G. S., et al., 2014. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Research, 25(1): 48-102. https://doi.org/10.1016/j.gr.2013.03.002 |
[6] |
Guan, Q., Liu, Z., Liu, Y., et al., 2022. A Tectonic Transition from Closure of the Paleo-Asian Ocean to Subduction of the Paleo-Pacific Plate: Insights from Early Mesozoic Igneous Rocks in Eastern Jilin Province, NE China. Gondwana Research, 102: 332-353. https://doi.org/10.1016/j.gr.2020.05.001 |
[7] |
Hart, C. J., Goldfarb, R. J., Qiu, Y., et al., 2002. Gold Deposits of the Northern Margin of the North China Craton: Multiple Late Paleozoic–Mesozoic Mineralizing Events.Mineralium Deposita, 37: 326-351. http://dx.doi.org/10.1007/s00126-001-0239-2. |
[8] |
Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated During Mid-Miocene East–West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X |
[9] |
Irvine, T. N., Baragar, W. R. A. F., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/E71-055 |
[10] |
Kay, S. M., Ramos, V. A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America.The Journal of Geology, 101(6): 703-714. https://doi.org/10.1086/648269 |
[11] |
Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2019. Geochronology and Geochemistry of Mesozoic Igneous Rocks of the Hunjiang Basin, Jilin Province, NE China: Constraints on Regional Tectonic Processes and Lithospheric Delamination of the Eastern North China Block.Gondwana Research, 68: 127-157. https://doi.org/10.1016/j.gr.2018.11.010 |
[12] |
Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2022. Metallogeny of the Hunjiang Basin, Northeastern North China Block.Ore Geology Reviews, 148: 104995. https://doi.org/10.1016/j.oregeorev.2022.104995 |
[13] |
Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2024. Genesis of the White Mountain Gold Deposit, Jilin Province, China, and Exploration Implications for Sedimentary Rock-Hosted Gold.Economic Geology, 119(8): 1715-1743. https://doi.org/10.5382/econgeo.5113 |
[14] |
Bas, M. L., Maitre, R. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 |
[15] |
Li, J. W., Bi, S. J., Selby, D., et al., 2012. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton.Earth and Planetary Science Letters, 349: 26-37. https://doi.org/10.1016/j.epsl.2012.06.058 |
[16] |
Li, S. R., Santosh, M., 2014. Metallogeny and craton destruction: Records from the North China Craton.Ore Geology Reviews, 56: 376-414. https://doi.org/10.1016/j.oregeorev.2013.03.002 |
[17] |
Li, X., Sun, G., Sun, F., et al., 2020. Zircon U-Pb Chronology, Petrochemistry Characteristics and Metallogenic Significance of Granodiorite Porphyry in the Banmiaozi Gold Deposit in the NE Margin of the North China Craton.Arabian Journal of Geosciences, 13: 1-20. https://doi.org/10.1007/s12517-020-05997-1 |
[18] |
Liu, B., Ma, J., Li, P., et al., 2025. First Boron Isotopes in the Southern Jilin TTG Series Uncover a Neoarchean Oceanic Arc in the Eastern North China Craton.Gondwana Research, 139: 243-259. https://doi.org/10.1016/j.gr.2024.11.008 |
[19] |
Liu, B., Han, B. F., Ren, R., et al., 2020. Late Carboniferous to Early Permian Adakitic Rocks and Fractionated I-Type Granites in the Southern West Junggar Terrane, NW China: Implications for the Final Closure of the Junggar–Balkhash Ocean.Geological Journal, 55(3): 1728-1749. https://doi.org/10.1002/gj.3508 |
[20] |
Liu, J., Zhang, J., Liu, Z., et al., 2018. Petrogenesis of Jurassic Granitoids at the Northeastern Margin of the North China Craton: New Geochemical and Geochronological Constraints on Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 158: 287-300. https://doi.org/10.1016/j.jseaes.2018.03.006 |
[21] |
Liu, Y., Hu, Z., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard.Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
[22] |
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel (No. 4). https://doi.org/10.3133/ofr85141 |
[23] |
Ma, L., Jiang, S. Y., Dai, B. Z., et al., 2013. Multiple Sources for the Origin of Late Jurassic Linglong Adakitic Granite in the Shandong Peninsula, Eastern China: Zircon U–Pb Geochronological, Geochemical and Sr–Nd–Hf Isotopic Evidence.Lithos, 162: 251-263. https://doi.org/10.1016/j.lithos.2013.01.009 |
[24] |
Ma, Q., Zheng, J. P., Xu, Y. G., et al., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust?.Earth and Planetary Science Letters, 419: 125-133. https://doi.org/10.1016/j.epsl.2015.02.036 |
[25] |
Pang, Y., Guo, X., Zhang, X., et al., 2020. Late Mesozoic and Cenozoic Tectono-Thermal History and Geodynamic Implications of the Great Xing’an Range, NE China.Journal of Asian Earth Sciences, 189: 104155. https://doi.org/10.1016/j.jseaes.2019.104155 |
[26] |
Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19: 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 |
[27] |
Pearce, J. A., Harris, N. B., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 |
[28] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/bf00384745 |
[29] |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasal at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 |
[30] |
Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4): 537-576. https://doi.org/10.2113/gsecongeo.102.4.537 |
[31] |
Sillitoe, R. H., Bonham Jr, H. F., 1990. Sediment-Hosted Gold Deposits: Distal Products of Magmatic-Hydrothermal Systems.Geology, 18(2): 157-161. https://doi.org/10.1130/0091-7613(1990)018<0157:shgddp>2.3.co;2 |
[32] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
[33] |
Wareham, C. D., Millar, I. L., Vaughan, A. P., 1997. The Generation of Sodic Granite Magmas, Western Palmer Land, Antarctic Peninsula, Antarctic Peninsula.Contributions to Mineralogy and Petrology, 128: 81-96. https://doi.org/10.1007/s004100050295 |
[34] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95: 407-419. https://doi.org/10.1007/bf00402202 |
[35] |
Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/Thinning of Sub-Continental Lithospheric Mantle Under Eastern China: The Role of Water and Multiple Subduction.American Journal of Science, 310(10): 1250-1293. https://doi.org/10.2475/10.2010.03 |
[36] |
Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019 |
[37] |
Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342 |
[38] |
Yang, J., Zhao, L., Kaus, B. J., et al., 2018. Slab-Triggered Wet Upwellings Produce Large Volumes of Melt: Insights into the Destruction of the North China Craton.Tectonophysics, 746: 266-279. https://doi.org/10.1016/j.tecto.2017.04.009 |
[39] |
Yu, J. J., Wang, F., Xu, W. L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing'an–Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U–Pb Chronology and Geochemistry.Lithos, 142: 256-266. https://doi.org/10.1016/j.lithos.2012.03.016 |
[40] |
Zhao, G., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited.Precambrian Research, 136(2): 177-202. -https://doi.org/10.1016/j.precamres.2004.10.002 |
[41] |
Zhao, G., Cawood, P. A., Li, S., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion.Precambrian Research, 222: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 |
[42] |
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview.Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 |
[43] |
203-4 |
[44] |
Zhou, J. B., Cao, J. L., Wilde, S. A., et al., 2014. Paleo-Pacific Subduction-Accretion: Evidence from Geochemical and U-Pb Zircon Dating of the Nadanhada Accretionary Complex, NE China.Tectonics, 33(12): 2444-2466. https://doi.org/10.1002/2014tc003637 |
[45] |
Zhang, Y., Wu, Y., Li, H., et al., 2023. Genesis of the Jinying Gold Deposit, Southern Jilin Province, NE China: Constraints from Geochronology and Isotope Geochemistry.Geological Magazine, 160(9): 1761-1774. https://doi.org/10.1017/s0016756823000705 |
[46] |
Zhang X. W., Zhang H. F, Tong Y., 2023. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton.Journal of Earth Science, 34(3): 658-673. https://doi.org/10.1007/s12583-021-1419-x |
[47] |
陈煜嵩, 董晓杰, 刘正宏, 等, 2020. 克拉通破坏型金矿成矿机制:吉南板庙子金矿床闪长玢岩与重晶石流体包裹体、H-O-S同位素证据. 岩石学报, 36(8): 2537-2557. |
[48] |
陈煜嵩, 2022. 吉南地区早中生代构造岩浆作用与动力学背景(博士学位论文). 长春: 吉林大学. |
[49] |
高天宇, 刘正宏, 关庆彬, 等, 2019. 吉林白山新路花岗闪长斑岩 LA-ICP-MS 锆石 U-Pb 定年, 地球化学特征及构造意义. 世界地质, 38(1): 80-93. |
[50] |
鞠楠, 刘博, 马婧轩, 等, 2024. 辽宁生铁岭稀土矿磁铁变粒岩年代学和地球化学特征及其稀土成因类型初探: 地学前缘. 1-33. |
[51] |
李宝毅, 杨振宇, 王玉芬, 2010. 吉南老岭成矿带荒沟山、板庙子金矿床地质特征与成因. 世界地质, 29(3): 392-399. |
[52] |
刘文香, 满永路, 王兴昌, 2009. 吉林省白山市金英金矿床地质特征及成因探讨. 地质与资源, 18(4): 279-283. |
[53] |
秦亚, 2010. 吉南老岭地区中生代花岗岩形成的构造环境研究(博士学位论文). 长春: 吉林大学. |
[54] |
唐克东, 邵济安, 李永飞, 2011. 松嫩地块及其研究意义. 地学前缘, 18(3): 57-65. |
[55] |
王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. |
[56] |
汪浪, 汤华云, 汪翔, 等, 2024. 华北克拉通东部早白垩世火山岩: 再循环物质差异性改造的记录. 地球科学, 49(2): 669-684. |
[57] |
吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174. |
[58] |
许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. |
[59] |
玄雨菲, 董晓杰, 王长兵, 等, 2022. 吉南白山地区早白垩世岩浆岩U-Pb年代学、岩石地球化学、Hf同位素证据:对华北克拉通破坏的制约. 岩石学报, 38(8): 2442-2466. |
[60] |
薛建玲, 庞振山, 程志中, 等, 2025. 中低温岩浆热液型金矿床找矿预测地质模型. 岩石学报, 41(1): 4-30. |
[61] |
杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467. |
[62] |
翟明国, 樊祺诚, 张宏福, 等, 2005. 华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用. 岩石学报, 21(6): 1509-1526. |
[63] |
张建泽, 2015. 吉林省白山市板庙子金矿床地质, 地球化学特征及成因研究(硕士学位论文). 长春: 吉林大学. |
[64] |
张宇婷, 孙丰月, 李予晋, 等, 2022. 吉南中侏罗世花岗闪长岩的锆石 U-Pb 年龄, 地球化学及 Hf 同位素组成. 吉林大学学报 (地球科学版), 52(5): 1675-1687. |
[65] |
张旗, 金惟俊, 王元龙, 等, 2006. 大洋岩石圈拆沉与大陆下地壳拆沉: 不同的机制及意义--兼评 “下地壳+ 岩石圈地幔拆沉模式”. 岩石学报, 22(11): 2631-2638. |
[66] |
朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间, 范围与机制. 中国科学: 地球科学, 41(5): 583-592. |
[67] |
朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168. |