|
Ackerson, M.R., Mysen, B.O., Tailby, N.D., et al., 2018. Low-temperature crystallization of granites and the implications for crustal magmatism, Nature, 559(7712): 94-97. https://doi.org/10.1038/s41586-018-0264-2 |
|
Anderson, J.L., 2012. Cold pegmatites. Elements, 8(4): 248-249. https://doi.org/10.2113/gselements.8.4.248 |
|
Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition.Geology, 44(3): 231-234. https://doi.org/10.1130/g37475.1 |
|
Breiter, K., Badanina, E., Uriová, J., et al., 2019. Chemistry of quartz – A new insight into the origin of the Orlovka Ta-Li deposit, Eastern Transbaikalia, Russia.Lithos, 348-349: 105206. https://doi.org/10.1016/j.lithos.2019.105206 |
|
Cernuschi, F., Dilles, J.H., Geocke, S.B., et al., 2018. Rapid formation of porphyry copper deposits evidenced by diffusion of oxygen and titanium in quartz.Geology, 46(7): 611-614. https://doi.org/10.1130/G40262.1 |
|
Chang, Z.S., Meinert, L.D., 2004. The magmatic-hydrothermal transition – evidence from quartz phenocryst textures and endoskarn abundance in Cu–Zn skarns at the Empire Mine, Idaho, USA.Chemical Geology, 210(1-4): 149-171. https://doi.org/10.1016/j.chemgeo.2004.06.018 |
|
Chen, J.Z., Zhang, H., Tang, Y., et al., 2022. Lithium mineralization during evolution of a magmatic-hydrothermal system: Mineralogical evidence from Li-mineralized pegmatites in Altai, NW China.Ore Geology Reviews, 149: 105058. https://doi.org/10.1016/j.oregeorev.2022.105058 |
|
Glazner, A.F., Bartley, J.M., Law, B.S., 2020. Immiscibility and the origin of ladder structures, mafic layering, and schlieren in plutons.Geology, 49(1): 86-90. https://doi.org/10.1130/G47634.1 |
|
Huang, H.Q., Li, X.H., Li, W.X., et al., 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/G32080.1 |
|
Jackson, M.D., Blundy, J., Sparks, R.S.J., 2018. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust.Nature, 564(7735): 355-360. https://doi.org/10.1038/s41586-018-0746-2 |
|
Kaeter, D., Barros, R., Menuge, J.F., et al., 2018. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite.Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024 |
|
Langmuir, C.H., 1989. Geochemical consequences of in situ crystallization.Nature, 340(6231): 139-141. https://doi.org/10.1038/340199a0 |
|
Li, J., Huang, X.L., He, P.L., Li, W.X., et al., 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites.Ore Geology Reviews, 65: 793-810. https://doi.org/10.1016/j.oregeorev.2014.09.028 |
|
Li, J.Y., Wang, X.L., Gu, Z.D., et al., 2024. Geochemical diversity of continental arc basaltic mushy reservoirs driven by reactive melt infiltration.Communications Earth & Environment, 5: 109. https://doi.org/10.1038/s43247-024-01279-w |
|
Liu, Y., Lai, J.Q., Xiao, W.Z., et al., 2019. Petrogenesis and mineralization of two-stage A-type granites in Jiuyishan, South China: Constraints from whole-rock geochemistry, mineral composition and zircon U-Pb-Hf isotopes. Acta Geologica Sinica, 93(4): 874-900. https://doi.org/10.1111/1755-6724.13864 |
|
Liu, C.Y., Xiao, W.Z., Zhang, L.J., et al., Formation of Li-Rb-Cs greisen-type deposit in Zhengchong, Jiuyishan district, South China: Constraints from whole-rock and mineral geochemistry.Geochemistry, 2021, 81(4): 125796. https://doi.org/10.1016/j.chemer.2021.125796 |
|
Liu, X.H., Li, B., Xu, J.W., et al., Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li-Rb-Cs deposit in South China.Ore Geology Reviews, 2022, 150: 105147. https://doi.org/10.1016/j.oregeorev.2022.105147 |
|
Liu, X.H., Li, B., Lai, J.Q., et al., 2022. Multistage in situ fractional crystallization of magma produced a unique rare metal enriched quartz-zinnwaldite-topaz rock.Ore Geology Reviews, 151: 105203. https://doi.org/10.1016/j.oregeorev.2022.105203 |
|
London, D., 2022. A Rayleigh model of cesium fractionation in granite-pegmatite systems.American Mineralogist, 107(1): 82-91. https://doi.org/10.2138/am-2021-7855 |
|
Müller, A., Herklotz, G., Giegling, H., 2018. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany.Journal of Geochemical Exploration, 190: 357-373. https://doi.org/10.1016/j.gexplo.2018.04.009 |
|
Pollard, P.J., 2021. The Yichun Ta-Sn-Li deposit, South China: Evidence for extreme chemical fractionation in F-Li-P-rich magma.Economic Geology, 116(2): 453-469. https://doi.org/10.5382/econgeo.4801 |
|
Sirbescu, M.L.C., Nabelek, P.I., 2003. Crustal melts below 400 °C.Geology, 31(8):685-688. https://doi.org/10.1130/G19497.1 |
|
Soufi, M., 2021. Origin and physical-chemical control of topaz crystallization in felsic igneous rocks: Contrasted effect of temperature on its OH-F substitution.Earth-Science Reviews, 213: 103467. https://doi.org/10.1016/j.earscirev.2020.103467 |
|
Thomas, R., Davidson, P., Rericha, A., et al., 2022. Water-rich melt inclusion as "frozen" samples of the supercritical state in granites and pegmatites reveal extreme element enrichment resulting under non-equilibrium conditions. Mineralogical Journal, 44(1): 3-15. https://doi.org/10.15407/mineraljournal.44.01.003 |
|
Troch, J., Huber, C., Bachmann, O., 2022. The physical and chemical evolution of magmatic fluids in near-solidus silicic magma reservoirs: Implications for the formation of pegmatites.American Mineralogist, 107(2): 190-205. https://doi.org/10.2138/am-2021-7915 |
|
Wu, C.Z., Liu, S.H., Gu, L.X., et al., 2011. Formation mechanism of the lanthanide tetrad effect for a topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China.Journal of Asian Earth Sciences, 42: 903-916. https://doi.org/10.1016/j.jseaes.2010.09.011 |
|
Xiao, W.Z., Liu, C.Y., Tan, K.Y., et al., 2025. Zircon U-Pb-Hf and Trace Element Signatures Reveal the Petrogenesis of the Jiuyishan Granitic Complex, South China: Implications for W-Sn and Rare Metal Mineralization.Journal of Earth Science, 36(3): 1069–1089. https://doi.org/10.1007/s12583-023-1842-2 |
|
Yin, R., Huang, X.L., Wang, R.C., et al., 2022. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites: evidence from zoned micas from the Yashan pluton, South China.Journal of Petrology, 63: 1-28. https://doi.org/10.1093/petrology/egac093 |
|
龚敏, 吴俊华, 季浩, 等, 2023. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学. 地球科学, 48(12): 4370-4386. |
|
马星华, 闫金禹, 王宏晖, 等, 2025. 岩浆中的氟对钨锡成矿解耦的控制. 中国科学: 地球科学, 55(8): 2583-2602. |
|
沈敢富, 1983. 鹅髓岩(云英斑岩)--一种新的火成岩. 科学通报, 2: 100-105. |
|
陶丽蓉, 曹淑云, 李文元, 等, 2024. 大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义. 地球科学, 49(6): 2001-2023. |
|
王京彬, 1990. 湖南道县正冲稀有金属云英斑岩的特征和成因. 地质论评, 36(6): 534-539. |
|
王联魁, 卢家烂, 张绍立, 等, 1987. 南岭花岗岩液态分离实验研究. 中国科学: B辑, (1): 79-87. |
|
王雨婷, 杜静国, 雷如雄, 等, 2024. 内蒙古维拉斯托矿床隐爆角砾岩型锂铷矿体的成矿流体特征与成矿过程. 地球科学, 49(22): 4318-4334. |
|
王正军, 谢磊, 王汝成, 等, 2018. 一种特殊类型的云英岩:湘南香花岭地区癞子岭云英岩成岩成矿特征. 高校地质学报, 24(4): 467-480. |
|
文春华, 罗小亚, 李胜苗, 2016. 湖南道县正冲稀有金属矿床云英岩地球化学特征及对成矿的约束. 桂林理工大学学报, 36(1): 90-98. |
|
吴昌志, 贾力, 雷如雄, 等, 2021. 中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展. 岩石学报, 37(9): 2604-2628. |
|
吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36. |
|
熊小林, 朱金初, 饶冰, 等, 钠长花岗岩-H2O-HF体系相关系及含黄玉花岗质岩石的成因. 地质论评, 1999, 45(3): 313-322. |
|
周起凤, 秦克章, 唐冬梅, 等, 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022. |
|
朱金初, 刘伟新, 周凤英, 1993. 香花岭431岩脉中翁岗岩和黄英岩及空间分带和成因关系. 岩石学报, 2:158-166. |
|
祝新友, 王京彬, 王艳丽, 等, 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究--以湖南瑶岗仙钨矿床为例. 矿床地质, 32(3): 533-544. |