• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吕子强, 张紫琼, 雷建设, 陈召曦, 刘珈君, 侯利民, 2025. 2025年缅甸M7.9级震源区地震波速变化. 地球科学. doi: 10.3799/dqkx.2025.193
    引用本文: 吕子强, 张紫琼, 雷建设, 陈召曦, 刘珈君, 侯利民, 2025. 2025年缅甸M7.9级震源区地震波速变化. 地球科学. doi: 10.3799/dqkx.2025.193
    LÜ ZiQiang, ZHANG ZiQiong, LEI JianShe, CHEN ZhaoXi, LIU JiaJun, HOU LiMin, 2025. Seismic Velocity Changes of the 2025 Myanmar M7.9 Earthquake. Earth Science. doi: 10.3799/dqkx.2025.193
    Citation: LÜ ZiQiang, ZHANG ZiQiong, LEI JianShe, CHEN ZhaoXi, LIU JiaJun, HOU LiMin, 2025. Seismic Velocity Changes of the 2025 Myanmar M7.9 Earthquake. Earth Science. doi: 10.3799/dqkx.2025.193

    2025年缅甸M7.9级震源区地震波速变化

    doi: 10.3799/dqkx.2025.193
    基金项目: 

    国家自然科学基金(42274129)

    详细信息
      作者简介:

      吕子强(1982-), 男, 副教授, 主要从事全波形反演及地震监测等研究。E-mail:ziqianglyu@sina.com,ORCID:0000-0003-3777-2090

    • 中图分类号: P315

    Seismic Velocity Changes of the 2025 Myanmar M7.9 Earthquake

    • 摘要: 地震波速度变化是表征地下介质应力状态演化的关键指标,对理解地震孕育机制、破裂过程及震后调节行为具有重要意义。本文利用2025年3月28日缅甸M7.9级地震震源区4个固定台站的连续波形数据,采用背景噪声自相关方法分析了地震波速在震前、同震及震后三个阶段的动态变化特征。研究结果表明,在0.1-2 Hz频段范围内,震前阶段所有台站均观测到显著的地震波速下降现象,推测可能与实皆大型走滑断裂带在临震阶段的预滑活动或介质物理性质的渐进性改变有关。同震阶段地震波速变化呈现明显的空间差异性,震中距较近的台站表现出更大的波速变化幅度,表明近场区域受强地面运动的影响更为显著。震后阶段地震波速随时间呈现逐渐恢复的趋势,可能反映了台站下方介质的自愈合过程。本研究结果为深入认识大型走滑断裂的孕震机理及震后介质愈合机制提供了新的观测依据。

       

    • An, Y. R., Wang, W. T., Yang W., et al., 2023. Using Ambient Noise to Study the Co-seismic and Post-seismic Velocity Changes of the 2021 Yangbi MS6.4 Earthquake in Yunnan. Chinese Journal of Geophysics (in Chinese with English abstract), 66(8): 3185-3201.
      Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.
      Bertrand, G., Rangin, C., Maluski, H., et al., 2001. Diachronous Cooling Along the Mogok Metamorphic Belt (Shan scarp, Myanmar): The Trace of the Northward Migration of the Indian Syntaxis. Journal of Asian Earth Sciences, 19(5): 649-659, doi: 10.1016/S1367-9120(00)00061-4.
      Brenguier, F., Campillo, M., Hadziioannou, C., et al., 2008a. Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, 321(5895): 1478-1481, doi: 10.1126/science.1160943.
      Brenguier, F., Shapiro, N. M., Campillo, M., et al., 2008b. Towards Forecasting Volcanic Eruptions Using Seismic Noise. Nature Geoscience, 1(2): 126-130, doi: 10.1038/ ngeo104.
      Delouche, E., Stehly. L., 2023. Seasonal Seismic Velocity Variations Measured Using Seismic Noise Autocorrelations to Monitor the Dynamic of Aquifers in Greece. Journal of Geophysical Research: Solid Earth, 128(12): e2023JB026759, doi: 10.1029/2023JB026759.
      Hobiger, M., Wegler, U., Shiomi, K., et al., 2016. Coseismic and Post-seismic Velocity changes Detected by Passive Image Interferometry: Comparison of One Great and Five Strong Earthquakes in Japan. Geophysical Journal International, 205(2): 1053-1073, doi: 10.1093/gji/ggw066.
      Hurukawa, N., Maung, P. M., 2011. Two Seismic Gaps on the Sagaing Fault, Myanmar, Derived from Relocation of Historical Earthquakes Since 1918. Geophysical Research Letters, 38(1): L01310, doi: 10.1029/2010GL046099.
      Kumar, A., Sanoujam, M., Sunil, L., et al., 2011. Active Deformations at the Churachandpur Mao Fault (CMF) in Indo Burma Ranges: Multidisciplinary Evidences. International Journal of Geosciences, 2(4), 597–609, doi: 10.4236/ijg.2011.24062.
      Li, C., Van der Hilst, R. D., Meltzer, A. S., 2008. Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1), 157–168, doi: 10.1016/j.epsl.2008.07.016.
      Lei, J. S., Zhao, D. P., Su. J. R., et al., 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese Journal of Geophysics(in Chinese with English abstract), 52(2):339-345.
      Liang, S. S., Xu, Z., Huang, X.,et al, 2024. Regional Seismogenic Environment Revealed by the 3D Crustal Velocity Structure and Focal Mechanism of Moderate and Strong Earthquakes in Jiashi Area, Xinjiang, China. Earth Science(in Chinese with English abstract), 49(2):451-468.
      Liu, Z. K., Huang, J. L., 2010. Temporal Changes of Seismic Velocity Around the Wenchuan Earthquake Fault Zone from Ambient Seismic Noise Correlation. Chinese Journal of Geophysics (in Chinese with English abstract), 53(4): 853-863, doi: 10.3969/ j.issn.0001-5733.2010.04.010.
      Liu, Z. Q., Liang, C. T., Huang, H. X., et al., 2022. Seismic velocity Variations at Different Depths Reveal the Dynamic Evolution Associated with the 2018 Kilauea Eruption. Geophysical Research Letters, 49(3): e2021GL093691, doi: 10.1029/ 2021GL093691.
      Lü, Z. Q., Lei, J. S., 2016. 3-D S-wave Velocity Structure Around the 2015 MS8.1 Nepal Earthquake Source Areas and Strong Earthquake Mechanism. Chinese Journal of Geophysics (in Chinese with English abstract), 59(12): 4529-4543.
      Makus, P., Sens-Schönfelder, C., Illien, L., et al., 2023. Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes at Kamchatka's Klyuchevskoy Group With Fluctuating Noise Fields. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB025738, doi: 10.1029/2022JB025738.
      Mao, S. J., Mordret, A., Campillo, M., et al., 2020. On the Measurement of Seismic Traveltime Changes in the Time–frequency Domain with Wavelet Cross-spectrum Analysis. Geophysical Journal International, 221, 550–568, doi: 10.1093/gji/ ggz495.
      Mikesell, T. D., Malcolm, A. E., Yang, D., et al., 2015. A Comparison of Methods to Estimate Seismic Phase Delays: Numerical Examples for Coda Wave Interferometry. Geophysical Journal International, 202(1), 347–360, doi: 10.1093/gji/ggv138.
      Maurin, T., Masson, F., Rangin, C., et al., 2010. First Global Positioning System Results in Northern Myanmar: Constant and Localized Slip Rate Along the Sagaing Fault, Geology, 38(7), 591–594. doi: 10.1130/G30872.1.
      Nimiya, H., Ikeda, T., Tsuji, T., 2017. Spatial and Temporal Seismic Velocity Changes on Kyushu Island During the 2016 Kumamoto Earthquake. Science Advances, 3(11): e1700813, doi: 10.1126/sciadv.1700813.
      Niu, F. L., Silver, P. G., Daley, T. M., et al., 2008. Preseismic Velocity Changes Observed From Active Source Monitoring at the Parkfield SAFOD Drill Site. Nature, 454(7201): 204-208, doi: 10.1038/nature07111.
      Ratdomopurbo, A., Poupinet, G., 1995. Monitoring a Temporal Change of Seismic Velocity in a Volcano: Application to the 1992 Eruption of Mt. Merapi (Indonesia). Geophysical Research Letters, 22(7): 775-778, doi: 10.1029/ 95GL00302.
      Rubinstein, J. L., Beroza, G. C., 2004. Evidence for Widespread Nonlinear Strong Ground Motion in the MW 6.9 Loma Prieta Earthquake. Bulletin of the Seismological Society of America, 94 (5): 1595–1608. doi: 10.1785/012004009.
      Sens-Schönfelder, C., Wegler, U., 2006. Passive Image Interferometry and Seasonal Variations of Seismic Velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33: L21302. doi: 10.1029/2006GL027797.
      Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26, TC3014. doi: 10.1029/2006TC002083.
      Silver, P. G., Daley, T. M., Niu, F. L., et al., 2007. Active Source Monitoring of Cross-Well Seismic Travel Time for Stress-Induced Changes. Bulletin of the Seismological Society of America, 97(1B): 281-293, doi: 10.1785/0120060120.
      Su, J. B., Yang, W., Li, X. B., et al., 2022. Co-seismic Velocity Changes with Yunnan Yangbi MS6.4 Earthquake Measured by Airgun Source. Chinese Journal of Geophysics (in Chinese with English abstract), 65(2): 649-662.
      Takagi, R., Okada, T., Nakahara, H., et al., 2012. Coseismic Velocity Change in and Around the Focal Region of the 2008 Iwate-Miyagi Nairiku Earthquake. Journal of Geophysical Research: Solid Earth, 117, B06315. doi: 10.1029/2012JB009252.
      Vigny, C., Socquet, A., Rangin, C., et al., 2003. Present-day Crustal Deformation Around Sagaing Fault, Myanmar. Journal of Geophysical Research: Solid Earth, 108(B11), 2533, doi: 10.1029/2002JB001999.
      Wang, Y., Sieh, K., Tun, S. T., et al., 2014. Active Tectonics and Earthquake Potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119, 3767–3822, doi: 10.1002/2013JB010762.
      Xiao, Y., Shan, B., Liu, C., et al., 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science(in Chinese with English abstract), 49(8):2979-2991.
      Xiong, X., Shan, B., Zhou, Y. M., et al., 2017. Coulomb Stress Transfer and Accumulation on the Sagaing Fault, Myanmar, Over the Past 110 Years and its Implications for Seismic Hazard. Geophysical Research Letters, 44(10), 4781–4789, doi: 10.1002/ 2017GL072770.
      Yan, J., Zhang, L. S., Hong, H. T., et al., 2023. Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu. CT Theory and Applications, 32(4): 461-470, doi: 10.15953/j.ctta.2023.023.
      Zhang, H., Lei, J. S., Song, X. Y., et al., 2025. Direct Surface-wave Tomography from Ambient Noisein the Shanxi Rift Zone and Adjacent Area. Computerized Tomography Theory and Application(in Chinese with English abstract), 34(2):175-189.
      安艳茹,王伟涛,杨微,等,2023.利用背景噪声研究2021年云南漾濞MS 6.4地震同震及震后波速变化.地球物理学报,66(8):3185-3201.
      梁珊珊,徐志国,黄小宁,等,2024.新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境.地球科学,49(2):451-468.
      雷建设,赵大鹏,苏金蓉,等,2009.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,52(2):339-345.
      刘志坤,黄金莉,2010.利用背景噪声互相关研究汶川地震震源区地震波速度变化.地球物理学报,53(4):853-863.
      吕子强,雷建设,2016. 2015年尼泊尔Ms8.1地震震源区S波三维速度结构与强震发生机理研究.地球物理学报,59(12):4529-4543.
      苏金波,杨微,李孝宾,等,2022.基于气枪震源信号的云南漾濞MS 6.4地震前后波速变化.地球物理学报,65(2):649-662.
      肖阳,单斌,刘成利,等,2024. 2022年芦山MS6.1 地震应力触发及地震危险性分析.地球科学,49(8):2979-2991.
      颜杰,张立树,洪鹤庭,等. 2023.背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用.CT理论与应用研究(中英文),32(4):461-470.
      张浩,雷建设,宋晓燕,等,2025.山西断陷带及其邻区背景噪声面波直接反演成像. CT理论与应用研究. CT理论与应用研究(中英文),34(2):175-189.
    • 加载中
    计量
    • 文章访问数:  14
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-23
    • 网络出版日期:  2025-10-15

    目录

      /

      返回文章
      返回