• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    薛泽远, 范宣梅, 邓宇, 蒋力洋, 2025. 藏东南则隆弄冰川运动速度长时间季节性变化规律. 地球科学. doi: 10.3799/dqkx.2025.244
    引用本文: 薛泽远, 范宣梅, 邓宇, 蒋力洋, 2025. 藏东南则隆弄冰川运动速度长时间季节性变化规律. 地球科学. doi: 10.3799/dqkx.2025.244
    XUE Zeyuan, FAN Xuanmei, DENG Yu, JIANG Liyang, 2025. Long-term and Seasonal Variations of Glacier Velocity in Zelongnong, Southeastern Tibet. Earth Science. doi: 10.3799/dqkx.2025.244
    Citation: XUE Zeyuan, FAN Xuanmei, DENG Yu, JIANG Liyang, 2025. Long-term and Seasonal Variations of Glacier Velocity in Zelongnong, Southeastern Tibet. Earth Science. doi: 10.3799/dqkx.2025.244

    藏东南则隆弄冰川运动速度长时间季节性变化规律

    doi: 10.3799/dqkx.2025.244
    基金项目: 

    国家杰出青年科学基金(42125702)

    四川省重大科技专项(2024ZDZX0020)

    科学探索奖,强震和极端气候作用下青藏高原巨灾风险预测(2027-2023)

    详细信息
      作者简介:

      薛泽远,硕士生,主要从事冰川地质灾害研究。849814088@qq.com,ORCID:https://orcid.org/0009-0008-4273-2855

      通讯作者:

      范宣梅,博士,研究员。fxm_cdut@qq.com

    • 中图分类号: P343.6;TP79

    Long-term and Seasonal Variations of Glacier Velocity in Zelongnong, Southeastern Tibet

    • 摘要: 研究冰川运动速度对于理解高寒山区冰流的响应机制具有重要意义。然而在藏东南地区,由于时间和空间上的限制,许多冰川的运动研究仍不充分。本文利用多源遥感影像,采用特征追踪方法获取了藏东南则隆弄冰川的表面速度。结合冰川坡度、厚度等地形要素,以及30年平均气温和降水量等气象数据,分析了其长期流动特征。结果表明,该冰川流速具有显著的季节性:夏秋季较快,春冬季较慢。流速主要受坡度和厚度影响,并在全球变暖背景下呈现缓慢上升趋势。进一步结合气候数据发现,冰川流速变化受季节性气温和降水控制,其中降水的影响存在一定滞后。这种滞后性与降水下渗并传递至冰川底部所需的时间密切相关。长期观测揭示了则隆弄冰川的季节性流动特征和逐渐增强的长期趋势。同时,研究还探讨了流速异常与地质灾害的关系。总体来看,本研究为理解气候变化对藏东南地区冰川动态的影响提供了科学依据。

       

    • Agarwal, V., Bolch, T., Syed, T. H., et al., 2017. Area and Mass Changes of Siachen Glacier (East Karakoram).Journal of Glaciology, 63(237), 148–163. https://doi.org/10.1017/jog.2016.127
      Agarwal, V., Van Wyk De Vries, M., Haritashya, U. K., et al., 2023. Long-Term Analysis of Glaciers and Glacier Lakes in the Central and Eastern Himalaya.Science of The Total Environment, 898, 165598. https://doi.org/10.1016/j.scitotenv.2023.165598
      Allen, S. K., Rastner, P., Arora, M., et al., 2016. Lake Outburst and Debris Flow Disaster at Kedarnath, June 2013: Hydrometeorological Triggering and Topographic Predisposition.Landslides, 13(6), 1479–1491. https://doi.org/10.1007/s10346-015-0584-3
      Berthier, E., Vadon, H., Baratoux, D., et al., 2005. Surface Motion of Mountain Glaciers Derived from Satellite Optical Imagery.Remote Sensing of Environment, 95(1), 14–28. https://doi.org/10.1016/j.rse.2004.11.005
      Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2017. Surge-Type and Surge-Modified Glaciers in the Karakoram.Scientific Reports, 7(1), 15391. https://doi.org/10.1038/s41598-017-15473-8
      Chen, J., Gao, H., Han, L., et al., 2023. Susceptibility Analysis of Glacier Debris Flow Based on Remote Sensing Imagery and Deep Learning: A Case Study along the G318 Linzhi Section.Sensors, 23(14), 6608. https://doi.org/10.3390/s23146608
      Cheng, X.,Xu, G. 2006. The Integration of JERS-1 and ERS SAR in Differential Interferometry for Measurement of Complex Glacier Motion.Journal of Glaciology, 52(176), 80–88. https://doi.org/10.3189/172756506781828881
      Dehecq, A., Gourmelen, N., Gardner, A. S., et al., 2019. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia.Nature Geoscience, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9
      European Space Agency and Airbus, 2022.Copernicus DEM, European Space Agency, European Space Agency [data set], https://doi.org/10.5270/ESA-c5d3d65
      Farinotti, D., Huss, M., Fürst, J. J., et al., 2019. A Consensus Estimate for the Ice Thickness Distribution of All Glaciers on Earth.Nature Geoscience, 12(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3
      Guan,W.J.,Cao,B.,Pan,B.T.,2020. Research of Glacier Flow Velocity:Current Situation and Prospects.Journal of Glaciology and Geocryology,42(04),1101-1114(in Chinese with English abstract).
      Guo, W., Liu, S., Xu, J., et al., 2015. The Second Chinese Glacier Inventory: Data, Methods and Results.Journal of Glaciology 61, 357–372. https://doi.org/10.3189/2015JoG14J209.
      Huang H., & Gong C., 2024. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau.Earth Science-Journal of China University of Geosciences, 49(10), 3784. (in Chinese with English abstract)https://doi.org/10.3799/dqkx.2023.140
      Kääb, A., Berthier, E., Nuth, C., et al., 2012. Contrasting Patterns of Early Twenty-First-Century Glacier Mass Change in the Himalayas.Nature, 488(7412), 495–498. https://doi.org/10.1038/nature11324
      Li, L., Yang, S., Wang, Z., Zhu, X., et al., 2010. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau.Arctic, Antarctic, and Alpine Research, 42(4), 449–457. https://doi.org/10.1657/1938-4246-42.4.449
      Li, H., Zhao, J., Yan, B., et al., 2022 . Global DEMs Vary from One to Another: an Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry data.International Journal of Digital Earth, 15(1), 1149–1168. https://doi.org/10.1080/17538947.2022.2094002
      Liu,C.Z.,LÜ,J.T.,Tong.L.Q., et al.,2019.Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet.Geology of China, 46(02),219-234. (in Chinese with English abstract)
      Liu, Y., An, Z., Linderholm, H. W., et al., 2009. Annual Temperatures during the Last 2485 Years in the Mid-Eastern Tibetan Plateau Inferred from Tree Rings.Science in China Series D: Earth Sciences, 52(3), 348–359. https://doi.org/10.1007/s11430-009-0025-z
      Millan, R., Mouginot, J., Rabatel, A., et al., 2022. Ice Velocity and Thickness of the World’s Glaciers.Nature Geoscience, 15(2), 124–129. https://doi.org/10.1038/s41561-021-00885-z
      Moon, T., Joughin, I., Smith, B., et al., 2012. 21st-Century Evolution of Greenland Outlet Glacier Velocities.Science, 336(6081), 576–578. https://doi.org/10.1126/science.1219985
      Mountain Research Initiative EDW Working Group. 2015 . Elevation-Dependent Warming in Mountain Regions of the World.Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563
      RGI Consortium., 2017. Randolph Glacier Inventory (RGI)-A Dataset of Global Glacier Outlines: Version 6.0. In: Technical Report, Global Land Ice Measurements from Space. Digital Media, Boulder, Colorado, USA. [Data Set]https://doi.org/10.7265/N5-RGI-60.
      RGI Consortium., 2023. Randolph Glacier Inventory (RGI)- A Dataset of Global Glacier Outlines. Version 7.0. National Snow and Ice Data Center. Boulder, Colorado USA. [Data Set] https://doi.org/10.5067/F6JMOVY5NAVZ.
      Sattar, A., Cook, K. L., Rai, S. K., et al., 2025. The Sikkim Flood of October 2023: Drivers, Causes, and Impacts of a Multihazard Cascade.Science, 387(6740), eads2659. https://doi.org/10.1126/science.ads2659
      Su, Z., & Shi, Y. 2002. Response of Monsoonal Temperate Glaciers to Global Warming since the Little Ice Age.Quaternary International, 97–98, 123–131. https://doi.org/10.1016/S1040-6182(02)00057-5
      Van Wyk De Vries, M., Carchipulla-Morales, D., Wickert, A. D., et al., 2022. Glacier Thickness and Ice Volume of the Northern Andes.Scientific Data, 9(1), 342. https://doi.org/10.1038/s41597-022-01446-8
      Van Wyk De Vries, M., Wickert, A. D. 2021. Glacier Image Velocimetry: An Open-Source Toolbox for Easy and Rapid Calculation of High-Resolution Glacier Velocity Fields.The Cryosphere, 15(4), 2115–2132. https://doi.org/10.5194/tc-15-2115-2021
      Wang,P.Y.,Li,Z.Q.,Wu,L.H., et al.,2012.Ice Thickness and Volume Based on GPR,GPS and GIS:Example from the Heigou Glacier No.8, Bogda-Peak Region, Tianshan, China.Earth Science-Journal of China University of Geosciences. 37(S1),179-187. (in Chinese with English abstract)
      Xin, Y., Zhao, C., Li, B., et al., 2024. Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images.Remote Sensing, 16(21), 4003. https://doi.org/10.3390/rs16214003
      Yao, T., Bolch, T., Chen, D., et al., 2022. The Imbalance of the Asian Water Tower.Nature Reviews Earth & Environment, 3(10), 618–632. https://doi.org/10.1038/s43017-022-00299-4
      Zhang, Y., Fujita, K., Liu, S., et al., 2010. Multi-Decadal Ice-Velocity and Elevation Changes of a Monsoonal Maritime Glacier: Hailuogou Glacier, China.Journal of Glaciology, 56(195), 65–74. https://doi.org/10.3189/002214310791190884
      Zhang, Y., Kang, S., Cong, Z., 2017. Light-absorbing Impurities Enhance Glacier Albedo Reduction in the Southeastern Tibetan Plateau.Journal of Geophysical Research: Atmospheres, 122(13), 6915–6933. https://doi.org/10.1002/2016JD026397
      Zhang Z., Hu K., Lu Y., 2024. Glacier Movement Characteristics and Influencing Factors in High Mountain Asia’.Earth Science-Journal of China University of Geosciences 49(8):3010 (in Chinese with English abstract). doi: 10.3799/dqkx.2022.482.
      Zwally, H. J., Abdalati, W., Herring, T., 2002. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow.Science, 297(5579), 218–222. https://doi.org/10.1126/science.1072708
      Zou Q., Zhou B., Yang T., et al. 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science-Journal of China University of Geosciences, 49(11), 4047 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.083
      黄海,龚诚,2024.藏东南地区直白沟冰雪型地质灾害链时空演化特征[J].地球科学,49(10):3784-3798.
      管伟瑾,曹泊,潘保田,2020.冰川运动速度研究:方法、变化、问题与展望.冰川冻土,42(04),1101-1114.
      刘传正,吕杰堂,童立强,等.2019.雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究.中国地质,46(02),219-234.
      刘国祥,张波,张瑞,等,2019.联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J].武汉大学学报(信息科学版), 44(07):980-995.DOI: 10.13203/j.whugis20190077.
      任锦程,苏鹏程,张乐乐,等,2025.藏东南直白沟冰川泥石流形成机制和风险评估[J].山地学报,43(03):423-437.DOI: 10.16089/j.cnki.1008-2786.000902.
      王璞玉,李忠勤,吴利华,等.2012.GPR,GPS与GIS支持下的冰川厚度及冰储量分析:以天山博格达峰黑沟8号冰川为例.地球科学(中国地质大学学报),37(S1),179-187.
      张震,胡克宏,陆艺杰,等,2024.亚洲高山区冰川运动特征及影响因素.地球科学,49(08),3010-3019.
      邹强,周斌,杨涛,等,2024.喜马拉雅高海拔山区冰湖溃决时空分异特征[J].地球科学, 49(11):4047-4062.
    • 加载中
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-03
    • 网络出版日期:  2025-12-03

    目录

      /

      返回文章
      返回