• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湘西龙王江金锑矿田变形序列、成矿时代背景与控矿构造

    赵央连 李彬 柏道远 邓新 陈剑锋 曾广乾 黄建中 许德如

    赵央连, 李彬, 柏道远, 邓新, 陈剑锋, 曾广乾, 黄建中, 许德如, 2025. 湘西龙王江金锑矿田变形序列、成矿时代背景与控矿构造. 地球科学, 50(11): 4300-4322. doi: 10.3799/dqkx.2025.175
    引用本文: 赵央连, 李彬, 柏道远, 邓新, 陈剑锋, 曾广乾, 黄建中, 许德如, 2025. 湘西龙王江金锑矿田变形序列、成矿时代背景与控矿构造. 地球科学, 50(11): 4300-4322. doi: 10.3799/dqkx.2025.175
    Zhao Yanglian, Li Bin, Bai Daoyuan, Deng Xin, Chen Jianfeng, Zeng Guangqian, Huang Jianzhong, Xu Deru, 2025. Deformation Sequence, Metallogenic Age Setting and Ore-Controlling Structures of Longwangjiang Gold-Antimony Ore-Field in West Hunan, South China. Earth Science, 50(11): 4300-4322. doi: 10.3799/dqkx.2025.175
    Citation: Zhao Yanglian, Li Bin, Bai Daoyuan, Deng Xin, Chen Jianfeng, Zeng Guangqian, Huang Jianzhong, Xu Deru, 2025. Deformation Sequence, Metallogenic Age Setting and Ore-Controlling Structures of Longwangjiang Gold-Antimony Ore-Field in West Hunan, South China. Earth Science, 50(11): 4300-4322. doi: 10.3799/dqkx.2025.175

    湘西龙王江金锑矿田变形序列、成矿时代背景与控矿构造

    doi: 10.3799/dqkx.2025.175
    基金项目: 

    自然资源部新一轮找矿突破战略行动科技支撑项目 ZKKJ202408

    湖南省地质院科技计划项目 HNGSTP202460

    湖南省地质院科技计划项目 HNGSTP202407

    湖南省地质院科技计划项目 201917

    湖南省自然科学基金项目 2024JJ8344

    湘财电采 [2024]104025

    详细信息
      作者简介:

      赵央连(1971—),男,高级工程师,长期从事地质找矿及研究工作. ORCID:0009-0004-4681-8497. E-mail:13807459225@163.com

      通讯作者:

      李彬,ORCID: 0009-0008-4846-8653. E-mail: cuglibin@163.com

      柏道远,ORCID: 0000-0002-0267-7838. E-mail: daoyuanbai@sina.com

    • 中图分类号: P61

    Deformation Sequence, Metallogenic Age Setting and Ore-Controlling Structures of Longwangjiang Gold-Antimony Ore-Field in West Hunan, South China

    • 摘要: 为厘清湘西龙王江金锑矿田构造变形序列、控矿构造并揭示矿田形成的时代及构造背景,利用细致的构造解析与含矿石英脉热液锆石LA-ICP-MS U-Pb定年,结合区域构造演化和测年资料,厘定了研究区由早至晚经历了6期构造变形事件:志留纪晚期NW-NWW向挤压、中三叠世晚期NW-NWW向挤压、晚三叠世近SN向挤压、中侏罗世晚期NWW向挤压、白垩纪区域NW-SE向伸展、古近纪中晚期NEE向-NE向挤压;获得了石英矿脉热液锆石LA-ICP-MS U-Pb年龄为(211.8±4.8)Ma.综合分析认为:龙王江矿田成矿可能主要发生于晚三叠世(211~206 Ma),成矿背景与印支期华南陆缘碰撞触发的陆内造山后碰撞阶段岩浆活动及晚期热液有关.矿田构造定位于龙王江断裂(F1)和黑土坡断裂(F2)反向逆冲围限的断夹块中,F1和F3(江东湾断裂)是导矿构造,NE-NNE向强劈理化带(剪切带)和F3为配矿兼含矿构造;配矿兼含矿构造深部具有较大找矿潜力,陶金坪-火毛塘一带构造应力集中部位可重点部署勘查工作.

       

    • 图  1  区域地质及金‒锑‒钨矿床分布

      Fig.  1.  Regional geology and distribution map of Au-Sb-W deposits

      图  2  龙王江金锑矿田及邻区地质图(a.据湖南省地质调查院,2017)、构造剖面图(b)及观察点上构造形迹与应力场方位(c)

      1. 白垩系;2. 二叠系;3. 奥陶系;4. 寒武系;5. 震旦系;6. 上南华统;7. 下. 中南华统;8. 新元古代高涧群岩门寨组;9. 断裂;10. 正断裂及产状;11. 逆断裂及产状;12. 角度不整合界线/平行不整合界线;13. 倒转向斜轴迹;14. 倒转背斜轴迹;15. 矿脉及编号;16. 正常岩层产状;17. 倒转岩层产状;18. 断裂编号/褶皱编号;19. 矿床;20. 褶皱;21. 逆断裂或逆冲剪切破裂;22. 正断裂;23. 左行剪切断裂或破裂;24. 右行剪切断裂或破裂;25. 顺层剪切断裂;26. 板劈理;27. 加里东运动构造形迹及应力方位;28. 印支运动早幕(中三叠世晚期)构造形迹及应力方位;29. 印支运动晚幕(晚三叠世)构造形迹及应力方位;30. 早燕山运动(中侏罗世晚期)构造形迹及应力方位;31. 白垩纪构造形迹及伸展应力;32. 古近纪中晚期构造形迹及应力方位;33. 古近纪‒新近纪构造形迹及应力方位.断裂名称:F1.龙王江断裂(洞坪断裂);F2.黑土坡断裂;F3.江东湾断裂.褶皱名称:f1.江东湾倒转向斜;f2.江溪垄倒转背斜

      Fig.  2.  Geological map of the Longwangjiang Au-Sb ore-field and adjacent areas (a. according to HIGS, 2017), structural profile (b), and structural features and stress field orientations at observation points (c)

      图  3  龙王江金锑矿田典型矿脉(体)特征

      a. 龙王江金锑矿床受NE-NNE向断裂控制的矿脉;b. 泥潭冲金锑矿床受EW向逆断裂控制的矿脉;c,d. 南江坪金锑矿床受NE-NNE向劈理化带(剪切带)控制的矿脉

      Fig.  3.  Typical ore vein characteristics of Longwangjiang Au-Sb ore-field

      图  4  D351点断裂、剪切破裂特征及其应力图解

      a. NWW向剪切破裂L1切割近EW向剪切破裂L2;b. EW向剪切破裂L2与NE向剪切破裂L3互相切割和限制;c. 正阶步示NWW向剪切破裂L1右行走滑;d. 正阶步示近EW向剪切破裂L2左行走滑;e. 与L3对应的NE向断裂F2;f. 正阶步示NE向剪切破裂L3右行走滑;g. NE向同沉积正断裂F1;h. NE向同沉积正断裂F1错位效应;发育多个裂面时,产状取倾向和倾角的加权平均值;应力图解中“○”示最大主应力σ1;“□”示中间主应力σ2;“△”示最小主应力σ3;“→”示上盘运动方向;黑边宽箭头示挤压应力的水平方位;下同

      Fig.  4.  Fault and shear fracture characteristics and its stress diagram at D351

      图  5  D532点及其南(南东)面构造变形特征

      a. D532点剖面特征;b. 倾向SE脆韧性剪切断裂F1、F2;c. 剪切断裂F2中剪切褶皱;d. 倾向SE脆韧性剪切断裂F1与倾向NW剪切破裂控制石英脉;e. EW向剪切破裂L2左行切错SN向剪切破裂L1;f. 反阶步示SN向剪切破裂L1左行;g. 反阶步示EW向剪切破裂L2左行;h. 偷溪口缓倾面理;i.南银潭冲东面陡倾面理(岩层倒转)

      Fig.  5.  Structural deformation characteristics at D532 and its south (southeast) area

      图  6  D533点构造特征及采样位置

      a. D533点剖面特征;b. 反阶步示NW向剪切破裂L1右行;c. NE向断裂NW盘顺面理发育的石英脉;d. 正阶步示SN向剪切破裂L2左行;e. 断裂带Ⅰ带硅化破碎带特征;f. 断裂带Ⅰ带石英脉因挤压形成的石香肠;j. 断裂带Ⅰ带中石英脉体破碎及揉皱变形;h. 断裂带Ⅱ带板岩特征;i. 断裂带Ⅲ带硅化破碎带中印支期NW倾裂面.黄色五角星处为石英脉锆石定年采样位置

      Fig.  6.  Deformation characteristics and sampling location at D533

      图  7  D534~D536点构造变形特征及层劈关系示意

      a. D354点层缓劈陡示产状正常;b. D354点剖面;c. 正常产状层劈关系(李玮等,2025);d. D355点剖面;e. D355点NE向断裂带及石英脉中节理应力图;f. D356点层缓劈陡示产状正常;g. D356点剖面;h. 轴面劈理与产状关系(陈柏林等,2011

      Fig.  7.  Diagram of structural deformation characteristics and bedding and cleavage relationships at D354‒D356

      图  8  龙王江矿田及外围地区变形序列与成矿事件

      Fig.  8.  Major tectonic and metallogenic events in the Longwangjiang ore-field and its adjacent areas

      图  9  龙王江矿田含矿石英脉锆石阴极发光(CL)图像(a)、U-Pb年龄频谱图(b)及年龄谐和图与加权平均值(c)

      Fig.  9.  Cathodoluminescence (CL) image (a), U-Pb age spectrum (b), concordia diagram, and weighted average (c) of zircon from the ore-bearing quartz veins in the Longwangjiang ore-field

      图  10  龙王江金锑矿田石英脉锆石成因判别图(底图据Hoskin,2005

      Fig.  10.  Discrimination diagrams of zircons from quartz veins in the Longwangjiang Au-Sb ore-field (after Hoskin, 2005)

      图  11  龙王江矿矿田及区域三叠纪金‒锑‒钨成矿构造背景(改自Gao et al.,2017

      Fig.  11.  The tectonic setting of Triassic Au-Sb-W mineralization in the Longwangjiang ore-field and region (modified from Gao et al., 2017)

      图  12  区域隐伏岩体推断图

      Fig.  12.  Diagram of inferred concealed rock masses in the region

      图  13  龙王江矿田构造控矿系统

      Fig.  13.  Structural control system of the Longwangjiang ore-field

      表  1  龙王江金锑矿区及外围地区构造变形序列

      Table  1.   Structural deformation sequence of Longwangjiang Au-Sb ore field and adjacent areas

      时代 变形期次 构造变形 实例 区域构造体制 形成构造动力背景
      E2-E3 D6 EW向左行剪切破裂 D531、D532 NEE-NE向挤压 印度‒欧亚板块碰撞远程效应
      NE向右行剪切破裂、断裂 D531
      K D5 NEE向正断裂、溆浦断陷盆地 D531 区域伸展 古太平洋板块俯冲弧后伸展等
      J2晚期 D4 NNE向石英脉石香肠 D533 NWW向挤压 早燕山运动,古太平洋板块俯冲
      NNE向卷入面理和石英脉的褶皱 D533
      T3 D3 NW向右行剪切破裂 D533 SN向挤压 印支运动晚幕,陆缘碰撞远程效应
      EW向逆断裂(含矿) 泥潭冲V3
      T2晚期 D2 NNE-NE向逆冲剪切破裂、断裂 D532、D533;F1图 2 NWW-NW向挤压 印支运动早幕,陆内造山
      SN向左行剪切破裂 D532、D533
      S晚期 D1 NE-NNE向板劈理 D532、D533、D535、D536 NW-NWW向挤压 加里东运动,扬子与华夏陆内汇聚
      NE向顺层脆韧性剪切带(含矿) D532、D533、D535
      NE向褶皱及断裂F1和F2 D532南东、D536北西;f1、f2图 2
      下载: 导出CSV

      表  2  含矿石英脉锆石LA-ICP-MS U-Pb分析结果

      Table  2.   LA-ICP-MS U-Pb analysis results of zircon from ore-bearing quartz veins

      测点 含量(10‒6 Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ
      D533‒1 509 450 1.13 0.065 00 0.000 74 1.099 66 0.020 91 0.122 71 0.002 18 776 24 746 13
      D533‒2 126 1 970 0.06 0.112 35 0.000 83 5.347 52 0.092 97 0.344 63 0.005 65 1 839 13 1 909 27
      D533‒3 246 2 183 0.11 0.127 64 0.002 26 6.798 30 0.273 85 0.377 52 0.009 54 2 066 31 2 065 45
      D533‒4 69 147 0.47 0.067 22 0.001 14 1.249 96 0.024 54 0.135 17 0.002 10 856 35 817 12
      D533‒6 174 368 0.47 0.066 26 0.000 80 1.237 51 0.020 71 0.135 45 0.001 99 815 24 819 11
      D533‒7 168 185 0.91 0.065 61 0.001 04 1.145 07 0.024 15 0.126 71 0.002 16 794 33 769 12
      D533‒8 107 202 0.53 0.070 40 0.000 91 1.527 79 0.029 60 0.156 95 0.002 24 939 22 940 12
      D533‒9 38 44 0.87 0.066 72 0.001 81 1.153 41 0.030 63 0.126 76 0.002 62 828 56 769 15
      D533‒10 13 907 0.01 0.162 31 0.001 25 10.446 78 0.160 20 0.465 84 0.006 43 2 480 8 2 465 28
      D533‒11 295 411 0.72 0.168 75 0.001 18 11.081 97 0.188 41 0.475 53 0.007 74 2 546 21 2 508 34
      D533‒12 254 169 1.50 0.070 97 0.001 11 1.252 92 0.025 29 0.127 91 0.001 87 967 32 776 11
      D533‒13 114 119 0.95 0.066 48 0.001 20 1.245 04 0.024 07 0.136 15 0.002 00 820 38 823 11
      D533‒14 110 798 0.14 0.155 72 0.001 22 9.408 30 0.180 52 0.437 57 0.008 02 2 410 18 2 340 36
      D533‒15 88 202 0.43 0.070 57 0.001 04 1.205 11 0.022 90 0.124 16 0.002 13 946 31 754 12
      D533‒16 132 283 0.47 0.121 00 0.001 03 5.366 69 0.089 86 0.321 12 0.004 85 1 972 10 1 795 24
      D533‒17 170 221 0.77 0.067 58 0.000 95 1.207 61 0.019 10 0.129 72 0.001 67 857 28 786 10
      D533‒19 367 255 1.44 0.066 84 0.001 05 1.189 24 0.021 99 0.129 19 0.001 94 833 33 783 11
      D533‒20 759 875 0.87 0.066 00 0.000 64 0.859 38 0.011 20 0.094 30 0.001 00 806 20 581 6
      D533‒21 90 1 409 0.06 0.112 24 0.000 91 5.160 30 0.091 34 0.332 77 0.005 42 1 836 15 1 852 26
      D533‒22 239 291 0.82 0.066 40 0.000 79 1.268 49 0.023 58 0.138 47 0.002 26 820 24 836 13
      D533‒23 177 197 0.90 0.068 69 0.001 18 1.261 06 0.025 13 0.133 47 0.002 12 900 35 808 12
      D533‒24 105 136 0.77 0.068 13 0.001 19 1.261 29 0.026 13 0.134 52 0.002 23 872 37 814 13
      D533‒25 1 006 2 284 0.44 0.052 66 0.000 63 0.243 54 0.004 34 0.033 56 0.000 57 322 28 213 4
      D533‒26 665 1 304 0.51 0.055 66 0.000 73 0.255 94 0.005 29 0.033 25 0.000 54 439 34 211 3
      D533‒27 262 315 0.83 0.066 89 0.000 91 1.083 36 0.023 72 0.117 33 0.002 22 835 29 715 13
      D533‒28 96 113 0.85 0.067 12 0.001 24 1.158 43 0.033 05 0.125 36 0.003 07 843 16 761 18
      下载: 导出CSV
    • Bai, D. Y., Li, B., Jiang, C., et al., 2023a. Deformation Sequences, Metallogenic Events and Ore-Controlling Structures at Gutaishan Au-Sb Deposit in Central Hunan Province. Mineral Deposits, 42(2): 229-252 (in Chinese with English abstract).
      Bai, D. Y., Li, B., Wu, M. J., et al., 2023b. Deformation Sequences, Ore-Forming Epoch and Attributes of Ore-Bearing Structurals in the Zhazixi Sb-W Deposit, Hunan Province. Geotectonica et Metallogenia, 47(2): 260-283 (in Chinese with English abstract).
      Bai, D. Y., Li, B., Zeng, G. Q., et al., 2023c. Deformation Sequences and Ore-Controlling Structures of the Chanziping-Daping Gold Mining Area in Hunan Province, China. Journal of Geomechanics, 29(6): 801-823 (in Chinese with English abstract).
      Bai, D. Y., Li, B., Zeng, G. Q., et al., 2024. Characteristics and Dynamic Mechanisms of the Stress Field of the Indosinian Movement in Hunan Province. South China Geology, 40(2): 252-269 (in Chinese with English abstract).
      Bai, D. Y., Li, B., Zhou, C., et al., 2021. Gold Mineralization Events of the Jiangnan Orogen in Hunan and Their Tectonic Settings. Acta Petrologica et Mineralogica, 40(5): 897-922 (in Chinese with English abstract).
      Bai, D. Y., Xiong, X., Yang, J., et al., 2014. Geological Structure Characteristics of the Middle Segment of the Xuefeng Orogen. Geology in China, 41(2): 399-418 (in Chinese with English abstract).
      Chen, B. L., Cao, F. G., Zhao, S. M., et al., 2011. Fold Structure and Its Origin in Dapinggou Area, Eastern Altun Mountains. Geological Bulletin of China, 30(12): 1934-1940 (in Chinese with English abstract).
      Chen, M. H., Yin, H., Yang, C. M., et al., 2018. Analysis of Geological and Geochemical Characteristics and Metallogeny of Longwangjiang Sb-As-Au Deposit in West Hunan and Prospecting of Such Ore Deposit. Contributions to Geology and Mineral Resources Research, 33(1): 31-40 (in Chinese with English abstract).
      Chen, W. F., Chen, P. R., Huang, H. Y., et al., 2007. Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China. Science in China (Series D: Earth Sciences), 50(11): 1606-1627. https://doi.org/10.1007/s11430-007-0073-1
      Dong, S. W., Zhang, Y. Q., Li, H. L., et al., 2018. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia-Commemorating 90th Years of the "Yanshan Orogeny". Science China Earth Sciences, 61(12): 1888-1909. https://doi.org/10.1007/s11430-017-9297-y
      Du, Y. S., Xu, Y. J., 2012. A Preliminary Study on Caledonian Event in South China. Geological Science and Technology Information, 31(5): 43-49 (in Chinese with English abstract).
      Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi. 10.1016/j.earscirev.2017.07.016 doi: 10.1016/j.earscirev.2017.07.016
      Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi. 10.1016/j.gca.2004.07.006 doi: 10.1016/j.gca.2004.07.006
      Hunan Institute of Geology Survey (HIGS), 2017. The Regional Geology of China, Hunan Province. Geological Publishing House, Beijing (in Chinese with English abstract).
      Huang, J. Z., Sun, J., Zhou, C., et al., 2020. Metallogenic Regularity and Resource Potential of Gold Deposits of Hunan Area in the Jiangnan Orogenic Belt, South China. Acta Geoscientica Sinica, 41(2): 230-252 (in Chinese with English abstract).
      Li, B., Xu, D. R., Bai, D. Y., et al., 2022. Characteristics of Structural Deformation and Its Tectonic Setting in the Huishangang Area, Northern Xuefeng Orogen. Geotectonica et Metallogenia, 46(1): 1-21 (in Chinese with English abstract).
      Li, B., Xu, D. R., Bai, D. Y., et al., 2022. Structural Deformation, Metallogenic Epoch and Genetic Mechanism of the Woxi Au-Sb-W Deposit, Western Hunan Province, South China. Science China Earth Sciences, 65(12): 2358-2384. https://doi.org/10.1007/s11430-021-9978-0
      Li, B., Xu, D. R., Bai, D. Y., et al., 2024. Episodic Mineralization at Yanshannian in the Woxi Au-Sb-W Deposit, Western Hunan, South China: Constraints from In-Situ Scheelite LA-ICP-MS U-Pb Geochronology and Element-Isotope of Pyrite. Acta Petrologica Sinica, 40(1): 215-240 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.01.12
      Li, H., Li, J. W., Algeo, T. J., et al., 2018. Zircon Indicators of Fluid Sources and Ore Genesis in a Multi-Stage Hydrothermal System: The Dongping Au Deposit in North China. Lithos, 314: 463-478. https://doi.org/10.1016/j.lithos.2018.06.025
      Li, J. H., Zhang, Y. Q., Dong, S. W., et al., 2014. Cretaceous Tectonic Evolution of South China: A Preliminary Synthesis. Earth-Science Reviews, 134: 98-136. https://doi.org/10.1016/j.earscirev.2014.03.008
      Li, J. H., Zhang, Y. Q., Xu, X. B., et al., 2014. SHRIMP U-Pb Dating of Zircons from the Baimashan Longtan Super-Unit and Wawutang Granites in Hunan Province and Its Geological Implication. Journal of Jilin University (Earth Science Edition), 44(1): 158-175 (in Chinese with English abstract).
      Li, W., Wang, M. C., Jiang, D. Z., et al., 2025. Cleavage Research and Instructional Design. Geotectonica et Metallogenia, 49(1): 46-56 (in Chinese with English abstract).
      Li, Z. X., Li, X. H., 2007. Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic. Geology, 35(2): 179-182. https://doi. org/10.1130/G23193A.1 doi: 10.1130/G23193A.1
      Liu, X. H., Liu, D. L., Lou, Y. L., et al., 2025. Geochronology, Hf Isotope, Geochemistry and Petrogenesis of the Baimashan Granitic Complex in the Central Hunan Province. Earth Science, 50(2): 609-620 (in Chinese with English abstract).
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lou, Y. L., Liu, X. H., Zeng, H., et al., 2024. Genesis of Xingfengshan Au-W Deposit in Central Hunan Province: Constraints from Hydrothermal Apatite U-Pb Dating and In Situ S Isotopes. Earth Science, 49(12): 4265-4277 (in Chinese with English abstract).
      Ludwig, K. R., 2003. User's Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication: No. la, Berkeley.
      Qiu, X. F., 2022. Pre-Devonian Crustal Evolution of the Northern Yangtze Craton: Evidence from U-Pb Ages and Hf Isotopes of Detrital Zircons. Acta Geologica Sinica, 96(11): 3784-3798 (in Chinese with English abstract).
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Wang, Q. F., Yang, L., Zhao, H. S., et al., 2022. Towards a Universal Model for Orogenic Gold Systems: A Perspective Based on Chinese Examples with Geodynamic, Temporal, and Deposit-Scale Structural and Geochemical Diversity. Earth-Science Reviews, 224: 103861. https://doi.org/10.1016/j.earscirev.2021.103861
      Wang, R., Xiao, Z. X., Lin, J. Y., et al., 2018. The Diverse Tectonic Background of Boudinage Structures. Geotectonica et Metallogenia, 42(5): 777-785 (in Chinese with English abstract).
      Wang, T. X., Fu, S. L., Tang, Y. W., et al., 2024. Scheelite U-Pb Dating Constraints on the Timing of the Formation of the Zhazixi Sb-W Deposit in South China. Mineralium Deposita, 59(3): 445-452. https://doi.org/10.1007/s00126-024-01249-4
      Wang, Y. J., Wang, Y., Zhang, Y. Z., et al., 2022. Indosinian Deformation in the South China Block and Interaction with the Adjoining Blocks. Geotectonica et Metallogenia, 46(3): 399-415 (in Chinese with English abstract).
      Xie, G. Q., Mao, J. W., Zhang, C. Q., et al., 2021. Triassic Deposits in South China: Geological Characteristics, Ore-Forming Mechanism and Ore Deposit Model. Earth Science Frontiers, 28(3): 252-270 (in Chinese with English abstract).
      Xu, D. R., Deng, T., Chi, G. X., et al., 2017. Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological Characteristics, Ore Deposit-Type and Geodynamic Setting. Ore Geology Reviews, 88: 565-618. https://doi.org/10.1016/j.oregeorev.2017.02.004
      Yin, D. G., Sun, J. M., Yin, H. F., et al., 2015. An Analysis of Ore-Controlling Regularity and Prospecting Direction of Taojinping Gold Mining Area. Mineral Resources and Geology, 29(1): 29-35, 47 (in Chinese with English abstract).
      Zeng, Y. S., Wang, Q. F., Groves, D. I., et al., 2023. Prolonged Mesozoic Intracontinental Gold Mineralization in the South China Block Controlled by Lithosphere Architecture and Evolving Paleo-Pacific Plate Subduction. Earth-Science Reviews, 240: 104387. https://doi.org/10.1016/j.earscirev.2023.104387
      Zhai, W., Zhang, E., Zheng, S. Q., et al., 2022. Hydrothermal Zircon: Characteristics, Genesis and Metallogenic Implications. Ore Geology Reviews, 149: 105111. https://doi.org/10.1016/j.oregeorev.2022.105111
      Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
      Zhang, J., Ma, Z. J., Chen, B. H., et al., 2010. Paleozoic Deformational Characteristics of the Central Xuefeng Mt. and Implication-A Case Study on the Suining-Jingzhou-Tianzhu-Xinhuang Section, China. Geological Bulletin of China, 29(1): 44-57 (in Chinese with English abstract).
      Zhang, L., Yang, L. Q., Groves, D. I., et al., 2019. An Overview of Timing and Structural Geometry of Gold, Gold-Antimony and Antimony Mineralization in the Jiangnan Orogen, Southern China. Ore Geology Reviews, 115: 103173. https://doi.org/10.1016/j.oregeorev.2019.103173
      Zheng, Y., Zhang, G. Z., Wu, Y. H., et al., 2022. Triassic Multistage Antimony-Gold Mineralization in the Precambrian Sedimentary Rocks of South China: Insights from Structural Analysis, Paragenesis, 40Ar/39Ar Age, In-Situ S-Pb Isotope and Trace Elements of the Longwangjiang-Jiangdongwan Orefield, Xuefengshan Mountain. Ore Geology Reviews, 148: 105030. https://doi.org/10.1016/j.oregeorev.2022.105030
      Zhong, S. H., Feng, C. Y., Seltmann, R., et al., 2018. Can Magmatic Zircon be Distinguished from Hydrothermal Zircon by Trace Element Composition? The Effect of Mineral Inclusions on Zircon Trace Element Composition. Lithos, 314/315: 646-657. https://doi.org/10.1016/j.lithos.2018.06.029
      Zhou, C., Sun, J., Guo, A. M., et al., 2020. A Comparative Study of the Ore-Forming Fluids of the Typical Gold-Antimony Deposits along Middle Xuefeng Arc Structure Belt. Geology in China, 47(4): 1241-1259 (in Chinese with English abstract).
      柏道远, 李彬, 江灿, 等, 2023a. 湘中古台山金锑矿床变形序列、成矿事件及控矿构造. 矿床地质, 42(2): 229-252.
      柏道远, 李彬, 吴梦君, 等, 2023b. 湖南渣滓溪锑钨矿区变形序列、成矿时代及含矿构造属性. 大地构造与成矿学, 47(2): 260-283.
      柏道远, 李彬, 曾广乾, 等, 2023c. 湖南铲子坪‒大坪金矿区变形序列及控矿构造. 地质力学学报, 29(6): 801-823.
      柏道远, 李彬, 曾广乾, 等, 2024. 湖南省印支运动应力场特征及其动力机制. 华南地质, 40(2): 252-269.
      柏道远, 李彬, 周超, 等, 2021. 江南造山带湖南段金矿成矿事件及其构造背景. 岩石矿物学杂志, 40(5): 897-922.
      柏道远, 熊雄, 杨俊, 等, 2014. 雪峰造山带中段地质构造特征. 中国地质, 41(2): 399-418.
      陈柏林, 曹富根, 赵树铭, 等, 2011. 阿尔金山东段大平沟地区褶皱构造的特征及其成因. 地质通报, 30(12): 1934-1940.
      陈明辉, 尹灏, 杨长明, 等, 2018. 湖南龙王江锑砷金矿床地质地球化学特征、成矿分析与找矿. 地质找矿论丛, 33(1): 31-40.
      杜远生, 徐亚军, 2012. 华南加里东运动初探. 地质科技情报, 31(5): 43-49.
      湖南省地质调查院, 2017. 中国区域地质志‒湖南志. 北京: 地质出版社.
      黄建中, 孙骥, 周超, 等, 2020. 江南造山带(湖南段)金矿成矿规律与资源潜力. 地球学报, 41(2): 230-252.
      李彬, 许德如, 柏道远, 等, 2022. 雪峰造山带北段灰山港地区构造变形特征及其形成构造背景. 大地构造与成矿学, 46(1): 1-21.
      李彬, 许德如, 柏道远, 等, 2024. 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U-Pb定年与黄铁矿元素‒同位素的约束. 岩石学报, 40(1): 215-240.
      李建华, 张岳桥, 徐先兵, 等, 2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 44(1): 158-175.
      李玮, 王美聪, 姜大志, 等, 2025. 劈理研究及构造意义. 大地构造与成矿学, 49(1): 46-56.
      刘贤红, 刘德亮, 娄元林, 等, 2025. 湘中白马山复式岩体年代学、Hf同位素、地球化学及岩石成因. 地球科学, 50(2): 609-620. doi: 10.3799/dqkx.2025.005
      娄元林, 刘贤红, 曾昊, 等, 2024. 湘中杏枫山金钨矿床成因: 热液磷灰石U-Pb定年和原位S同位素制约. 地球科学, 49(12): 4265-4277. doi: 10.3799/dqkx.2024.059
      邱啸飞, 2022. 扬子克拉通北部前泥盆纪地壳演化: 来自碎屑锆石U-Pb和Hf同位素证据. 地质学报, 96(11): 3784-3798.
      王冉, 肖宙轩, 林靖愉, 等, 2018. 石香肠构造的多种地质构造背景. 大地构造与成矿学, 42(5): 777-785.
      王岳军, 王洋, 张玉芝, 等, 2022. 华南印支期变形格局及多陆块围限模型. 大地构造与成矿学, 46(3): 399-415.
      谢桂青, 毛景文, 张长青, 等, 2021. 华南地区三叠纪矿床地质特征、成矿规律和矿床模型. 地学前缘, 28(3): 252-270.
      尹大改, 孙际茂, 尹华锋, 等, 2015. 陶金坪金矿区控矿规律及找矿方向分析. 矿产与地质, 29(1): 29-35, 47.
      张进, 马宗晋, 陈必河, 等, 2010. 雪峰山中段古生代变形的特征及意义: 以绥宁‒靖州‒天柱‒新晃剖面为例. 地质通报, 29(1): 44-57.
      周超, 孙骥, 郭爱民, 等, 2020. 雪峰弧形构造带中段典型金锑矿床成矿流体对比研究. 中国地质, 47(4): 1241-1259.
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  124
    • HTML全文浏览量:  25
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-06
    • 刊出日期:  2025-11-25

    目录

      /

      返回文章
      返回