• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    刘博, 周瑞欣, 马婧轩, 徐宏伟, 鞠楠, 施璐, 冯伟, 胡博艺, 莫枭扬, 2025. 吉南金英金矿中侏罗世-早白垩世岩浆作用及其成矿意义. 地球科学. doi: 10.3799/dqkx.2025.174
    引用本文: 刘博, 周瑞欣, 马婧轩, 徐宏伟, 鞠楠, 施璐, 冯伟, 胡博艺, 莫枭扬, 2025. 吉南金英金矿中侏罗世-早白垩世岩浆作用及其成矿意义. 地球科学. doi: 10.3799/dqkx.2025.174
    LIU Bo, ZHOU Ruixin, MA Jingxuan, XU Hongwei, JU Nan, SHI Lu, FENG Wei, HU Boyi, MO Xiaoyang, 2025. Middle Jurassic to Early Cretaceous magmatism in the Jinying gold deposit, southern Jilin, and their implications for the mineralization. Earth Science. doi: 10.3799/dqkx.2025.174
    Citation: LIU Bo, ZHOU Ruixin, MA Jingxuan, XU Hongwei, JU Nan, SHI Lu, FENG Wei, HU Boyi, MO Xiaoyang, 2025. Middle Jurassic to Early Cretaceous magmatism in the Jinying gold deposit, southern Jilin, and their implications for the mineralization. Earth Science. doi: 10.3799/dqkx.2025.174

    吉南金英金矿中侏罗世-早白垩世岩浆作用及其成矿意义

    doi: 10.3799/dqkx.2025.174
    基金项目: 

    中国地质调查局东北地质科技创新中心区创基金项目(QCJJ2023-8)

    辽宁省教育厅基本科研面上项目(JYTMS20230617)

    辽宁省自然科学基金计划面上项目(2025-MS-037)

    国家自然科学基金项目(42473076)

    中央高校基本科研业务费(N2201014)

    详细信息
      作者简介:

      刘博(1988–) ,男,副教授,主要从事大地构造学与区域成矿作用研究。E-mail:liubo@mail.neu.edu.cn,ORCID:0000-0002-3890-6073

    • 中图分类号: P618

    Middle Jurassic to Early Cretaceous magmatism in the Jinying gold deposit, southern Jilin, and their implications for the mineralization

    • 摘要: 吉南金英金矿床位于华北克拉通北缘东北段,其中侏罗世-早白垩世岩浆活动对研究吉南中生代构造演化和金成矿作用具有重要意义。本文以金英金矿床出露的中侏罗世-早白垩世岩浆岩为研究对象,通过岩相学、锆石U-Pb年代学及全岩主-微量元素地球化学研究,探究其岩石成因、构造背景及其对金英金矿床的成矿意义。LA-ICP-MS锆石U-Pb定年结果显示,驮道沟花岗闪长斑岩的年龄为165±1Ma,东大坡花岗闪长斑岩和花岗斑岩岩心的年龄为130±1Ma和131±2Ma,代表其侵位时代分别为中侏罗世和早白垩世。中侏罗世和早白垩世花岗闪长斑岩均属于钙碱性系列,兼具准铝质I型埃达克质岩石特点。其中,前者Mg#值(45~47)较低,Nb/Ta比值(14.35~16.89)低于原始地幔值,可能起源于加厚古老下地壳的部分熔融。相比较下,后者Mg#值(57~59)和Nb/Ta比值(18.87~19.31)偏高,暗示其形成与拆沉下地壳部分熔融有关。结合最新的区域地质资料,推测中侏罗世岩浆岩的形成与古太平洋板块俯冲而诱发的挤压环境密切相关,而早白垩世岩浆岩则代表华北克拉通破坏峰期拆沉作用的产物。结合已有矿床学数据,本文资料支持金英金矿床的成因类型可能为远成低温岩浆热液型金矿的观点,区域古元古代不整合界面与早白垩世岩浆作用可能是金英金成矿事件的关键成矿要素。

       

    • [1] Chen, Y. S., Liu, Z. H., Guan, Q. B., et al., 2023. Mesozoic Tectonic Transition of the Northeastern North China Craton: Evidence from Adakitic Rocks in Southeastern Jilin Province, China.International Geology Review, 65(1): 1-20. https://doi.org/10.1080/00206814.2022.2028269
      [2] Cunningham, C. G., Austin, G. W., Naeser, C. W., et al., 2004. Formation of a Paleothermal Anomaly and Disseminated Gold Deposits Associated with the Bingham Canyon Porphyry Cu-Au-Mo system, Utah. Economic Geology, 99(4): 789-806. https://doi.org/10.2113/gsecongeo.99.4.789
      [3] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      [4] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      [5] Goldfarb, R. J., Taylor, R. D., Collins, G. S., et al., 2014. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Research, 25(1): 48-102. https://doi.org/10.1016/j.gr.2013.03.002
      [6] Guan, Q., Liu, Z., Liu, Y., et al., 2022. A Tectonic Transition from Closure of the Paleo-Asian Ocean to Subduction of the Paleo-Pacific Plate: Insights from Early Mesozoic Igneous Rocks in Eastern Jilin Province, NE China. Gondwana Research, 102: 332-353. https://doi.org/10.1016/j.gr.2020.05.001
      [7] Hart, C. J., Goldfarb, R. J., Qiu, Y., et al., 2002. Gold Deposits of the Northern Margin of the North China Craton: Multiple Late Paleozoic–Mesozoic Mineralizing Events.Mineralium Deposita, 37: 326-351. http://dx.doi.org/10.1007/s00126-001-0239-2.
      [8] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated During Mid-Miocene East–West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X
      [9] Irvine, T. N., Baragar, W. R. A. F., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/E71-055
      [10] Kay, S. M., Ramos, V. A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America.The Journal of Geology, 101(6): 703-714. https://doi.org/10.1086/648269
      [11] Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2019. Geochronology and Geochemistry of Mesozoic Igneous Rocks of the Hunjiang Basin, Jilin Province, NE China: Constraints on Regional Tectonic Processes and Lithospheric Delamination of the Eastern North China Block.Gondwana Research, 68: 127-157. https://doi.org/10.1016/j.gr.2018.11.010
      [12] Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2022. Metallogeny of the Hunjiang Basin, Northeastern North China Block.Ore Geology Reviews, 148: 104995. https://doi.org/10.1016/j.oregeorev.2022.104995
      [13] Keevil, H. A., Monecke, T., Goldfarb, R. J., et al., 2024. Genesis of the White Mountain Gold Deposit, Jilin Province, China, and Exploration Implications for Sedimentary Rock-Hosted Gold.Economic Geology, 119(8): 1715-1743. https://doi.org/10.5382/econgeo.5113
      [14] Bas, M. L., Maitre, R. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      [15] Li, J. W., Bi, S. J., Selby, D., et al., 2012. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton.Earth and Planetary Science Letters, 349: 26-37. https://doi.org/10.1016/j.epsl.2012.06.058
      [16] Li, S. R., Santosh, M., 2014. Metallogeny and craton destruction: Records from the North China Craton.Ore Geology Reviews, 56: 376-414. https://doi.org/10.1016/j.oregeorev.2013.03.002
      [17] Li, X., Sun, G., Sun, F., et al., 2020. Zircon U-Pb Chronology, Petrochemistry Characteristics and Metallogenic Significance of Granodiorite Porphyry in the Banmiaozi Gold Deposit in the NE Margin of the North China Craton.Arabian Journal of Geosciences, 13: 1-20. https://doi.org/10.1007/s12517-020-05997-1
      [18] Liu, B., Ma, J., Li, P., et al., 2025. First Boron Isotopes in the Southern Jilin TTG Series Uncover a Neoarchean Oceanic Arc in the Eastern North China Craton.Gondwana Research, 139: 243-259. https://doi.org/10.1016/j.gr.2024.11.008
      [19] Liu, B., Han, B. F., Ren, R., et al., 2020. Late Carboniferous to Early Permian Adakitic Rocks and Fractionated I-Type Granites in the Southern West Junggar Terrane, NW China: Implications for the Final Closure of the Junggar–Balkhash Ocean.Geological Journal, 55(3): 1728-1749. https://doi.org/10.1002/gj.3508
      [20] Liu, J., Zhang, J., Liu, Z., et al., 2018. Petrogenesis of Jurassic Granitoids at the Northeastern Margin of the North China Craton: New Geochemical and Geochronological Constraints on Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 158: 287-300. https://doi.org/10.1016/j.jseaes.2018.03.006
      [21] Liu, Y., Hu, Z., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard.Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [22] Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel (No. 4). https://doi.org/10.3133/ofr85141
      [23] Ma, L., Jiang, S. Y., Dai, B. Z., et al., 2013. Multiple Sources for the Origin of Late Jurassic Linglong Adakitic Granite in the Shandong Peninsula, Eastern China: Zircon U–Pb Geochronological, Geochemical and Sr–Nd–Hf Isotopic Evidence.Lithos, 162: 251-263. https://doi.org/10.1016/j.lithos.2013.01.009
      [24] Ma, Q., Zheng, J. P., Xu, Y. G., et al., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust?.Earth and Planetary Science Letters, 419: 125-133. https://doi.org/10.1016/j.epsl.2015.02.036
      [25] Pang, Y., Guo, X., Zhang, X., et al., 2020. Late Mesozoic and Cenozoic Tectono-Thermal History and Geodynamic Implications of the Great Xing’an Range, NE China.Journal of Asian Earth Sciences, 189: 104155. https://doi.org/10.1016/j.jseaes.2019.104155
      [26] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19: 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      [27] Pearce, J. A., Harris, N. B., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [28] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/bf00384745
      [29] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasal at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
      [30] Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis.Economic Geology, 102(4): 537-576. https://doi.org/10.2113/gsecongeo.102.4.537
      [31] Sillitoe, R. H., Bonham Jr, H. F., 1990. Sediment-Hosted Gold Deposits: Distal Products of Magmatic-Hydrothermal Systems.Geology, 18(2): 157-161. https://doi.org/10.1130/0091-7613(1990)018<0157:shgddp>2.3.co;2
      [32] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [33] Wareham, C. D., Millar, I. L., Vaughan, A. P., 1997. The Generation of Sodic Granite Magmas, Western Palmer Land, Antarctic Peninsula, Antarctic Peninsula.Contributions to Mineralogy and Petrology, 128: 81-96. https://doi.org/10.1007/s004100050295
      [34] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95: 407-419. https://doi.org/10.1007/bf00402202
      [35] Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/Thinning of Sub-Continental Lithospheric Mantle Under Eastern China: The Role of Water and Multiple Subduction.American Journal of Science, 310(10): 1250-1293. https://doi.org/10.2475/10.2010.03
      [36] Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019
      [37] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      [38] Yang, J., Zhao, L., Kaus, B. J., et al., 2018. Slab-Triggered Wet Upwellings Produce Large Volumes of Melt: Insights into the Destruction of the North China Craton.Tectonophysics, 746: 266-279. https://doi.org/10.1016/j.tecto.2017.04.009
      [39] Yu, J. J., Wang, F., Xu, W. L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing'an–Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U–Pb Chronology and Geochemistry.Lithos, 142: 256-266. https://doi.org/10.1016/j.lithos.2012.03.016
      [40] Zhao, G., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited.Precambrian Research, 136(2): 177-202. -https://doi.org/10.1016/j.precamres.2004.10.002
      [41] Zhao, G., Cawood, P. A., Li, S., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion.Precambrian Research, 222: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      [42] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview.Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      [43] 203-4
      [44] Zhou, J. B., Cao, J. L., Wilde, S. A., et al., 2014. Paleo-Pacific Subduction-Accretion: Evidence from Geochemical and U-Pb Zircon Dating of the Nadanhada Accretionary Complex, NE China.Tectonics, 33(12): 2444-2466. https://doi.org/10.1002/2014tc003637
      [45] Zhang, Y., Wu, Y., Li, H., et al., 2023. Genesis of the Jinying Gold Deposit, Southern Jilin Province, NE China: Constraints from Geochronology and Isotope Geochemistry.Geological Magazine, 160(9): 1761-1774. https://doi.org/10.1017/s0016756823000705
      [46] Zhang X. W., Zhang H. F, Tong Y., 2023. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton.Journal of Earth Science, 34(3): 658-673. https://doi.org/10.1007/s12583-021-1419-x
      [47] 陈煜嵩, 董晓杰, 刘正宏, 等, 2020. 克拉通破坏型金矿成矿机制:吉南板庙子金矿床闪长玢岩与重晶石流体包裹体、H-O-S同位素证据. 岩石学报, 36(8): 2537-2557.
      [48] 陈煜嵩, 2022. 吉南地区早中生代构造岩浆作用与动力学背景(博士学位论文). 长春: 吉林大学.
      [49] 高天宇, 刘正宏, 关庆彬, 等, 2019. 吉林白山新路花岗闪长斑岩 LA-ICP-MS 锆石 U-Pb 定年, 地球化学特征及构造意义. 世界地质, 38(1): 80-93.
      [50] 鞠楠, 刘博, 马婧轩, 等, 2024. 辽宁生铁岭稀土矿磁铁变粒岩年代学和地球化学特征及其稀土成因类型初探: 地学前缘. 1-33.
      [51] 李宝毅, 杨振宇, 王玉芬, 2010. 吉南老岭成矿带荒沟山、板庙子金矿床地质特征与成因. 世界地质, 29(3): 392-399.
      [52] 刘文香, 满永路, 王兴昌, 2009. 吉林省白山市金英金矿床地质特征及成因探讨. 地质与资源, 18(4): 279-283.
      [53] 秦亚, 2010. 吉南老岭地区中生代花岗岩形成的构造环境研究(博士学位论文). 长春: 吉林大学.
      [54] 唐克东, 邵济安, 李永飞, 2011. 松嫩地块及其研究意义. 地学前缘, 18(3): 57-65.
      [55] 王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186.
      [56] 汪浪, 汤华云, 汪翔, 等, 2024. 华北克拉通东部早白垩世火山岩: 再循环物质差异性改造的记录. 地球科学, 49(2): 669-684.
      [57] 吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
      [58] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
      [59] 玄雨菲, 董晓杰, 王长兵, 等, 2022. 吉南白山地区早白垩世岩浆岩U-Pb年代学、岩石地球化学、Hf同位素证据:对华北克拉通破坏的制约. 岩石学报, 38(8): 2442-2466.
      [60] 薛建玲, 庞振山, 程志中, 等, 2025. 中低温岩浆热液型金矿床找矿预测地质模型. 岩石学报, 41(1): 4-30.
      [61] 杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467.
      [62] 翟明国, 樊祺诚, 张宏福, 等, 2005. 华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用. 岩石学报, 21(6): 1509-1526.
      [63] 张建泽, 2015. 吉林省白山市板庙子金矿床地质, 地球化学特征及成因研究(硕士学位论文). 长春: 吉林大学.
      [64] 张宇婷, 孙丰月, 李予晋, 等, 2022. 吉南中侏罗世花岗闪长岩的锆石 U-Pb 年龄, 地球化学及 Hf 同位素组成. 吉林大学学报 (地球科学版), 52(5): 1675-1687.
      [65] 张旗, 金惟俊, 王元龙, 等, 2006. 大洋岩石圈拆沉与大陆下地壳拆沉: 不同的机制及意义--兼评 “下地壳+ 岩石圈地幔拆沉模式”. 岩石学报, 22(11): 2631-2638.
      [66] 朱日祥, 陈凌, 吴福元, 等, 2011. 华北克拉通破坏的时间, 范围与机制. 中国科学: 地球科学, 41(5): 583-592.
      [67] 朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168.
    • 加载中
    计量
    • 文章访问数:  39
    • HTML全文浏览量:  0
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-18
    • 网络出版日期:  2025-09-08

    目录

      /

      返回文章
      返回