• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    乐千桤, 张瑞, 陈辉, 闫帅星, 王东坡, 2025. 基于多普勒雷达的突发性灾害体智能识别. 地球科学. doi: 10.3799/dqkx.2025.243
    引用本文: 乐千桤, 张瑞, 陈辉, 闫帅星, 王东坡, 2025. 基于多普勒雷达的突发性灾害体智能识别. 地球科学. doi: 10.3799/dqkx.2025.243

    基于多普勒雷达的突发性灾害体智能识别

    doi: 10.3799/dqkx.2025.243
    基金项目: 

    国家自然科学基金委员会(42207232)

    四川省科学教育联合基金(项目编号:2024NSFSC1952)

    成都市科学技术局技术创新研发项目(2024 YF05-01584-SN)

    地质灾害防治与地质环境保护全国重点实验室自主研究课题(SKLGP2022Z011)

    详细信息
      作者简介:

      乐千桤(1976-),副教授,硕士生导师,主要从事人工智能技术在地质灾害监测的研究。E-mail:leqianqi@cdut.edu.cn,ORCID:0009-00088392-5055

    • 中图分类号: P694

    • 摘要: 针对突发性地质灾害识别的高精度与实时性需求,本研究提出了一种适用于多普勒雷达的轻量级多尺度特征融合网络DRWAF-Net(Doppler Radar Wavelet Attention Fuse Network),通过小波变换与注意力机制协同优化,实现了复杂地表环境下泥石流、滚石等灾害体的实时识别。研究充分利用多普勒雷达动态捕获灾害体距离与速度的能力,整合环境干扰下的泥石流数据集与RDRD数据集的核心要素,针对性构建了突发地质灾害场景的多普勒雷达数据集。实验结果表明,DRWAF-Net以2.38M参数量、9.27MB模型大小和6.31ms推理速度,使准确率(96.77%)、精确率(96.90%)、召回率(96.77%)和F1分数(96.77%)均在测试集上达到最优水平。消融实验验证,结合多输入注意力门控(MIAG)机制的DRWAF-Net较基准模型提升识别率1.87%-3.13%。本研究通过轻量化设计与实时推理优化,为突发性地质灾害应急响应提供了实时、智能的监测方案。

       

    • Ajit, A., Acharya, K., Samanta, A. (2020). A Review of Convolutional Neural Networks. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). https://doi.org/10.1109/ic-ETITE47903.2020.049
      Boonpook, W., Tan, Y., Xu, B. (2021). Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry.International Journal of Remote Sensing, 42(1), 1-19. https://doi.org/10.1007/978-3-319-46493-0_22
      Cai, Z., Fan, Q., Feris, R. S., et al. (2016). A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection. Computer Vision – ECCV 2016. https://doi.org/10.1007/978-3-319-46493-0_22
      Casagli, N., Intrieri, E., Tofani, V., et al. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques.Nature Reviews Earth & Environment, 4(1), 51-64. https://doi.org/10.1038/s43017-022-00373-x
      Dubey, A., Santra, A., Fuchs, J., et al. (2021). Bayesradar : Bayesian Metric-Kalman Filter Learning for Improved and Reliable Radar Target Classification. 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP). https://doi.org/10.1109/MLSP52302.2021.9596290
      Finder, S. E., Amoyal, R., Treister, E., et al. (2024). Wavelet Convolutions for Large Receptive Fields. Computer Vision – ECCV 2024. https://doi.org/10.1007/978-3-031-72949-2_21
      Gu, J., Wang, Z., Kuen, J., et al. (2018). Recent advances in convolutional neural networks.Pattern recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
      He, K., Zhang, X., Ren, S., et al. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90
      Heydarian, M., Doyle, T. E., Samavi, R. (2022). MLCM: Multi-Label Confusion Matrix.IEEE Access, 10, 19083-19095. https://doi.org/10.1109/ACCESS.2022.3151048
      Howard, A., Sandler, M., Chen, B., et al. (2019). Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2019.00140
      Huether, B. M., Gustafson, S. C., Broussard, R. P. (2001). Wavelet preprocessing for high range resolution radar classification.IEEE Transactions on Aerospace and Electronic Systems, 37(4), 1321-1332. https://doi.org/10.1109/7.976968
      Hung-Chih, C., Moses, R. L., Potter, L. C. (2000). Model-based classification of radar images.IEEE Transactions on information theory, 46(5), 1842-1854. https://doi.org/10.1109/18.857795
      Jakob, M., Lambert, S. (2009). Climate change effects on landslides along the southwest coast of British Columbia.Geomorphology, 107, 275-284. https://doi.org/10.1016/j.geomorph.2008.12.009
      Khan, A., Sohail, A., Zahoora, U., et al. (2020). A survey of the recent architectures of deep convolutional neural networks.Artificial intelligence review, 53(8), 5455-5516. https://doi.org/10.1007/s10462-020-09825-6
      La, R., Lv, T., Bai, P., et al. (2022). Research on Collaborative and Optimal Deployment and Decision Making Among Major Geological Disaster Rescue Subjects.Geotechnical and Geological Engineering, 40(1), 57-71. https://doi.org/10.1007/s10706-021-01883-z
      Li, Z., Liu, F., Yang, W., et al. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999-7019. https://doi.org/10.1109/TNNLS.2021.3084827
      Lin, T. Y., Dollár, P., Girshick, R., et al. (2017). Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.106
      Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis.Medical image analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
      Liu, S., Hu, K., Li, H., et al. (2025). Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances.Geophysical Research Letters, 52(2), e2024GL112351. https://doi.org/10.1029/2024GL112351
      Liu, Z., Mao, H., Wu, C. Y., et al. (2022). A ConvNet for the 2020s. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR52688.2022.01167
      Michelini, A., Viviani, F., Bianchetti, M., et al. (2020).A new radar-based system for detecting and tracking rockfall in open pit mines Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Online. https://papers.acg.uwa.edu.au/p/2025_79_Stopka/
      Rawat, W., Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.Neural Computation, 29(9), 2352-2449. https://doi.org/10.1162/neco_a_00990
      Rickenmann, D. (1999). Empirical Relationships for Debris Flows.Natural Hazards, 19(1), 47-77. https://doi.org/10.1023/A:1008064220727
      Ristic, B., Kim, D. Y., Rosenberg, L., et al. (2022). Exploiting Doppler in Bernoulli Track-Before-Detect for a Scanning Maritime Radar.IEEE Transactions on Aerospace and Electronic Systems, 58(1), 720-728. https://doi.org/10.1109/TAES.2021.3098117
      Roldan, I., del-Blanco, C. R., Duque de Quevedo, Á., et al. (2020). DopplerNet: a convolutional neural network for recognising targets in real scenarios using a persistent range–Doppler radar.IET Radar, Sonar & Navigation, 14(4), 593-600. https://doi.org/10.1049/iet-rsn.2019.0307
      Romeo, S., Cosentino, A., Giani, F., et al. (2021). Combining Ground Based Remote Sensing Tools for Rockfalls Assessment and Monitoring: The Poggio Baldi Landslide Natural Laboratory.Sensors, 21(8), 2632. https://doi.org/10.3390/s21082632
      Simonyan, K., Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition.Computer Science. https://doi.org/10.48550/arXiv.1409.1556
      Szegedy, C., Wei, L., Yangqing, J., et al. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2015.7298594
      Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need.Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762
      Viviani, F., Michelini, A., Mayer, L. (2020).RockSpot: an Interferometric Doppler Radar for Rockfall/Avalanche Detection and Tracking. https://doi.org/10.1109/RadarConf2043947.2020.9266677
      Wang, J., Zhu, H., Lei, P., et al. (2019). CNN Based Classification of Rigid Targets in Space Using Radar Micro-Doppler Signatures.Chinese Journal of Electronics, 28(4), 856-862. https://doi.org/10.1049/cje.2018.08.003
      Yu, F., Koltun, V. (2016).Multi-Scale Context Aggregation by Dilated Convolutions. 4th International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico. http://arxiv.org/abs/1511.07122
      Zhou, Z., Cao, Z., Pi, Y. (2019). Subdictionary-Based Joint Sparse Representation for SAR Target Recognition Using Multilevel Reconstruction.IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6877-6887. https://doi.org/10.1109/TGRS.2019.2909121
      昌开馨. (2019). 为救援提前归队,永远倒在岗位上--记阿坝州消防支队汶川县大队水磨镇政府专职队班长更斯穷.消防界(电子版), 5(15), 38-39. https://doi.org/10.16859/j.cnki.cn12-9204/tu.2019.15.009
      沈妍琰, 黄兴友, 黄书荣, 等. (2020). 基于贝叶斯分类器的多普勒天气雷达海浪回波识别和效果检验.海洋科学, 44(06), 83-90. https://doi.org/10.11759/hykx20191011001
      崔鹏, 刘世建, 谭万沛. (2000). 中国泥石流监测预报研究现状与展望.自然灾害学报, 9(002), 10-15.
      何思明, 王东坡, 吴永, 等. (2014). 崩塌滚石灾害的力学机理与防治技术.自然杂志, 36(5), 336-345. Online. https://www.nature.shu.edu.cn/CN/abstract/article_8008.shtml
      李明威, 唐川, 陈明, 等. (2021). 四川省汶川县板子沟8·20泥石流成因与易损强度分析.防灾减灾工程学报, 41(02), 238-245. https://doi.org/10.13409/j.cnki.jdpme.202004071
      李巧, 戚友存, 张哲, 等. (2024). 基于贝叶斯分类器和回波物理特征的C波段雷达非气象回波识别方法和性能分析.大气科学, 48(3), 823-836. https://doi.org/10.3878/j.issn.1006-9895.2205.22003
      刘石狮. (2024).基于CNN和Transformer混合架构的混泥土结构裂缝检测研究 [硕士, 湖北工业大学]. https://d.wanfangdata.com.cn/thesis/D03499199
      罗璟. (2020).“8.3”鲁甸地震斜坡动力响应及巨型岩质滑坡堵江机制研究 [博士, 成都理工大学]. https://link.cnki.net/doi/10.26986/d.cnki.gcdlc.2020.000041
      罗玉婷. (2021).汶川县“8.20”堵江型泥石流灾害链及风险定量评价 [硕士, 成都理工大学]. https://link.cnki.net/doi/10.26986/d.cnki.gcdlc.2021.001373
      马腾, 周兰凤, 李建鑫. (2024). 基于宽带雷达RCS数据的空间物体识别方法.Journal of Ordnance Equipment Engineering, 45(7). https://doi.org/10.11809/bqzbgcxb2024.07.037
      石岩, 孟宪虎. (2014). 云南鲁甸“8·3”地震纪实.中国报道(09), 46-47.
      王琨鹏, 颜春林, 杨辉. (2014). 基于模板匹配的雷达辐射源信号识别研究.舰船电子对抗, 37(05), 31-33+41. https://doi.org/10.16426/j.cnki.jcdzdk.2014.05.017
      修济刚, 陈宇鸣. (2014). 鲁甸应急--云南鲁甸“8·3”6.5级地震应急救援启示.防灾博览(05), 28-35.
      张林, 杨洪平, 邓鑫, 等. (2014). 基于模板匹配法的长乐雷达强超折射回波识别.气象, 40(03), 364-372. https://doi.org/http://dx.doi.org/10.7519/j.issn.1000-0526.2014.03.012
      张鹏宇, 申亮, 黄晓涛, 等 (2022). 基于对称结构特征的探地雷达图像模板匹配算法.地球物理学进展, 37(6), 2657-2666. https://doi.org/10.6038/pg2022GG0054
      赵延广, 雷斌. (2022). 超声波泥位计应用问题及解决措施.分析仪器(3), 40-43. https://doi.org/10.3969/j.issn.1001-232x.2022.03.009
      左力艳, 杨建锋. (2023). 我国突发性地质灾害调查监测进展、成效与未来趋势.中国矿业, 32(S2), 7-12. https://doi.org/10.12075/j.issn.1004-4051.20230724
    • 加载中
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-03
    • 网络出版日期:  2025-12-03

    目录

      /

      返回文章
      返回