• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    张明明, 陈聪, 黄宇勤, 璩江妍钰, 袁峰, 李晓晖, 2025. 基于因果推理模型和图注意力网络的安庆地区矽卡岩型铜矿床三维成矿预测方法. 地球科学. doi: 10.3799/dqkx.2025.198
    引用本文: 张明明, 陈聪, 黄宇勤, 璩江妍钰, 袁峰, 李晓晖, 2025. 基于因果推理模型和图注意力网络的安庆地区矽卡岩型铜矿床三维成矿预测方法. 地球科学. doi: 10.3799/dqkx.2025.198
    Zhang Mingming, Chen Cong, Huang Yuqin, Qu Jiangyanyu, Yuan Feng, Li xiaohui, 2025. Three-Dimensional Mineral Prospectivity Modeling of Skarn-Type Copper Deposits in the Anqing Area Based on Causal Inference and Graph Attention Networks. Earth Science. doi: 10.3799/dqkx.2025.198
    Citation: Zhang Mingming, Chen Cong, Huang Yuqin, Qu Jiangyanyu, Yuan Feng, Li xiaohui, 2025. Three-Dimensional Mineral Prospectivity Modeling of Skarn-Type Copper Deposits in the Anqing Area Based on Causal Inference and Graph Attention Networks. Earth Science. doi: 10.3799/dqkx.2025.198

    基于因果推理模型和图注意力网络的安庆地区矽卡岩型铜矿床三维成矿预测方法

    doi: 10.3799/dqkx.2025.198
    基金项目: 

    国家自然科学基金面上项目(42272341),国家重点研发计划(2024YFC2909202),国家自然科学基金面上项目(41872247)

    详细信息
      作者简介:

      张明明(1981-),女,博士,教授,地理学专业。研究方向:三维GIS应用、地学大数据、三维地质建模与成矿预测。E-mail: mm81_0@126.com。ORCID:0000-0002-9363-5755

    • 中图分类号: P624

    Three-Dimensional Mineral Prospectivity Modeling of Skarn-Type Copper Deposits in the Anqing Area Based on Causal Inference and Graph Attention Networks

    • 摘要: 本文提出了一种融合因果推理与图注意力网络的三维成矿预测方法,旨在提升复杂地质环境下对深部隐伏矽卡岩型铜矿床的预测精度与效率。研究以长江中下游成矿带的安庆地区为例,基于地质图、钻孔资料和地球物理数据,采用显式与隐式相结合的建模方法,构建了涵盖地层、岩体、断层及矿体的高精度三维地质模型。在此基础上,利用基于非高斯假设的RESIT因果推理算法,对62类控矿要素进行分析,识别并构建因果图,最终筛选出14个核心控矿变量。随后,结合三维空间邻接关系构建预测数据集,并将因果结构引入GAT模型以进行矿化概率预测。对比实验结果表明,该方法在准确率、AUC值及成功率曲线等指标上均优于随机森林、支持向量机、图卷积网络和三维卷积网络等常用方法。基于模型预测,本文圈定了四个与闪长岩侵入体及三叠系碳酸盐岩接触带密切相关的深部高潜力成矿靶区。研究成果表明,因果推理与深度图学习的结合不仅能够提升预测性能,还增强了模型的地质可解释性,为深部矿产资源勘查提供了一条新的技术路径。

       

    • Agterberg F P, Bonham-Carter G F. Measuring the Performance of Mineral-Potential Maps. Natural Resources Research, 2005, 14(1): 1–17.
      Athey S, Imbens G W, 2017. The State of Applied Econometrics: Causality and Policy Evaluation. Journal of Economic Perspectives, 31(2): 3–32.
      Caumon G, Collon-Drouaillet P, Le Carlier de Veslud C, et al. Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences, 2009, 41(8): 927–945.
      Deng H, Huang X, Mao X, et al. Generalized mathematical morphological method for 3D shape analysis of geological boundaries: application in identifying mineralization-associated shape features. Natural Resources Research, 2022, 31(4): 2103-2127.
      Deng H, Zheng Y, Chen J, et al. Learning 3D Mineral Prospectivity from 3D Geological Models using Convolutional Neural Networks: Application to a Structure-Controlled Hydrothermal Gold Deposit. Computers & Geosciences, 2022, 161: 105074.
      He H, Ma C, Ye S, et al. Low resource chinese geological text named entity recognition based on prompt learning. Journal of Earth Science, 2024, 35(3): 1035-1043.
      Hu X, Li X, Yuan F, et al. 3D Numerical Simulation-Based Targeting of Skarn Type Mineralization within the Xuancheng-Magushan Orefield, Middle-Lower Yangtze Metallogenic Belt, China. Lithosphere, 2020, 2020(1): 8351536.
      Hu X, Yuan F, Li X, et al., 2018. 3D Characteristic Analysis-Based Targeting of Concealed Kiruna-Type Fe Oxide-Apatite Mineralization within the Yangzhuang Deposit of the Zhonggu Orefield, Southern Ningwu Volcanic Basin, Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 92: 240–256.
      Hyvärinen A, Zhang K, Shimizu S, et al. Estimation of a Structural Vector Autoregression Model using Non-Gaussianity. Journal of Machine Learning Research, 2010, 11(5).
      Kipf T N, Welling M, 2016. Semi-Supervised Classification with Graph Convolutional Networks. arXiv Preprint, arXiv:1609.02907.
      Lee C, Oh H J, Cho S J, et al., 2019. Three-Dimensional Prospectivity Mapping of Skarn-Type Mineralization in the Southern Taebaek Area, Korea. Geosciences Journal, 23: 327–339.
      Li N, Bagas L, Li X, et al., 2016. An Improved Buffer Analysis Technique for Model-Based 3D Mineral Potential Mapping and Its Application. Ore Geology Reviews, 76: 94–107.
      Li H, Li X, Yuan F, et al., 2020. Convolutional Neural Network and Transfer Learning Based Mineral Prospectivity Modeling for Geochemical Exploration of Au Mineralization within the Guandian–Zhangbaling Area, Anhui Province, China. Applied Geochemistry, 122: 104747.
      Li H, Li X, Yuan F, et al. Knowledge-Driven Based Three-Dimensional Prospectivity Modeling of Fe–Cu Skarn Deposits; A Case Study of the Fanchang Volcanic Basin, Anhui Province, Eastern China. Ore Geology Reviews, 2022, 149: 105065.
      Li H, Li X, Yuan F, et al. Genetic algorithm optimized light gradient boosting machine for 3D mineral prospectivity modeling of Cu polymetallic skarn-type mineralization, Xuancheng Area, Anhui Province, Eastern China. Natural Resources Research, 2023, 32(5): 1897-1916.
      Li S, Chen J, Liu C, et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32: 327–347.
      Li T, Zuo R, Xiong Y, et al., 2021. Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping. Natural Resources Research, 30: 27–38.
      Li X, Yuan F, Zhang M, et al. Three-Dimensional Mineral Prospectivity Modeling for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin, China. Ore Geology Reviews, 2015, 71: 633–654.
      Li Y, Yuan F, Jowitt S M, et al. Genesis of the Maweishan Pb–Zn deposit, eastern China and controls on the distribution and formation of sphalerite-hosted critical metal (Cd, Ga, and In) mineralization. Ore Geology Reviews, 2025: 106600.
      Luo Z, Zuo R, Xiong Y, et al., 2021. Detection of Geochemical Anomalies Related to Mineralization using the GANomaly Network. Applied Geochemistry, 131: 105043.
      Ma S, Statnikov A, 2017. Methods for Computational Causal Discovery in Biomedicine. Behaviormetrika, 44(1): 165–191.
      Mao X, Ren J, Liu Z, et al., 2019. Three-Dimensional Prospectivity Modeling of the Jiaojia-Type Gold Deposit, Jiaodong Peninsula, Eastern China: A Case Study of the Dayingezhuang Deposit. Journal of Geochemical Exploration, 203: 27–44.
      Mao X, Zhang W, Liu Z, et al. 3D mineral prospectivity modeling for the low-sulfidation epithermal gold deposit: A case study of the axi gold deposit, western Tianshan, NW China. Minerals, 2020, 10(3): 233.
      Mao X, Zhang B, Deng H, et al. Three-Dimensional Morphological Analysis Method for Geologic Bodies and Its Parallel Implementation. Computers & Geosciences, 2016, 96: 11–22.
      Mejía-Herrera P, Royer J J, Caumon G, et al., 2015. Curvature Attribute from Surface-Restoration as Predictor Variable in Kupferschiefer Copper Potentials: An Example from the Fore-Sudetic Region. Natural Resources Research, 24: 275–290.
      Shao R, Lin P, Xu Z, et al. Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels. Journal of Earth Science, 2025, 36(3): 1261-1276.
      Shimizu S, Hoyer P O, Hyvärinen A, Kerminen A, 2006. A Linear Non-Gaussian Acyclic Model for Causal Discovery. Journal of Machine Learning Research, 7(10): 2003–2030.
      Spirtes P, 2001. An Anytime Algorithm for Causal Inference. In International Workshop on Artificial Intelligence and Statistics. PMLR: 278–285.
      Sun K, Chen Y, Geng G, Lu Z, Zhang W, Song Z, Guan J, Zhao Y, Zhang Z, 2024. A Review of Mineral Prospectivity Mapping using Deep Learning. Minerals, 14: 1021.
      Sun T, Li H, Wu K, Chen F, Zhu Z, Hu Z, 2020. Data-Driven Predictive Modelling of Mineral Prospectivity using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals, 10: 102. doi: 10.3390/min10020102.
      Varian H R, 2016. Causal Inference in Economics and Marketing. Proceedings of the National Academy of Sciences, 113(27): 7310–7315.
      Xu X, Xu X, Xie Q, et al. Geological Features and Ore-Forming Mechanisms of the Chating Cu–Au Deposit: A Rare Case of Porphyry Deposit in the Middle–Lower Yangtze River Metallogenic Belt. Ore Geology Reviews, 2022, 144: 104860.
      Zhang M, Zhou G, Shen L, et al., 2019. Comparison of 3D Prospectivity Modeling Methods for Fe-Cu Skarn Deposits: A Case Study of the Zhuchong Fe-Cu Deposit in the Yueshan Orefield (Anhui), Eastern China. Ore Geology Reviews, 114: 103126.
      周涛发, 范裕, 王世伟, 2017. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 33(11): 3353-3372.
      Zhou T F, Fan Y, Wang S W, 2017.Mineralization Regularities and Metallogenic Models in the Middle–Lower Yangtze Metallogenic Belt [J]. Acta Petrologica Sinica, 33(11): 3353–3372.
      周涛发,范裕,陈静,肖鑫,张舒,2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665–3677.
      Zhou T F, Fan Y, Chen, J, Xiao, X, Zhang S, 2020. Research Status and Progress of Key Metal Mineral Resources in the Middle-Lower Yangtze Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665–3677.
    • 加载中
    计量
    • 文章访问数:  33
    • HTML全文浏览量:  0
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-17
    • 网络出版日期:  2025-10-15

    目录

      /

      返回文章
      返回