|
Agarwal, V., Bolch, T., Syed, T. H., et al., 2017. Area and Mass Changes of Siachen Glacier (East Karakoram).Journal of Glaciology, 63(237), 148–163. https://doi.org/10.1017/jog.2016.127 |
|
Agarwal, V., Van Wyk De Vries, M., Haritashya, U. K., et al., 2023. Long-Term Analysis of Glaciers and Glacier Lakes in the Central and Eastern Himalaya.Science of The Total Environment, 898, 165598. https://doi.org/10.1016/j.scitotenv.2023.165598 |
|
Allen, S. K., Rastner, P., Arora, M., et al., 2016. Lake Outburst and Debris Flow Disaster at Kedarnath, June 2013: Hydrometeorological Triggering and Topographic Predisposition.Landslides, 13(6), 1479–1491. https://doi.org/10.1007/s10346-015-0584-3 |
|
Berthier, E., Vadon, H., Baratoux, D., et al., 2005. Surface Motion of Mountain Glaciers Derived from Satellite Optical Imagery.Remote Sensing of Environment, 95(1), 14–28. https://doi.org/10.1016/j.rse.2004.11.005 |
|
Bhambri, R., Hewitt, K., Kawishwar, P., et al., 2017. Surge-Type and Surge-Modified Glaciers in the Karakoram.Scientific Reports, 7(1), 15391. https://doi.org/10.1038/s41598-017-15473-8 |
|
Chen, J., Gao, H., Han, L., et al., 2023. Susceptibility Analysis of Glacier Debris Flow Based on Remote Sensing Imagery and Deep Learning: A Case Study along the G318 Linzhi Section.Sensors, 23(14), 6608. https://doi.org/10.3390/s23146608 |
|
Cheng, X.,Xu, G. 2006. The Integration of JERS-1 and ERS SAR in Differential Interferometry for Measurement of Complex Glacier Motion.Journal of Glaciology, 52(176), 80–88. https://doi.org/10.3189/172756506781828881 |
|
Dehecq, A., Gourmelen, N., Gardner, A. S., et al., 2019. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia.Nature Geoscience, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9 |
|
European Space Agency and Airbus, 2022.Copernicus DEM, European Space Agency, European Space Agency [data set], https://doi.org/10.5270/ESA-c5d3d65 |
|
Farinotti, D., Huss, M., Fürst, J. J., et al., 2019. A Consensus Estimate for the Ice Thickness Distribution of All Glaciers on Earth.Nature Geoscience, 12(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3 |
|
Guan,W.J.,Cao,B.,Pan,B.T.,2020. Research of Glacier Flow Velocity:Current Situation and Prospects.Journal of Glaciology and Geocryology,42(04),1101-1114(in Chinese with English abstract). |
|
Guo, W., Liu, S., Xu, J., et al., 2015. The Second Chinese Glacier Inventory: Data, Methods and Results.Journal of Glaciology 61, 357–372. https://doi.org/10.3189/2015JoG14J209. |
|
Huang H., & Gong C., 2024. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau.Earth Science-Journal of China University of Geosciences, 49(10), 3784. (in Chinese with English abstract)https://doi.org/10.3799/dqkx.2023.140 |
|
Kääb, A., Berthier, E., Nuth, C., et al., 2012. Contrasting Patterns of Early Twenty-First-Century Glacier Mass Change in the Himalayas.Nature, 488(7412), 495–498. https://doi.org/10.1038/nature11324 |
|
Li, L., Yang, S., Wang, Z., Zhu, X., et al., 2010. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau.Arctic, Antarctic, and Alpine Research, 42(4), 449–457. https://doi.org/10.1657/1938-4246-42.4.449 |
|
Li, H., Zhao, J., Yan, B., et al., 2022 . Global DEMs Vary from One to Another: an Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry data.International Journal of Digital Earth, 15(1), 1149–1168. https://doi.org/10.1080/17538947.2022.2094002 |
|
Liu,C.Z.,LÜ,J.T.,Tong.L.Q., et al.,2019.Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet.Geology of China, 46(02),219-234. (in Chinese with English abstract) |
|
Liu, Y., An, Z., Linderholm, H. W., et al., 2009. Annual Temperatures during the Last 2485 Years in the Mid-Eastern Tibetan Plateau Inferred from Tree Rings.Science in China Series D: Earth Sciences, 52(3), 348–359. https://doi.org/10.1007/s11430-009-0025-z |
|
Millan, R., Mouginot, J., Rabatel, A., et al., 2022. Ice Velocity and Thickness of the World’s Glaciers.Nature Geoscience, 15(2), 124–129. https://doi.org/10.1038/s41561-021-00885-z |
|
Moon, T., Joughin, I., Smith, B., et al., 2012. 21st-Century Evolution of Greenland Outlet Glacier Velocities.Science, 336(6081), 576–578. https://doi.org/10.1126/science.1219985 |
|
Mountain Research Initiative EDW Working Group. 2015 . Elevation-Dependent Warming in Mountain Regions of the World.Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563 |
|
RGI Consortium., 2017. Randolph Glacier Inventory (RGI)-A Dataset of Global Glacier Outlines: Version 6.0. In: Technical Report, Global Land Ice Measurements from Space. Digital Media, Boulder, Colorado, USA. [Data Set]https://doi.org/10.7265/N5-RGI-60. |
|
RGI Consortium., 2023. Randolph Glacier Inventory (RGI)- A Dataset of Global Glacier Outlines. Version 7.0. National Snow and Ice Data Center. Boulder, Colorado USA. [Data Set] https://doi.org/10.5067/F6JMOVY5NAVZ. |
|
Sattar, A., Cook, K. L., Rai, S. K., et al., 2025. The Sikkim Flood of October 2023: Drivers, Causes, and Impacts of a Multihazard Cascade.Science, 387(6740), eads2659. https://doi.org/10.1126/science.ads2659 |
|
Su, Z., & Shi, Y. 2002. Response of Monsoonal Temperate Glaciers to Global Warming since the Little Ice Age.Quaternary International, 97–98, 123–131. https://doi.org/10.1016/S1040-6182(02)00057-5 |
|
Van Wyk De Vries, M., Carchipulla-Morales, D., Wickert, A. D., et al., 2022. Glacier Thickness and Ice Volume of the Northern Andes.Scientific Data, 9(1), 342. https://doi.org/10.1038/s41597-022-01446-8 |
|
Van Wyk De Vries, M., Wickert, A. D. 2021. Glacier Image Velocimetry: An Open-Source Toolbox for Easy and Rapid Calculation of High-Resolution Glacier Velocity Fields.The Cryosphere, 15(4), 2115–2132. https://doi.org/10.5194/tc-15-2115-2021 |
|
Wang,P.Y.,Li,Z.Q.,Wu,L.H., et al.,2012.Ice Thickness and Volume Based on GPR,GPS and GIS:Example from the Heigou Glacier No.8, Bogda-Peak Region, Tianshan, China.Earth Science-Journal of China University of Geosciences. 37(S1),179-187. (in Chinese with English abstract) |
|
Xin, Y., Zhao, C., Li, B., et al., 2024. Activation of Ms 6.9 Milin Earthquake on Sedongpu Disaster Chain, China with Multi-Temporal Optical Images.Remote Sensing, 16(21), 4003. https://doi.org/10.3390/rs16214003 |
|
Yao, T., Bolch, T., Chen, D., et al., 2022. The Imbalance of the Asian Water Tower.Nature Reviews Earth & Environment, 3(10), 618–632. https://doi.org/10.1038/s43017-022-00299-4 |
|
Zhang, Y., Fujita, K., Liu, S., et al., 2010. Multi-Decadal Ice-Velocity and Elevation Changes of a Monsoonal Maritime Glacier: Hailuogou Glacier, China.Journal of Glaciology, 56(195), 65–74. https://doi.org/10.3189/002214310791190884 |
|
Zhang, Y., Kang, S., Cong, Z., 2017. Light-absorbing Impurities Enhance Glacier Albedo Reduction in the Southeastern Tibetan Plateau.Journal of Geophysical Research: Atmospheres, 122(13), 6915–6933. https://doi.org/10.1002/2016JD026397 |
|
Zhang Z., Hu K., Lu Y., 2024. Glacier Movement Characteristics and Influencing Factors in High Mountain Asia’.Earth Science-Journal of China University of Geosciences 49(8):3010 (in Chinese with English abstract). doi: 10.3799/dqkx.2022.482. |
|
Zwally, H. J., Abdalati, W., Herring, T., 2002. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow.Science, 297(5579), 218–222. https://doi.org/10.1126/science.1072708 |
|
Zou Q., Zhou B., Yang T., et al. 2024. Spatio-Temporal Differentiation Characteristics of Glacial Lake Outburst in the Himalayas. Earth Science-Journal of China University of Geosciences, 49(11), 4047 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.083 |
|
黄海,龚诚,2024.藏东南地区直白沟冰雪型地质灾害链时空演化特征[J].地球科学,49(10):3784-3798. |
|
管伟瑾,曹泊,潘保田,2020.冰川运动速度研究:方法、变化、问题与展望.冰川冻土,42(04),1101-1114. |
|
刘传正,吕杰堂,童立强,等.2019.雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究.中国地质,46(02),219-234. |
|
刘国祥,张波,张瑞,等,2019.联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J].武汉大学学报(信息科学版), 44(07):980-995.DOI: 10.13203/j.whugis20190077. |
|
任锦程,苏鹏程,张乐乐,等,2025.藏东南直白沟冰川泥石流形成机制和风险评估[J].山地学报,43(03):423-437.DOI: 10.16089/j.cnki.1008-2786.000902. |
|
王璞玉,李忠勤,吴利华,等.2012.GPR,GPS与GIS支持下的冰川厚度及冰储量分析:以天山博格达峰黑沟8号冰川为例.地球科学(中国地质大学学报),37(S1),179-187. |
|
张震,胡克宏,陆艺杰,等,2024.亚洲高山区冰川运动特征及影响因素.地球科学,49(08),3010-3019. |
|
邹强,周斌,杨涛,等,2024.喜马拉雅高海拔山区冰湖溃决时空分异特征[J].地球科学, 49(11):4047-4062. |