Beijing Ovital Software Co., Ltd., 2025. OvitalMap (V10.3.0.33606) [Software]. https://www.ovital.com. |
Dai, F.C., Deng, J.H., 2020. Development Characteristics of Landslide Hazards in Three-Rivers Basin of Southeast Tibetan Plateau. Advanced Engineering Sciences, 52(5):3–15 (in Chinese with English abstract). |
Dou, J., Xiang, Z.L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674 (in Chinese with English abstract). |
Dou, J., Xing, K., Wang, L.Z., et al., 2025. Air-space-ground Synergistic Observations for Rapid Post-seismic Disaster Assessment of 2025 Ms6.8 Xigazê Earthquake, Xizang. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0160-2 |
Evans, J.D., 1996. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing, Pacific Grove. |
Feng, C.J., Chen, Q.C., Li, G.Q., et al., 2014. In-situ Stress Measurement in Lijiang-Jianchuan Area and Tentative Discussion on the Seismic Hazards on the Southeastern Margin of the Tibetan Plateau. Geol. Bull. China, 33 (4), 524–553 (in Chinese with English abstract). |
Guo, Y.H., Dou, J., Xiang, Z.L., et al., 2024. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies. Bulletin of Geological Science and Technology, 43(3), 251–265 (in Chinese with English abstract). |
He, K., Wang, Y.F., Cheng, Q.G., et al., 2024. Research on the Substrate Entrainment Dynamics of Rock Avalanches: State-of-the-art. Journal of Engineering Geology, 32(3):904–917 (in Chinese with English abstract). |
Hsü, K.J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86, 129-140. |
Huang, D., Ma, H., Huang, R.Q., 2022. Deep‑seated Toppling Deformations of Rock Slopes in Western China. Landslides, 19:809–827. |
Huang, R.Q., Wang, Y.S., Wang, S.T., et al., 2011. High Geo-stress Distribution and High Geo-stress Concentration Area Models for Eastern Margin of Qinghai-Tibet Plateau. SCIENCE CHINA Technol. Sci. 54 (S1), 154–166. |
Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, An Update. Landslides, 11 (2):167–194. |
JAXA/METI, 2015. ALOS PALSAR Radiometric_Terrain_Corrected_high _res. Accessed through ASF DAAC 20 March 2025. https://doi.org/10.5067/Z97HFCNKR6VA. |
Larsen, I.J., Montgomery, D.R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3:247–251. |
Li, C.Y., Wang, X.C., He, C.Z., et al., 2019. China National Digital Geological Map (Public Version at 1∶200 000 Scale) Spatial Database (V1). Development and Research Center of China Geological Survey; China Geological Survey[producer], 1957. National Geological Archives of China [Distributor], 2019-06-30. http://dcc.ngac.org.cn/geologicalData/rest/geologicalData/geologicalDataDetail/7d7ac63df9805f39a92591d105b7b0f2. |
Lin, Q.W., Cheng, Q.G., Li, K., et al. 2023. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, 31 (3):815–829 (in Chinese with English abstract). |
Liu, J.C., Wang, W.P., Gao, Y., et al., 2024. Study on the Unstable Characteristics of High-Level Landslide in Zelongnong Gou, Xizang under Severe Earthquakes. The Chinese Journal of Geological Hazard and Control, 35(6): 15–23 (in Chinese with English abstract). |
Ma, S.Y., Shao, X.Y., Xu, C., et al., 2024. Distribution Pattern, Geometric Characteristics and Tectonic Significance of Landslides Triggered by the Strike-slip Faulting 2022 Ms 6.8 Luding Earthquake. Geomorphology, 453:109138. |
Ning, Y.B., Tang, H.M., Zhang, B.C., et al., 2021. Evolution Process and Failure Mechanism of a Deep-seated Toppling Slope in the Lancang River Basin. Chinese Journal of Rock Mechanics and Engineering, 40(11): 2199–2213 (in Chinese with English abstract). |
Pánek, T., Břežný, M., Havenith, H., et al., 2024. Landslides and Growing Folds: A Lesson from the Kura Fold-And-Thrust Belt (Azerbaijan, Georgia). Geomorphology, 449:109059. |
Pang, J.F., Ding, X.Z., Han, K.Y., et al., 2017. The National 1:1000000 Geological Map Spatial Database. Global Geology Data, DOI: 10.23650/data.H.2017.NGA105570.T1.64.1. |
Shi, A.W., Cheng, Q.G., Wang, Y.F., et al., 2024. State of the Art on Fluidized Geomorphology of Rock Avalanche. Journal of Engineering Geology, 32(3): 978–995 (in Chinese with English abstract). |
Shugar, D.H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373, 300–306. |
Smith, J.V., 2015. Self-stabilization of Toppling and Hillside Creep in Layered Rocks. Engineering Geology, 196, 139–149. |
Twenty First Century Aerospace Technology Co.,Ltd., 2024. Twenty First Century Aerospace satellite imagery map (2024 Edition), GS(2024)1614. https://www.21at.com.cn. |
Wang, Y.F., Chen, P.H., Qian, J.Z., et al., 2025. Geomorphic and Geologic Controls on Large-scale Landslides in the Himalayan Region of China. Landslides, 22, 1725–1741. |
Wang, Y., Cheng, Q., Lin, Q., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., et al. Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023. Progress in Landslide Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44296-4_2 |
Wang, Y.F., Ming, J., Feng, Z.Y., et al., 2022. Research on the Fluidized Propagation and Frictional Heating Effect of the Luanshibao Rock Avalanche. Chinese Journal of Rock Mechanics and Engineering, 41(S2):3174–3188 (in Chinese with English abstract). |
Xing, K., Li, H., Zhang, L.L., et al., 2025. Analysis of Surface Rupture and Seismic Damage Characteristics of 2025 Dingri MS6. 8 Earthquake in Xizang. Safety and Environmental Engineering, 32(2): 20-30 (in Chinese with English abstract). |
Xu, Q., Zheng, G., Li, W.L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534–1551 (in Chinese with English abstract). |
Yin, Y.P., 2000. Study on the Characteristics and Disaster Mitigation of the Gigantic Landslide on the Yigong Expressway in Bomi, Tibet. Hydrogeology & Engineering Geology, (04):8–11 (in Chinese with English abstract). |
Yin, Y.P., Gao, S.H., 2024. Research on High-Altitude and Long-Runout Rockslides: Review and Prospects. The Chinese Journal of Geological Hazard and Control, 35(1): 1–18 (in Chinese with English abstract). |
Yin, Y. P., Wang W.P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in A Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827–841 (in Chinese with English abstract). |
Zhang, B.C., Ning, Y.B., Tang, H.M., et al., 2023. Study on the Evolutionary Process of Interbedded Anti-Inclined Slope Block-Flexure Toppling in the Upper Yalong River. Bulletin of Engineering Geology and the Environment, 82: 240. |
Zhang, P.Z., Deng, Q.D., Zhang, G.M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China (Series D), 46(Suppl.), 13–24 (in Chinese with English abstract). |
Zhang, Y.S., Ren, S.S., Li, J.Q., et al., 2023. Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt. Earth Science, 48(12):4668–4679 (in Chinese with English abstract). |
Zheng, D.F., Li, Y.Y., Yan, C.L., et al., 2025. Landslide Susceptibility Assessment Using Automl-SHAP Method in The Southern Foothills of Changbai Mountain, China. Landslides, 22, 1855–1875. https://doi.org/10.1007/s10346-025-02462-6 |
北京元生华网公司, 2025.奥维互动地图(V10.3.0.33606)[软件]. https://www.ovital.com. |
戴福初,邓建辉, 2020. 青藏高原东南三江流域滑坡灾害发育特征. 工程科学与技术, 52(5):3–15. |
窦杰,向子林,许强,等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势 . 地球科学,48(5): 1657–1674. |
二十一世纪空间技术应用股份有限公司, 2024. 世纪空间卫星影像图(2024版),GS(2024)1614号. https://www.21at.com.cn. |
丰成君, 陈群策, 李国歧, 等, 2014.青藏高原东南缘丽江—剑川地区地应力测量与地震危险性. 地质通报, 33(04):524–534. |
郭衍昊, 窦杰, 向子林, 等, 2024. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价.地质科技通报, 43(3):251–265. |
何可, 王玉峰, 程谦恭,等, 2024.高速远程滑坡底部裹挟机理研究现状及展望. 工程地质学报, 32(3):904–917. |
李晨阳, 王新春, 何春珍, 等, 2019. 全国 1:200 000 数字地质图(公开版)空间数据库(V1).中国地质调查局发展研究中心; 中国地质调查局[创建机构], 1957. 全国地质资料馆 [传播机构], 2019-06-30. http://dcc.ngac.org.cn/geologicalData/rest/geologicalData/geologicalDataDetail/7d7ac63df9805f39a92591d105b7b0f2. |
林棋文, 程谦恭, 李坤, 等, 2023. 高速远程滑坡碎屑化运动机理研究综述. 工程地质学报, 31(03):815–829. |
刘俊辰, 王文沛, 高杨, 等, 2024. 强震条件下西藏则隆弄沟高位滑坡失稳特征研究. 中国地质灾害与防治学报, 35(6): 15–23. |
宁奕冰,唐辉明,张勃成,等, 2021. 澜沧江深层倾倒体演化过程及失稳机制研究. 岩石力学与工程学报, 40(11): 2199–2213. |
庞健峰, 丁孝忠, 韩坤英, 等, 2017. 1∶100 万中华人民共和国地质图空间数据库. 全球地质数据, DOI: 10.23650/data.H.2017.NGA105570.T1.64.1. |
史安文,程谦恭,王玉峰,等, 2024.高速远程滑坡流态化地貌研究综述.工程地质学报, 32(3):978–995. |
王玉峰, 明杰, 冯止依,等, 2022. 乱石包高速远程滑坡流态化运动模式及摩擦热效应研究. 岩石力学与工程学报, 41(S2):3174–3188. |
邢珂,黎昊,张乐乐,等, 2025. 2025年西藏定日 MS6. 8 地震地表破裂与震害特征分析. 安全与环境工程, 32(2): 20–30. |
许强, 郑光, 李为乐, 等, 2018. 2018 年 10 月和 11 月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6):1534–1551. |
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究.水文地质工程地质, (04):8–11. |
殷跃平, 高少华, 2024. 高位远程地质灾害研究:回顾与展望. 中国地质灾害与防治学报, 35(1):1–18. |
殷跃平, 王文沛, 张 楠, 等, 2017. 强震区高位滑坡远程灾害特征研究—以四川茂县新磨滑坡为例. 中国地质, 44(5):827–841. |
张培震,邓起东,张国民,等., 2003.中国大陆的强震活动与活动地块.中国科学(D辑:地球科学), (S1):12–20. |
张永双, 任三绍, 李金秋, 等, 2023. 怒江构造混杂岩带多拉寺滑坡的易滑地质结构及高位启滑运动机制. 地球科学, 48(12):4668–4679. |